1
|
Zhang X, Liu Z, Ma X, Zheng Y, Hu H, Jiao B, McClements DJ, Wang Q, Shi A. Interfacial and foaming properties of plant and microbial proteins: Comparison of structure-function behavior of different proteins. Food Chem 2025; 463:141431. [PMID: 39388871 DOI: 10.1016/j.foodchem.2024.141431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024]
Abstract
Many plant proteins are amphiphilic molecules that can adsorb to air-water interfaces and form protective coatings around gas bubbles. In this study, the composition, structure, physicochemical properties, air-water interfacial properties, and foaming properties of 16 plant and microbial proteins were characterized. We found a correlation between the composition, structure, physicochemical properties, and foaming properties of the proteins. The foaming capacity of them showed a highly significant positive correlation (p ≤ 0.01) with their foaming stability, α-helix content, surface hydrophobicity, and free sulfhydryl content. The foaming capacity and foaming stability showed highly significant negative correlations with disulfide bond content (p ≤ 0.01). We found wheat gluten protein (WGP) and mung bean protein (MBP) had higher foaming capacity (102.67 ± 8.08 % and 89.33 ± 4.72 %), which could be attributed to higher surface hydrophobicity (179.68 ± 1.40 and 130.28 ± 1.41) and larger contact angle (82.369 ± 0.016° and 82.949 ± 0.228°).
Collapse
Affiliation(s)
- Xinyu Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China
| | - Zhe Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China
| | - Xiaojie Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China
| | - Yicheng Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China
| | - Hui Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China
| | - Bo Jiao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China
| | | | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; College of Food Science and Pharmacy, Xinjiang Agricultural University, ürümqi, 830052, China; School of Food Science and Engineering, Nanjing University of Finance and Economics/Jiangsu Modern Food Circulation and Safety Collaborative Innovation Center, China.
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing 100193, China; School of Food Science and Engineering, Nanjing University of Finance and Economics/Jiangsu Modern Food Circulation and Safety Collaborative Innovation Center, China.
| |
Collapse
|
2
|
Li T, Kong X, Shao Z, Zhang Y, Yang C, Liu K, Xin Y, Chen F, Dong Y. Characteristic and stability changes of peanut oil body emulsion during the process of demulsification using heptanoic acid. Food Chem 2024; 460:140301. [PMID: 39067429 DOI: 10.1016/j.foodchem.2024.140301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/19/2024] [Accepted: 06/29/2024] [Indexed: 07/30/2024]
Abstract
In this paper, the changes in oil body emulsion (OBE) during heptanoic acid demulsification (HD) were investigated from the macro and microscopic points of view. Specifically, the OBE particle size increased from 3.04 to 8.41 µm, while the zeta potential absolute decreased to 2.89 mV. The interfacial tension and apparent viscosity of OBE were reduced significantly. Heptanoic acid could contribute to oil droplets aggregation. The findings indicated that high-molecular proteins, including lipoxygenase (97.58 kDa) and arachin (70.28 kDa), detached from the OBs' interface. HD caused alterations in the secondary structure of protein and the environment around proteins changed. The HD mechanism was speculated that the addition of heptanoic acid resulted in the reduction in pH and changes of environment surrounding OBE, which triggered polymerization and the phase transformation of the oil droplets. Overall, this study is vital for solving the problem of demulsification during aqueous enzymatic extraction (AEE).
Collapse
Affiliation(s)
- Tianci Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Xiangrui Kong
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Zhihua Shao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yiyang Zhang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Chenxian Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Kunlun Liu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China; School of Food and Reserves Storage, Henan University of Technology, Zhengzhou 450001, China
| | - Ying Xin
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Yifan Dong
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
3
|
Luo L, Li P, Deng Y, Liu G, Shi L, Zhang Y, Tang X, Zhou P, Zhao Z, Zhang M. Enhanced O/W emulsifying properties of pea proteins via deamidation: Insights into interfacial behavior. Int J Biol Macromol 2024; 280:135794. [PMID: 39306155 DOI: 10.1016/j.ijbiomac.2024.135794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/05/2024] [Accepted: 09/17/2024] [Indexed: 11/20/2024]
Abstract
This study examines the effects of protein glutaminase modification on the interfacial properties and emulsion stability of pea protein isolates (PPI). Emulsions were prepared using native (NPPI) and deamidated PPI (DPPI) at concentrations from 0.5 wt% to 3.6 wt%. The stability of these emulsions was evaluated by examining droplet size distribution, flocculation index, ζ-potential, and CLSM. DPPI demonstrated superior emulsifying ability and stability, requiring only 2.0 wt% to prevent flocculation compared to NPPI's 3.6 wt%. Interfacial properties, such as protein coverage, composition, thickness, tension, and rheology, were characterized. Large Amplitude Oscillatory Dilatation analysis showed minimal differences between NPPI and DPPI-stabilized interfaces at 1 wt%. However, at 3.6 wt%, NPPI interfaces demonstrated abrupt intra-cycle yielding and viscous behavior, whereas DPPI interfaces exhibited gradual softening and a higher maximum linear strain. Additionally, DPPI showed higher interfacial protein coverage and lower interfacial tension. NPPI formed dense, brittle films prone to rupture under dynamic deformation, leading to poor stability. Deamidation of PPI unfolded the protein structure, exposing hydrophobic groups and increasing carboxyl groups, which reduced aggregation. This resulted in a uniform, extensible, and elastic interfacial film resistant to large deformations. Thus, DPPI-stabilized emulsions demonstrated superior stability, showcasing their potential for industrial applications.
Collapse
Affiliation(s)
- Lijuan Luo
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ping Li
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| | - Yuanyuan Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Guang Liu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Linfan Shi
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yan Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xiaojun Tang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Pengfei Zhou
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Zhihao Zhao
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| |
Collapse
|
4
|
Luo T, Fan Y, Fan M, Li M, Qiu Z, Du Q, Ma C, Liu C, Peng Y, Zhang S, Liu S, Song B. Physicochemical and Functional Properties of DND358 (A Hypocholesterolemic Soybean) Protein Isolate. Foods 2024; 13:3236. [PMID: 39456296 PMCID: PMC11508184 DOI: 10.3390/foods13203236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
The properties and applications of soybean protein isolates (SPIs) have been extensively investigated. In this study, we determined the optimal conditions for the preparation of the DND358 soybean protein isolate (DND358-SPI), assessed its physicochemical and functional properties, and investigated its potential applications in the food industry. According to the results, the highest extraction rate of DND358-SPI was observed when the pH was 9.5, the temperature was 55 °C, the duration was 80 min, and the material-to-liquid ratio was 1:20 (w/v). With regard to the functional properties, the water-holding capacity (WHC) and oil-binding capacity (OBC) of DND358-SPI were higher than those of other varieties, reaching 4.73% and 11.04%, respectively. In addition, the hardness, adhesiveness, chewiness, and resilience of DND358-SPI were higher than those of other varieties, reaching 159.27 g, 186.07 g, 6.78 mj, and 1.88, respectively. These findings indicate that DND358-SPI can reduce cholesterol levels and may be used to produce cholesterol-lowering food products.
Collapse
Affiliation(s)
- Tingting Luo
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Yuanhang Fan
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Mengmeng Fan
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Ming Li
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161000, China
| | - Zhendong Qiu
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Qiuyan Du
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Chongxuan Ma
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Chang Liu
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Yuhan Peng
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Shuzhen Zhang
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Shanshan Liu
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
| | - Bo Song
- Soybean Research Institute, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of Molecular and Cytogenetics, College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| |
Collapse
|
5
|
Zhang G, Bi X, Wang R, Yin Z, Zheng Y, Peng X, Jia N, Liu D. Effects of catechin on the stability of myofibrillar protein-soybean oil emulsion and the adsorbed properties of myosin at the oil-water interface. Food Chem 2024; 442:138478. [PMID: 38278102 DOI: 10.1016/j.foodchem.2024.138478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/30/2023] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
The effects of different concentrations of catechin on the stability of myofibrillar protein-soybean oil emulsions and the related mechanisms were investigated. Adding 10 μmol/g catechin had no obvious effects on the emulsion stability and myosin structure, but 50, 100 and 200 μmol/g catechin decreased the emulsion stability. The microstructure observations showed that 10 μmol/g catechin caused a dense and uniform emulsion to form, whereas 50, 100 and 200 μmol/g catechin induced the merging of oil droplets. The addition of 50, 100 and 200 μmol/g catechin caused a decline in both the total sulfhydryl content and surface hydrophobicity, suggesting protein aggregation, which decreased the adsorption capacity of myosin and the elasticity of interfacial film. These results suggested that higher concentrations of catechin were detrimental to the emulsifying properties of myosin and that the dose should be considered when it is used as an antioxidant.
Collapse
Affiliation(s)
- Guangyao Zhang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China
| | - Xinxin Bi
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China
| | - Rongrong Wang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China
| | - Zhiwan Yin
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China
| | - Yue Zheng
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China
| | - Xinyan Peng
- College of Life Science, Yantai University, Yantai, Shandong 264005, China
| | - Na Jia
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China.
| | - Dengyong Liu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
6
|
Sun J, Dai L, Lv K, Wen Z, Li Y, Yang D, Yan H, Liu X, Liu C, Li MC. Recent advances in nanomaterial-stabilized pickering foam: Mechanism, classification, properties, and applications. Adv Colloid Interface Sci 2024; 328:103177. [PMID: 38759448 DOI: 10.1016/j.cis.2024.103177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/07/2024] [Accepted: 05/03/2024] [Indexed: 05/19/2024]
Abstract
Pickering foam is a type of foam stabilized by solid particles known as Pickering stabilizers. These solid stabilizers adsorb at the liquid-gas interface, providing superior stability to the foam. Because of its high stability, controllability, versatility, and minimal environmental impact, nanomaterial-stabilized Pickering foam has opened up new possibilities and development prospects for foam applications. This review provides an overview of the current state of development of Pickering foam stabilized by a wide range of nanomaterials, including cellulose nanomaterials, chitin nanomaterials, silica nanoparticles, protein nanoparticles, clay mineral, carbon nanotubes, calcium carbonate nanoparticles, MXene, and graphene oxide nanosheets. Particularly, the preparation and surface modification methods of various nanoparticles, the fundamental properties of nanomaterial-stabilized Pickering foam, and the synergistic effects between nanoparticles and surfactants, functional polymers, and other additives are systematically introduced. In addition, the latest progress in the application of nanomaterial-stabilized Pickering foam in the oil industry, food industry, porous functional material, and foam flotation field is highlighted. Finally, the future prospects of nanomaterial-stabilized Pickering foam in different fields, along with directions for further research and development directions, are outlined.
Collapse
Affiliation(s)
- Jinsheng Sun
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Liyao Dai
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Kaihe Lv
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China
| | - Zhibo Wen
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Yecheng Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Dongqing Yang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Hao Yan
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| | - Xinyue Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chaozheng Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Mei-Chun Li
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao, Shandong 266580, China.
| |
Collapse
|
7
|
Zou S, Wang Z, Zeng M, He Z, Chen J. Improving the Storage Stability of Soy Protein Isolate through Annealing. Foods 2024; 13:615. [PMID: 38397593 PMCID: PMC10887740 DOI: 10.3390/foods13040615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
This study investigated the effect of annealing treatment on the stability of soy protein isolate (SPI) during storage. Different SPI samples with varying denaturation levels were subjected to varying annealing temperatures and durations before being stored at 37 °C for 12 weeks to assess their stability. Our findings revealed that annealing at 65 °C for 30 min significantly mitigated protein deterioration, improving the stability of highly denatured proteins during storage. Surface hydrophobicity and endogenous fluorescence analyses indicated that this annealing condition induced protein structure unfolding, an initial increase in SPI hydrophobicity, and a blue shift in the maximum absorption wavelength (λmax). The slowest increase in hydrophobicity occurred during storage, along with a red shift in the maximum absorption wavelength by the 12th week. These results suggest that annealing treatment holds promise for mitigating the issue of reduced SPI stability during storage.
Collapse
Affiliation(s)
- Shenzhong Zou
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.Z.); (Z.W.); (Z.H.)
| | - Zhaojun Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.Z.); (Z.W.); (Z.H.)
| | - Maomao Zeng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.Z.); (Z.W.); (Z.H.)
| | - Zhiyong He
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.Z.); (Z.W.); (Z.H.)
| | - Jie Chen
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.Z.); (Z.W.); (Z.H.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
8
|
Hu X, Meng Z. An overview of edible foams in food and modern cuisine: Destabilization and stabilization mechanisms and applications. Compr Rev Food Sci Food Saf 2024; 23:e13284. [PMID: 38284578 DOI: 10.1111/1541-4337.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 01/30/2024]
Abstract
Foam, as a structured multi-scale colloidal system, is becoming increasingly popular in food because it gives a series of unique textures, structures, and appearances to foods while maintaining clean labels. Recently, developing green and healthy food-grade foaming agents, improving the stability of edible foams, and exploring the application of foam structures and new foaming agents have been the focus of foam systems. This review comprehensively introduces the destabilization mechanisms of foam and summarizes the main mechanisms controlling the foam stability and progress of different food-grade materials (small-molecular surfactants, biopolymers, and edible Pickering particles). Furthermore, the classic foam systems in food and modern cuisine, their applications, developments, and challenges are also underlined. Natural small-molecular surfactants, novel plant/microalgae proteins, and edible colloidal particles are the research hotspots of high-efficiency food-grade foam stabilizers. They have apparent differences in foam stability mechanisms, and each exerts its advantages. However, the development of foam stabilizers remains to be enriched compared with emulsions. Food foams are diverse and widely used, bringing unique enjoyment and benefit to consumers regarding sense, innovation, and health attributes. In addition to industrial inflatable foods, the foam foods in molecular gastronomy are also worthy of exploration. Moreover, edible foams may have greater potential in structured food design, 3D/4D printing, and controlled flavor release in the future. This review will provide a reference for the efficient development of functional inflatable foods and the advancement of foam technologies in modern cuisine.
Collapse
Affiliation(s)
- Xiangfang Hu
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Zong Meng
- State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
9
|
Shao J, Yang J, Jin W, Huang F, Xiao J, Chen Y, Chen H, Geng F, Peng D, Deng Q. Regulation of interfacial mechanics of soy protein via co-extraction with flaxseed protein for efficient fabrication of foams and emulsions. Food Res Int 2024; 175:113673. [PMID: 38129022 DOI: 10.1016/j.foodres.2023.113673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023]
Abstract
Enrichment of plant proteins with functionality is of great importance for expanding their application in food formulations. This study proposed an innovation to co-enrich soy protein and flaxseed protein to act as efficient interfacial stabilizers for generating foams and emulsions. The structure, interfacial properties, and functionalities of the soy protein-flaxseed protein natural nanoparticles (SFNPs) obtained by alkali extraction-isoelectric precipitation (AE) and salt extraction-dialysis (SE) methods were investigated. Overall, the foamability of AE-SFNPs (194.67 %) was 1.45-fold that of SE-SFNPs, due to their more flexible structure, smaller particle size, and suitable surface wettability, promoting diffusion and adsorption at the air-water interface. AE-SFNPs showed higher emulsion stability (140.89 min), probably because the adsorbed AE-SFNPs with smaller size displayed soft particle-like properties and stronger interfacial flexibility, and therefore could densely and evenly arrange at the interface, facilitating the formation of a stiff and solid-like interfacial layer, beneficial for more stable emulsion formation. The findings may innovatively expand the applications of SFNPs as food ingredients.
Collapse
Affiliation(s)
- Jiaqi Shao
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China; College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Jing Yang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Weiping Jin
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, PR China
| | - Fenghong Huang
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Junxia Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, PR China
| | - Yashu Chen
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Hongjian Chen
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu 610106, Sichuan, PR China
| | - Dengfeng Peng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China.
| | - Qianchun Deng
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture, Hubei Research Center of Oil and Plant Protein Engineering Technology, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, PR China.
| |
Collapse
|
10
|
Yan Z, Liu J, Cao S, Wang Z, Li C, Ren J, Zhang R, Zhang M, Liu X. Substitution of sucrose by erythritol in angel cake: Effect on protein foaming, baking performance and digestion properties. Int J Biol Macromol 2023; 253:126759. [PMID: 37678696 DOI: 10.1016/j.ijbiomac.2023.126759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Sugars played an important role in the processing of products such as cakes, however, their high-calorie character often posed a health risk to consumers. Therefore, this paper aimed to better investigate the effect of sugar substitutes on the improvement of egg white foaming properties and angle cake digestibility characteristics. It was demonstrated that the addition of erythritol improved the surface properties of egg whites, thus enhancing their foaming properties. Particularly, when the erythritol substitution was 50 %, the sugar-egg white complex structure unfolded and had the best foaming capacity. On this basis, the baking performance of angel cakes with sucrose replaced by erythritol was analyzed. When the erythritol substitution was lower than 50 %, the specific volume and the baking loss rate of the cakes were basically unchanged, and the texture and sensory taste of the cakes were all excellent. Finally, the gastrointestinal digestive kinetic analysis suggested that erythritol substitution for sucrose was beneficial for reducing blood glucose levels in vivo. Furthermore, for the MgCl2-based samples, both the degree of protein destruction after digestion was weakened and the glucose-lowering effect was better exerted. Overall, this study provided a new theoretical basis for the low-calorie sugar-substituted health food products development in the future.
Collapse
Affiliation(s)
- Zhaohui Yan
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Sijia Cao
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhi Wang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chenman Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jianqi Ren
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Renzhao Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Min Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
11
|
Ma J, Pan C, Chen H, Chen W, Pei J, Zhang M, Zhong Q, Chen W, Zeng G. Effects of protein concentration, ionic strength, and heat treatment on the interfacial and emulsifying properties of coconut ( Cocos nucifera L.) globulins. Food Chem X 2023; 20:100984. [PMID: 38144867 PMCID: PMC10740072 DOI: 10.1016/j.fochx.2023.100984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/05/2023] [Accepted: 11/06/2023] [Indexed: 12/26/2023] Open
Abstract
This research aimed to investigate the effects of protein concentration (0.2 %-1.0 %), ionic strength (100-500 mM NaCl), and heat treatment (temperature: 80 and 90℃; time: 15 and 30 min) on the interfacial and emulsifying properties of coconut globulins (CG). When protein concentration was set at 0.2-0.6 %, the interfacial adsorption increased with the increasing of protein concentration. However, the lowest interfacial viscoelasticity was found when CG concentration was 0.6 %. When the protein concentration was higher than 0.6 %, the dilatational viscoelasticity increased with the increasing of protein concentration. The protein concentration showed positive effect on the emulsion stability of CG. The ionic strength showed positive effect on the interfacial adsorption but negative effects on the interfacial viscoelasticity and emulsion stability. Higher temperature and longer heating time brought worse interface behavior. The heated CG (90℃, 30 min) had the worst interfacial behavior but the best emulsion stability.
Collapse
Affiliation(s)
- Jingrong Ma
- HNU-HSF Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| | - Chuang Pan
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Haiming Chen
- HNU-HSF Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| | - Weijun Chen
- HNU-HSF Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| | - Jianfei Pei
- HNU-HSF Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| | - Ming Zhang
- HNU-HSF Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| | - Qiuping Zhong
- HNU-HSF Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| | - Wenxue Chen
- HNU-HSF Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| | | |
Collapse
|
12
|
Liu C, Chen F. Study on the Stability Mechanism of Peanut OBs Extracted with the Aqueous Enzymatic Method. Foods 2023; 12:3446. [PMID: 37761154 PMCID: PMC10527780 DOI: 10.3390/foods12183446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
In this study, the internal relationships among oil bodies (OBs), the protein-phospholipid interactions in aqueous phase, oil-water interface behavior, and the stability of reconstituted OBs were analyzed from the bulk phase, interface, and macro perspectives, and the stability mechanism of OBs was discussed. OB proteins and phospholipids were combined through hydrophobic and electrostatic interactions, resulting in the stretching of protein conformation. OB proteins and phospholipids act synergistically to increase interface pressure and the rate of increase in interface pressure with relatively stable elastic behavior, which is beneficial to the formation and stability of interfacial films. When OBs were reconstituted by an OB protein-phospholipid complex system, phospholipids bound to OB proteins through hydrophobic and electrostatic interactions. OB proteins and phospholipids uniformly covered the oil droplet surface of reconstituted OBs to form a stable interfacial film, which maintained the stability of OBs. The addition of phospholipids significantly reduced the particle size of OBs prepared by OB proteins in a dose-dependent manner, and particle size decreased with the increase in phospholipid content (p < 0.05). Phospholipids increased the net surface charge, enhanced electrostatic repulsion, and improved the physicochemical stability of reconstituted OBs. The stability mechanism elucidated in this study provides a theoretical basis for the demulsification of peanut OBs.
Collapse
Affiliation(s)
- Chen Liu
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China;
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Fusheng Chen
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| |
Collapse
|
13
|
Wang W, Wang X, Zhang H, Wang H, Wang L, Zhang N, Yu D. Effects of electric field intensity regulation on protein aggregation behaviour and foaming property of soybean 7S globulin. Int J Biol Macromol 2023; 248:125784. [PMID: 37451384 DOI: 10.1016/j.ijbiomac.2023.125784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/01/2023] [Accepted: 07/08/2023] [Indexed: 07/18/2023]
Abstract
In this study, the aggregation behaviour of soybean 7S globulin after moderate electric field (MEF) treatment was investigated, and the influence of the electric field and temperature field on the structure and foaming property of the aggregates were analysed and compared with conventional water bath (COV). The results showed that MEF treatment enhanced the properties of the aggregates. The properties of the treated aggregates were significantly better than those of native 7S globulin. At an electric field strength of 8 V/cm, the solubility, turbidity, and particle size increased from 95.81 % to 99.37 %, 0.097 to 0.189 and 61.97 nm to 113.21 nm, respectively, and the absolute value of potential decreased from 23.56 mV to 22.12 mV. The SDS-PAGE and size exclusion chromatography (SEC) results showed that the electric field had a positive effect on the aggregate formation of the Fourier-transform infrared spectroscopy (FTIR), fluorescence spectroscopy, surface hydrophobicity (H0) and total sulfhydryl (SHT) results indicated that the spatial structure of the protein was changed by MEF treatment. The protein β-sheet content was reduced, and the Try that was originally buried inside the molecule was exposed, resulting in an increase in H0 and a decrease in SHT. The foaming property of the 7S globulin aggregates was improved by MEF treatment.
Collapse
Affiliation(s)
- Weining Wang
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China
| | - Xue Wang
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China
| | - Hairong Zhang
- School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China
| | - Hong Wang
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Liqi Wang
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China; School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China.
| | - Na Zhang
- College of Food Engineering, Key Laboratory of Food Science and Engineering of Heilongjiang Ordinary Higher Colleges/Key Laboratory of Grain Food and Comprehensive Processing of Heilongjiang Province, Harbin University of Commerce, Harbin 150028, China.
| | - Dianyu Yu
- School of Food Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
14
|
Taha A, Casanova F, Talaikis M, Stankevič V, Žurauskienė N, Šimonis P, Pakštas V, Jurkūnas M, Gomaa MAE, Stirkė A. Effects of Pulsed Electric Field on the Physicochemical and Structural Properties of Micellar Casein. Polymers (Basel) 2023; 15:3311. [PMID: 37571205 PMCID: PMC10422647 DOI: 10.3390/polym15153311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Pulsed electric field (PEF) as a green processing technology is drawing greater attention due to its eco-friendliness and potential to promote sustainable development goals. In this study, the effects of different electric field strengths (EFS, 0-30 kV/cm) on the structure and physicochemical features of casein micelles (CSMs) were investigated. It was found that the particle sizes of CSMs increased at low EFS (10 kV/cm) but decreased at high EFS (30 kV/cm). The absolute ζ-potential at 30 kV/cm increased from -26.6 (native CSMs) to -29.5 mV. Moreover, it was noticed that PEF treatment leads to changes in the surface hydrophobicity; it slightly increased at low EFS (10 kV/cm) but decreased at EFS > 10 kV/cm. PEF enhanced the protein solubility from 84.9 (native CSMs) to 87.1% (at 10 kV/cm). PEF at low EFS (10 kV/cm) intensified the emission fluorescence spectrum of CSMs, while higher EFS reduced the fluorescence intensity compared to native CSMs. Moreover, the analysis of the Amide Ι region showed that PEF-treated CSMs reduced the α-helix and increased the β-sheet content. Raman spectra confirmed that PEF treatment > 10 kV/cm buried tyrosine (Tyr) residues in a hydrophobic environment. It was also found that PEF treatment mainly induced changes in the disulfide linkages. In conclusion, PEF technology can be employed as an eco-friendly technology to change the structure and physiochemical properties of CSMs; this could improve their techno-functional properties.
Collapse
Affiliation(s)
- Ahmed Taha
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Federico Casanova
- Food Production Engineering, National Food Institute, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Martynas Talaikis
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Voitech Stankevič
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Nerija Žurauskienė
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Povilas Šimonis
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Vidas Pakštas
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Marijus Jurkūnas
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
| | - Mohamed A. E. Gomaa
- Department of Food Science, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Arūnas Stirkė
- State Research Institute Center for Physical Sciences and Technology, Saulėtekio al. 3, LT-10257 Vilnius, Lithuania (A.S.)
- Micro and Nanodevices Laboratory, Institute of Solid State Physics, University of Latvia, Kengaraga Str. 8, LV-1063 Riga, Latvia
| |
Collapse
|
15
|
Zheng X, Ren C, Wei Y, Wang J, Xu X, Du M, Wu C. Soy protein particles with enhanced anti-aggregation behaviors under various heating temperatures, pH, and ionic strengths. Food Res Int 2023; 170:112924. [PMID: 37316041 DOI: 10.1016/j.foodres.2023.112924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/21/2023] [Accepted: 04/26/2023] [Indexed: 06/16/2023]
Abstract
Protein-containing food products are frequently heated during processing to passivate anti-nutritional components. However, heating also contributes to protein aggregation and gelation, which limits its application in protein-based aqueous systems. In this study, heat-stable soy protein particles (SPPs) were fabricated by preheating at 120 °C for 30 min and at 0.5% (w/v) protein concentration. Compared to untreated soy proteins (SPs), SPPs exhibited a higher denaturation ratio, stronger conformational rigidity, compacter colloidal structure, and higher surface charge. The aggregation state of SPs and SPPs at various heating conditions (temperatures, pH, ionic strength, and types) was analyzed by dynamic light scattering, atomic force microscopy, and cryo-scanning electron microscopy. SPPs showed less increase in particle size and greater anti-aggregation ability than SPs. When heated in the presence of salt ions (Na+, Ca2+) or at acidic conditions, both SPs and SPPs formed larger spherical particles, but the size increase rate of SPPs was significantly lower than SPs. These findings provide theoretical information for preparing heat-stable SPPs. Furthermore, the development of SPPs is conducive to designing protein-enriched ingredients for producing innovative foods.
Collapse
Affiliation(s)
- Xiaohan Zheng
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China; National Engineering Research Center of Seafood, China; Liaoning Key Laboratory of Food Nutrition and Health, China; Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, China
| | - Chao Ren
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China; National Engineering Research Center of Seafood, China; Liaoning Key Laboratory of Food Nutrition and Health, China; Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, China
| | - Yixue Wei
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China; National Engineering Research Center of Seafood, China; Liaoning Key Laboratory of Food Nutrition and Health, China; Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, China
| | - Jiamei Wang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China; National Engineering Research Center of Seafood, China; Liaoning Key Laboratory of Food Nutrition and Health, China; Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, China
| | - Xianbing Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China; National Engineering Research Center of Seafood, China; Liaoning Key Laboratory of Food Nutrition and Health, China; Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, China
| | - Ming Du
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China; National Engineering Research Center of Seafood, China; Liaoning Key Laboratory of Food Nutrition and Health, China; Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, China
| | - Chao Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China; National Engineering Research Center of Seafood, China; Liaoning Key Laboratory of Food Nutrition and Health, China; Collaborative Innovation Center of Provincial and Ministerial Co-construction for Seafood Deep Processing, China.
| |
Collapse
|
16
|
Vo H, Saldaña MD. Hydrolysis of pea protein concentrate in subcritical water media with addition of citrus pectin and citric acid. J Supercrit Fluids 2023. [DOI: 10.1016/j.supflu.2023.105866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
17
|
Li L, Zhang M, Feng X, Yang H, Shao M, Huang Y, Li Y, Teng F. Internal/external aqueous-phase gelation treatment of soybean lipophilic protein W/O/W emulsions: Improvement in microstructure, interfacial properties, physicochemical stability, and digestion characteristics. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
18
|
Pickering foams stabilized by protein-based particles: A review of characterization, stabilization, and application. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Heat treatment in the presence of arginine increases the emulsifying properties of soy proteins. Food Chem X 2023; 17:100567. [PMID: 36845474 PMCID: PMC9945471 DOI: 10.1016/j.fochx.2023.100567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/21/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
This study aimed to improve the emulsifying properties of commercial soy protein isolates (CSPIs). CSPIs were thermally denatured without additives (CSPI_H) and with arginine (CSPI_A), urea (CSPI_U), and guanidine hydrochloride (CSPI_G), which improve protein solubility to prevent aggregation. These additives were removed by dialysis, and the samples were lyophilized. CSPI_A resulted in high emulsifying properties. FT-IR analysis showed that the β-sheet content in CSPI_A was reduced compared to that of untreated CSPI (CSPI_F). Fluorescence analysis showed that the tryptophan-derived emission peak of CSPI_A shifted between CSPI_F and CSPI_H which was exposed to hydrophobic amino acid chains with aggregation. As a result, the structure of CSPI_A became moderately unfolded and exposed the hydrophobic amino acid chains without aggregation. The CSPI_A solution had a more reduced oil-water interface tension than other CSPIs. These results support that CSPI_A attaches efficiently to the oil-water interface and produces small, less flocculated emulsions.
Collapse
|
20
|
Feng J, Xu Z, Jiang L, Sui X. Functional properties of soybean isolate protein as influenced by its critical overlap concentration. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
21
|
Wang H, Wang N, Chen X, Wu Z, Zhong W, Yu D, Zhang H. Effects of moderate electric field on the structural properties and aggregation characteristics of soybean protein isolate. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
22
|
Effect of industrial process conditions of fava bean (Vicia faba L.) concentrates on physico-chemical and functional properties. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Huang K, Shi J, Li M, Sun R, Guan W, Cao H, Guan X, Zhang Y. Intervention of microwave irradiation on structure and quality characteristics of quinoa protein aggregates. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
24
|
Air nanobubbles induced reversible self-assembly of 7S globulins isolated from pea (Pisum Sativum L.). Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
25
|
Perović MN, Antov MG. The influence of enzymatic pretreatment of chickpea on properties of protein nanoparticles prepared by heat treatment. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
26
|
Effect of enzymatic hydrolysis followed after extrusion pretreatment on the structure and emulsibility of soybean protein. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Zhan F, Youssef M, Shah BR, Li J, Li B. Overview of foam system: Natural material-based foam, stabilization, characterization, and applications. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Diao Y, Zhang Y, Zhang W, Xu W, Hu Z, Yi Y, Wang Y. Acid‐thermal‐induced formation of rice bran protein nano‐particles: foaming properties and physicochemical characteristics. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Yunchun Diao
- Key Laboratory for Deep Processing of Major Grain and Oil Ministry of Education Wuhan Polytechnic University Wuhan 430023 China
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
| | - Yanpeng Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil Ministry of Education Wuhan Polytechnic University Wuhan 430023 China
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
| | - Weinong Zhang
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
| | - Wei Xu
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
| | - Zhixiong Hu
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
| | - Yang Yi
- College of Food Science and Engineering Wuhan Polytechnic University Wuhan 430023 China
| | - Yuehui Wang
- Key Laboratory for Deep Processing of Major Grain and Oil Ministry of Education Wuhan Polytechnic University Wuhan 430023 China
| |
Collapse
|
29
|
Chang K, Jiang W, Liu J. Effect of subcritical water treatment on the structure and foaming properties of egg white protein. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
30
|
Zhang T, Zhang M, Gong P, Jiang H, Liu J, Liu X. Ions-induced ovalbumin foaming properties enhancement: Structural, rheological, and molecular aggregation mechanism. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
31
|
The Quality Analysis and Deterioration Mechanism of Liquid Egg White during Storage. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The quality of liquid egg white (LEW) during storage is critical for the development of the egg industry. In order to effectively control its storage quality, the effects of packaging materials and storage conditions on the quality of LEW were investigated. High-throughput sequencing (HTS) was applied to explore changes in bacterial population proportions and microflora in the spoilage of LEW. The shelf life of LEW packaged with glass (LEW-PG), plastic (LEW-PP), and tinplate (LEW-PT) was preliminarily determined to be 8, 5, and 7 days, respectively. LEW-PG possessed superior sensory scores (65) and L values (87.5), and a lower growth rate of total volatile basic nitrogen (TVB-N) content among the three samples on the last day of shelf life, and was chosen for further study. During 24 days of storage, the sensory scores of the LEW-PG in 10 °C and 4 °C groups decreased by 32.7% and 25.7%, respectively. There was no significant difference in foaming properties of LEW-PG between the 10 °C and 4 °C groups (p > 0.05). HTS analysis showed that the abundance of species composition in the 10 °C samples was higher than that in the 4 °C samples, though the latter possessed a higher community diversity. At the genus level, the dominant bacteria in the 10 °C group were Pseudomonas (21.79%), others (19.21%), and Escherichia (11.21%), while others (37.5%), Escherichia (30.40%), and Bifidobacterium (17.72%) were highly abundant in the 4 °C samples. It is hoped that this study could provide theoretical support for quality control of LEW during storage.
Collapse
|
32
|
Yue Y, Zhang S, Fan B, Tong L, Wang L, Guo Y, Wang F, Liu L. The influence of xylanase and thermal treatment on the composition and interfacial rheology properties of whole wheat dough liquor. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ying Yue
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing 100193 China
| | - Shuo Zhang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing 100193 China
| | - Bei Fan
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing 100193 China
| | - Litao Tong
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing 100193 China
| | - Lili Wang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing 100193 China
| | - Yahong Guo
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing 100193 China
| | - Fengzhong Wang
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing 100193 China
| | - Liya Liu
- Institute of Food Science and Technology Chinese Academy of Agricultural Sciences/Key Laboratory of Agro‐Products Processing Ministry of Agriculture and Rural Affairs Beijing 100193 China
| |
Collapse
|
33
|
Xi Y, Zhang A, Wang Z, Farooq S, Zhang C, Wu L, Zhang H. Improved Oxidation Stability of Camellia Oil-in-Water Emulsions Stabilized by the Mixed Monolayer of Soy Protein Isolate/Bamboo Shoot Protein Complexes. Front Nutr 2021; 8:782212. [PMID: 34926555 PMCID: PMC8671835 DOI: 10.3389/fnut.2021.782212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/01/2021] [Indexed: 01/03/2023] Open
Abstract
The complex of soy protein isolate (SPI)/bamboo shoot protein concentrate (BPC) was developed to stabilize camellia oil-in-water (O/W) emulsions. The surface hydrophobicity of the BPC/SPI complex driven by hydrogen bonds and electrostatic attractions was improved. With the increasing ratio of BPC in the complex, a tighter network layer structure of the complex was formed due to the rearrangement of proteins, and the emulsions showed a progressive enhancement in the gel-like structures. At the SPI/BPC ratio of 2:1, the emulsions had smaller droplet size and lower creaming index of 230 nm and 30%, and the emulsifying activity and stability indices of the emulsions were 803.72 min and 11.85 g/m2, respectively, indicating a better emulsifying activity and stability of emulsions. Meanwhile, the emulsions stabilized by the complex at the ratio of 2:1 showed better storage and antioxidant stability. These findings are expected to develop the application of bamboo shoots in emulsion-based food products such as mayonnaise, salad dressings, and sauces.
Collapse
Affiliation(s)
- Yuhang Xi
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Aiping Zhang
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, China
| | - Shahzad Farooq
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Cen Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Liangru Wu
- China National Bamboo Research Center, Hangzhou, China
| | - Hui Zhang
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| |
Collapse
|
34
|
Schmitt C, Bovetto L, Buczkowski J, De Oliveira Reis G, Pibarot P, Amagliani L, Dombrowski J. Plant proteins and their colloidal state. Curr Opin Colloid Interface Sci 2021. [DOI: 10.1016/j.cocis.2021.101510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Li J, Yang X, Swallah MS, Fu H, Ji L, Meng X, Yu H, Lyu B. Soy protein isolate: an overview on foaming properties and air–liquid interface. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Jiaxin Li
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Xiaoqing Yang
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Mohammed Sharif Swallah
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
| | - Hongling Fu
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Lei Ji
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Xiangze Meng
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Hansong Yu
- College of Food Science and Engineering Jilin Agricultural University Changchun 130118 China
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
| | - Bo Lyu
- Soybean Research & Development Centre Division of Soybean Processing Chinese Agricultural Research System Changchun 130118 China
- College of Food Science Northeast Agricultural University Harbin 150030 China
| |
Collapse
|
36
|
Sharan S, Zotzel J, Stadtmüller J, Bonerz D, Aschoff J, Saint-Eve A, Maillard MN, Olsen K, Rinnan Å, Orlien V. Two Statistical Tools for Assessing Functionality and Protein Characteristics of Different Fava Bean ( Vicia faba L.) Ingredients. Foods 2021; 10:foods10102489. [PMID: 34681537 PMCID: PMC8535309 DOI: 10.3390/foods10102489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Fava bean (Vicia faba L.) is a promising source of proteins that can be potentially used as nutritional and/or functional agents for industrial food applications. Fava ingredients are industrially produced, modified, and utilized for food applications. Their processing conditions influence physico-chemical protein properties that further impact ingredient functionality. To design a functionally suitable ingredient, an understanding of the interrelationships between different properties is essential. Hence, this work aimed to assess two statistical analytical tools, Pearson’s correlation and Principal Component Analysis (PCA), for investigating the role of the process conditions of fava ingredients on their functional and protein properties. Fava concentrates were processed by pH (2, 4, 6.4 and 11), temperature (55, 75 and 95 °C) and treatment duration (30 and 360 min) into different modified ingredients. These were utilized under two application conditions (pH 4 and 7), and their foam and emulsion properties as well as their ingredient characteristics (charge, solubility, and intrinsic fluorescence) were measured. The results show that foam and emulsion properties are not correlated to each other. They are associated with different protein and non-protein attributes as fava concentrate is a multi-component matrix. Importantly, it is found that the results from the two statistical tools are not fully comparable but do complement each other. This highlights that both statistical analytical tools are equally important for a comprehensive understanding of the impact of process conditions on different properties and the interrelationships between them. Therefore, it is recommended to use Pearson’s correlation and principal component analysis in future investigations of new plant-based proteins.
Collapse
Affiliation(s)
- Siddharth Sharan
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark; (K.O.); (Å.R.); (V.O.)
- Paris-Saclay Food and Bioproduct Engineering Research Unit (UMR SayFood), Université Paris-Saclay, INRAE, AgroParisTech, 91300 Massy, France; (A.S.-E.); (M.-N.M.)
- Döhler GmbH, 64295 Darmstadt, Germany; (J.Z.); (J.S.); (D.B.); (J.A.)
- Correspondence: or
| | - Jens Zotzel
- Döhler GmbH, 64295 Darmstadt, Germany; (J.Z.); (J.S.); (D.B.); (J.A.)
| | | | - Daniel Bonerz
- Döhler GmbH, 64295 Darmstadt, Germany; (J.Z.); (J.S.); (D.B.); (J.A.)
| | - Julian Aschoff
- Döhler GmbH, 64295 Darmstadt, Germany; (J.Z.); (J.S.); (D.B.); (J.A.)
| | - Anne Saint-Eve
- Paris-Saclay Food and Bioproduct Engineering Research Unit (UMR SayFood), Université Paris-Saclay, INRAE, AgroParisTech, 91300 Massy, France; (A.S.-E.); (M.-N.M.)
| | - Marie-Noëlle Maillard
- Paris-Saclay Food and Bioproduct Engineering Research Unit (UMR SayFood), Université Paris-Saclay, INRAE, AgroParisTech, 91300 Massy, France; (A.S.-E.); (M.-N.M.)
| | - Karsten Olsen
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark; (K.O.); (Å.R.); (V.O.)
| | - Åsmund Rinnan
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark; (K.O.); (Å.R.); (V.O.)
| | - Vibeke Orlien
- Department of Food Science, University of Copenhagen, 1958 Frederiksberg C, Denmark; (K.O.); (Å.R.); (V.O.)
| |
Collapse
|
37
|
Ren Z, Chen Z, Zhang Y, Lin X, Li Z, Weng W, Yang H, Li B. Effect of heat-treated tea water-insoluble protein nanoparticles on the characteristics of Pickering emulsions. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111999] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
38
|
Mo H, Li Q, Liang J, Ou J, Jin B. Investigation of physical stability of Pickering emulsion based on soy protein/β‐glucan/coumarin ternary complexes under subcritical water condition. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Huanping Mo
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| | - Qiyong Li
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| | - Jiaru Liang
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| | - Junjie Ou
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| | - Bei Jin
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| |
Collapse
|
39
|
Tan M, Nawaz MA, Buckow R. Functional and food application of plant proteins – a review. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1955918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Melvin Tan
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Werribee, Victoria, Australia
| | - Malik Adil Nawaz
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Werribee, Victoria, Australia
| | - Roman Buckow
- School of Chemical and Biomolecular Engineering, The University of Sydney, Centre for Advanced Food Engineering, Darlington, NSW, Australia
| |
Collapse
|
40
|
Emulsion stability and dilatational rheological properties of soy/whey protein isolate complexes at the oil-water interface: Influence of pH. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106391] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
41
|
Alavi F, Chen L, Wang Z, Emam-Djomeh Z. Consequences of heating under alkaline pH alone or in the presence of maltodextrin on solubility, emulsifying and foaming properties of faba bean protein. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106335] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Current knowledge in the stabilization/destabilization of infant formula emulsions during processing as affected by formulations. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
43
|
Sirison J, Ishii T, Matsumiya K, Samoto M, Kohno M, Matsumura Y. Comparison of surface and foaming properties of soy lipophilic protein with those of glycinin and β-conglycinin. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106345] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
44
|
Guan Y. Liquid Foaming Properties. Food Hydrocoll 2021. [DOI: 10.1007/978-981-16-0320-4_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Pickering and high internal phase Pickering emulsions stabilized by protein-based particles: A review of synthesis, application and prospective. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106117] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
|
47
|
Structural and rheological changes of texturized mung bean protein induced by feed moisture during extrusion. Food Chem 2020; 344:128643. [PMID: 33246681 DOI: 10.1016/j.foodchem.2020.128643] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 10/23/2022]
Abstract
Mung bean protein isolate was texturized at different feed moisture contents (30.0, 49.3, and 60.0%) at a constant temperature (144.57 °C) to evaluate the changes in protein profile, solubility, thermal, structural (at secondary and tertiary levels) and rheological properties. SDS-PAGE, surface hydrophobicity, circular dichroism, FTIR spectroscopy, and fluorescence analyses revealed protein unfolding, aggregation, and structural rearrangement as a function of feed moisture content. Extrusion at 49.3% feed moisture produced texturized mung bean protein (TMBP) with favourable partial denaturation, the formation of small aggregates, improved solubility, and digestibility with strong gel forming behaviour, whereas 30.0 and 60.0% moisture content resulted in complete protein denaturation, the undesirable formation of large aggregates and weak gels. In conclusion, protein denaturation and formation of aggregates can be controlled by manipulating feed moisture content during extrusion, with 49.3% feed moisture prompting favourable partial denaturation to produce TMBP with desirable qualities for use as a vegetarian-based meat extender.
Collapse
|
48
|
Zhu L, Xu Q, Liu X, Xu Y, Yang L, Wang S, Li J, He Y, Liu H. Soy glycinin-soyasaponin mixtures at oil-water interface: Interfacial behavior and O/W emulsion stability. Food Chem 2020; 327:127062. [PMID: 32454279 DOI: 10.1016/j.foodchem.2020.127062] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/21/2020] [Accepted: 05/12/2020] [Indexed: 12/30/2022]
Abstract
Soy glycinin (11S) was mixed with soyasaponin (Ssa) to elucidate the mechanism(s) involved in the stabilization of emulsions by mixed systems based on dynamic interfacial tension and dilatational rheology at the oil-water interface. The short/long-term properties of oil-in-water emulsions stabilized by 11S-Ssa mixtures included droplet-size distribution, droplet ζ-potential, microstructure, and Turbiscan stability index. The combination of Ssa (0.05%) with 11S significantly affected the interfacial dilatational and emulsion properties although the interfacial properties were still dominated by the protein. Higher concentrations (0.1% and 0.2%) of Ssa combined with 11S synergistically decreased the interfacial tension, which was attributed to the interaction between 11S and Ssa. Using high Ssa concentrations (0.25%-0.5%) enhanced the long-term stability of emulsions (in response to external deformations) after 42 d. These results will aid the basic understanding of protein-Ssa interfacial adsorption during emulsion formation and can help prepare natural food additives for designing emulsions.
Collapse
Affiliation(s)
- Lijie Zhu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Qingying Xu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Xiuying Liu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| | - Yangyang Xu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Jun Li
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Yutang He
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
49
|
Subcritical Water for the Extraction and Hydrolysis of Protein and Other Fractions in Biorefineries from Agro-food Wastes and Algae: a Review. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02536-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
50
|
Zhou FF, Pan MK, Liu Y, Guo N, Zhang Q, Wang JH. Effects of Na+ on the cold gelation between a low-methoxyl pectin extracted from Premna microphylla turcz and soy protein isolate. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105762] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|