1
|
Zhang RY, Yang YJ, Zhang WJ, Li JH, Su YJ, Gu LP, Chang CH. Explore the synergistic effects of Lactobacillus plantarum fermentation and tea polyphenols on the deodorization of egg white powder from the perspective of protein site competition. Food Chem 2025; 481:144128. [PMID: 40179491 DOI: 10.1016/j.foodchem.2025.144128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/10/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025]
Abstract
Spray drying often induces off-odors and diminishes the rehydration capacity of egg white powder (EWP), restricting its utility in food applications. In this study, the synergistic effects of the Lactobacillus plantarum fermentation treatment and the tea polyphenols (TP) addition on the flavor variations, protein structure, microstructure, and dispersion properties of EWP were investigated. The flavor results suggested that fermentation and TP reduced undesirable flavor substances (e.g. nonanal, decanal, and 3-methylbutanal), while the interaction between some volatile organic compounds produced by fermentation and protein flavor-binding sites was enhanced. Fermentation unfolded protein structures, increasing binding sites for TP and improving flavor-binding efficiency. Additionally, strong electrostatic repulsion introduced by fermentation improved the dispersion and stability of the EWP system. This approach provides a promising strategy for deodorizing and solubilizing EWP, advancing its potential in food processing.
Collapse
Affiliation(s)
- Ru-Yi Zhang
- State key laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan-Jun Yang
- State key laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei-Jian Zhang
- State key laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jun-Hua Li
- State key laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yu-Jie Su
- State key laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lu-Ping Gu
- State key laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cui-Hua Chang
- State key laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Jia J, Duan J, Bao S, Zhang X, Jia X, Ye J, Liu Y, Liu X, Duan X. Metabolomic and proteomic profiling reveals the formation mechanism of volatile flavor in egg whites during fermentation by Streptococcus thermophilus. Food Chem 2025; 466:142219. [PMID: 39612849 DOI: 10.1016/j.foodchem.2024.142219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/13/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
In this study, the flavor of egg whites was significantly improved by lactic acid fermentation, and the metabolic networks of metabolites, volatile compounds, and enzymes were established using gas chromatography-mass spectrometry, metabolomic, and proteomic. Results indicate that among ten types of common lactic acid bacteria, Streptococcus thermophilus endowed egg white with the most pleasant flavor through increasing aldehydes, ketones, alcohols, esters, terpenoids, and aromatic compounds. Amino acid catabolism was the predominant pathway for generating most aldehydes, alcohols, acids, and esters. The changes in the organic acids and derivatives (mainly amino acids, peptides, and analogues) concentration during fermentation are attributed to the hydrolysis of egg white proteins by proteinases and peptidases, and the regulation of enzymes involved in amino acid biosynthesis and other reactions. This study provides a valuable reference for future investigations focusing on regulating the flavor release of egg whites.
Collapse
Affiliation(s)
- Jie Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Jiayi Duan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Shihan Bao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Xixi Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Xin Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Jianzhi Ye
- Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, PR China.
| | - Yuanjing Liu
- Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, PR China.
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Xiang Duan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
3
|
Lv X, Xia Z, Yao X, Shan Y, Wang N, Zeng Q, Liu X, Huang X, Fu X, Jin Y, Ma M. Modification Effects of Microorganisms and Enzymes on Egg Components: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25462-25480. [PMID: 39526490 DOI: 10.1021/acs.jafc.4c08536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In eggs, there are several components: eggshell (ES), eggshell membrane (ESM), egg white (EW), and egg yolk (EY). Many modification methods exist, such as thermal treatment, high pressure, freeze-thaw cycles, ultrasonic treatment, ozonation, phosphorylation, and acylation, all aimed at improving the functional properties of EW and EY. Additionally, microorganism and enzyme modifications have proven effective in enhancing the functional properties of EW and EY. ES and ESM are unique components of eggs. The eggshell is rich in calcium carbonate, while the eggshell membrane is rich in protein. The effective utilization of ES and ESM can help promote economic income in the poultry industry and benefit the environment. Research on the modification of ES and ESM has shown that microorganisms and enzymes have the potential to improve their functional properties. After modification, egg components can be utilized in the production of egg-based and other food products for improved performance. Furthermore, enzyme modification of egg components can produce bioactive peptides, which have the potential to treat specific diseases and may even be used in the biomedical field. This review primarily focuses on the effects of microorganisms and enzymes on the modification of egg components and summarizes the roles of microbial and enzymatic modifications in this context.
Collapse
Affiliation(s)
- Xiaohui Lv
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zhijun Xia
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xuan Yao
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yumeng Shan
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Nannan Wang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Qi Zeng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xiaoli Liu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xi Huang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xing Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Meihu Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
4
|
Chang C, Shen X, Wang Y, Wei Z, Su Y, Gu L, Yang Y, Li J. Lactic acid bacteria fermentation-induced egg white protein structure deformation influencing gelling properties, with membrane concentration as a strategy to improve texture. J Food Sci 2024; 89:7083-7094. [PMID: 39349978 DOI: 10.1111/1750-3841.17327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/06/2024] [Accepted: 08/05/2024] [Indexed: 11/13/2024]
Abstract
Egg white (EW), a rich protein source, holds promise for creating a high-protein, low-fat gel product. However, browning issues during heating and sterilization have hindered its wider application. In this study, lactic acid bacteria fermentation was employed to eliminate reducing sugar in EW, and its impact on the molecular structure and gelling properties was explored. The results revealed that fermentation would trigger protein structural unfolding and aggregation, evident from higher fluorescence intensity and enlarged protein particle diameters, resulting in the decrease in gelling hardness. In comparison, Streptococcus thermophilus-fermented EW (under 6 × 108 CFU/mL incubation rate, fermented for 6 h) exhibited the highest gel hardness, ascribed to the relatively weaker structure transformation, with high water holding capacity and stronger intermolecular hydrophobic interaction. To further enhance the gelling properties of fermented EW, membrane concentration treatment was applied, exhibiting superior characteristics in appearance, aroma, and taste. In summary, lactic acid bacteria fermentation and concentration are feasible solutions to improve appearance and texture of EW gels simultaneously. The research findings offer eco-friendly and practical strategies for enhancing the quality of EW gels, providing valuable theoretical insights for the development of innovative, texture-rich, and healthy nutritional foods.
Collapse
Affiliation(s)
- Cuihua Chang
- State Key Laboratory of Food Science and Technology and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Xinyang Shen
- State Key Laboratory of Food Science and Technology and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Yi Wang
- Xinjiang Xipa Health Food Co., Ltd., Border Economic Cooperation Zone, Bozhou, Xinjiang, P. R. China
| | - Zhen Wei
- Xinjiang Xipa Health Food Co., Ltd., Border Economic Cooperation Zone, Bozhou, Xinjiang, P. R. China
| | - Yujie Su
- State Key Laboratory of Food Science and Technology and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Luping Gu
- State Key Laboratory of Food Science and Technology and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Technology and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| | - Junhua Li
- State Key Laboratory of Food Science and Technology and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P. R. China
| |
Collapse
|
5
|
Chen Y, Ma L, Liu Y, Huo J, Gao Y, Dong S, Li S. Study on the effect of enzymolysis combined fermentation on reducing the off-flavor of egg white powder. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7864-7872. [PMID: 38821888 DOI: 10.1002/jsfa.13616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/16/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND The application of egg white powder (EWP) was subject to its off-flavor. In the present study, flavourzyme and lactic acid bacteria were used to treat egg white powder (EWP) and the mechanism effects of enzymolysis-fermentation were explored. RESULTS Compared with the control group, enzymolysis combined with fermentation treatment group (EW-EF) reduced the four-representative off-flavor compounds (geranyl acetone, 1-octen-3-ol, octanal and nonanal) by more than 62.66%. Fermentation produced esters with good flavor, and enzymolysis produced fresh amino acids. Characterization of protein structure indicated that fermentation decreased both fluorescence intensity and surface negative charges, accelerating the aggregation of proteins; enzymolysis promoted aggregation and degradation, improving the stability of the egg white proteins. Meanwhile, enzymolysis broke down the hydrophobic cavities bound to off-flavor compounds, releasing protein-bound off-flavor compounds and removing them through fermentation. CONCLUSION EW-EF had the best effect of off-flavor removal on EWP. The results of the present study could provide a green and effective method for improving the flavor of EWP. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yujie Chen
- Engineering Research Center of Bioprocess, Ministry of Education/Key Laboratory of Animal-derived Food Green Manufacturing and Resource Mining of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Lulu Ma
- Engineering Research Center of Bioprocess, Ministry of Education/Key Laboratory of Animal-derived Food Green Manufacturing and Resource Mining of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ying Liu
- Engineering Research Center of Bioprocess, Ministry of Education/Key Laboratory of Animal-derived Food Green Manufacturing and Resource Mining of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jiaying Huo
- Engineering Research Center of Bioprocess, Ministry of Education/Key Laboratory of Animal-derived Food Green Manufacturing and Resource Mining of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Ying Gao
- Engineering Research Center of Bioprocess, Ministry of Education/Key Laboratory of Animal-derived Food Green Manufacturing and Resource Mining of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shijian Dong
- Department of Product Research & Development, Anhui Rongda Food Co., Ltd, Guangde, China
| | - Shugang Li
- Engineering Research Center of Bioprocess, Ministry of Education/Key Laboratory of Animal-derived Food Green Manufacturing and Resource Mining of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
6
|
Abker AM, Xia Z, Hu G, Fu X, Zhang Y, Jin Y, Ma M, Fu X. Using salted egg white in steamed bread: Impact on functional and structural characteristics. Food Chem 2024; 454:139609. [PMID: 38795615 DOI: 10.1016/j.foodchem.2024.139609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
Steamed bread has long been an important part of Chinese cuisine. This study investigated the effects of salted egg white (SEW) (5, 10, 15, and 20% w/w) on the quality of steamed breads. Findings revealed that SEW notably enhanced the bread's volume and texture, with a 20% inclusion significantly boosting water retention and rheological properties, albeit reducing bread's lightness. In addition, the H-bond absorption band intensity in the Fourier transform infrared spectroscopy (FTIR) analysis showed increased peak intensities with higher SEW levels, indicative of protein structure alterations. X-ray diffraction confirmed the presence of an amylose-lipid complex. Scanning electron microscope (SEM) and Confocal laser scanning microscope (CLSM) imaging depicted a smooth, consistent protein network with SEW addition. Consumer sensory evaluation responded favourably to the SEW15 steamed bread, suggesting its potential for food industry application. Overall, the study considers SEW an effective ingredient for improving steamed bread quality.
Collapse
Affiliation(s)
- Adil M Abker
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Institute for Agro-Industries, Industrial Research and Consultancy Centre (IRCC), Khartoum, Sudan
| | - Zhijun Xia
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Gan Hu
- Institute for Egg Science and Technology, School of Food and Biological Engineering, Chengdu University, No. 2025 Chengluo Avenue, Chengdu 610106, China
| | - Xiaowen Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yixin Zhang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Meihu Ma
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xing Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
7
|
Tian Y, Lv X, Oh DH, Kassem JM, Salama M, Fu X. Emulsifying properties of egg proteins: Influencing factors, modification techniques, and applications. Compr Rev Food Sci Food Saf 2024; 23:e70004. [PMID: 39267186 DOI: 10.1111/1541-4337.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/28/2024] [Accepted: 08/09/2024] [Indexed: 09/14/2024]
Abstract
As an essential food ingredient with good nutritional and functional properties and health benefits, eggs are widely utilized in food formulations. In particular, egg proteins have good emulsification properties and can be commonly used in various food products, such as mayonnaise and baked goods. Egg protein particles can act as stabilizers for Pickering emulsions because they can effectively adsorb at the oil-water interface, reduce interfacial tension, and form a stable physical barrier. Due to their emulsifying properties, biocompatibility, controlled release capabilities, and ability to protect bioactive substances, egg proteins have become ideal carriers for encapsulating and delivering functional substances. The focus of this review is to summarize current advances in using egg proteins as emulsifiers. The effects of influencing factors (temperature, pH, and ionic strength) and various modification methods (physical, chemical, and biological modification) on the emulsifying properties of egg proteins are discussed. In addition, the application of egg proteins as emulsifiers in food products is presented. Through in-depth research on the emulsifying properties of egg proteins, the optimization of their applications in food, biomedical, and other fields can be achieved.
Collapse
Affiliation(s)
- Yujuan Tian
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Xiaohui Lv
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology, College of Agriculture and Life Science, Kangwon National University, Chuncheon, South Korea
| | | | - Mohamed Salama
- Dairy Department, National Research Centre, Dokki, Giza, Egypt
| | - Xing Fu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, PR China
| |
Collapse
|
8
|
Wu Q, Kan J, Cui Z, Ma Y, Liu X, Dong R, Huang D, Chen L, Du J, Fu C. Understanding the nutritional benefits through plant proteins-probiotics interactions: mechanisms, challenges, and perspectives. Crit Rev Food Sci Nutr 2024:1-19. [PMID: 38922612 DOI: 10.1080/10408398.2024.2369694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
The nutritional benefits of combining probiotics with plant proteins have sparked increasing research interest and drawn significant attention. The interactions between plant proteins and probiotics demonstrate substantial potential for enhancing the functionality of plant proteins. Fermented plant protein foods offer a unique blend of bioactive components and beneficial microorganisms that can enhance gut health and combat chronic diseases. Utilizing various probiotic strains and plant protein sources opens doors to develop innovative probiotic products with enhanced functionalities. Nonetheless, the mechanisms and synergistic effects of these interactions remain not fully understood. This review aims to delve into the roles of promoting health through the intricate interplay of plant proteins and probiotics. The regulatory mechanisms have been elucidated to showcase the synergistic effects, accompanied by a discussion on the challenges and future research prospects. It is essential to recognize that the interactions between plant proteins and probiotics encompass multiple mechanisms, highlighting the need for further research to address challenges in achieving a comprehensive understanding of these mechanisms and their associated health benefits.
Collapse
Affiliation(s)
- Qiming Wu
- Nutrilite Health Institute, Shanghai, China
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai, China
| | - Zhengying Cui
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Yuchen Ma
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Xin Liu
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Ruifang Dong
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
- Department of Food Science and Technology, National University of Singapore, Singapore
| | - Lin Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
| | - Caili Fu
- Department of Food Science and Technology, National University of Singapore Suzhou Research Institute, Suzhou, China
| |
Collapse
|
9
|
Du Q, Li H, Tu M, Wu Z, Zhang T, Liu J, Ding Y, Zeng X, Pan D. Legume protein fermented by lactic acid bacteria: Specific enzymatic hydrolysis, protein composition, structure, and functional properties. Colloids Surf B Biointerfaces 2024; 238:113929. [PMID: 38677155 DOI: 10.1016/j.colsurfb.2024.113929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
In recent years, with increasing emphasis on healthy, green, and sustainable consumption concepts, plant-based foods have gained popularity among consumers. As widely sourced plant-based raw materials, legume proteins are considered sustainable and renewable alternatives to animal proteins. However, legume proteins have limited functional properties, which hinder their application in food products. LAB fermentation is a relatively natural processing method that is safer than chemical/physical modification methods and can enrich the functional properties of legume proteins through biodegradation and modification. Therefore, changes in legume protein composition, structure, and functional properties and their related mechanisms during LAB fermentation are described. In addition, the specific enzymatic hydrolysis mechanisms of different LAB proteolytic systems on legume proteins are also focused in this review. The unique proteolytic systems of different LAB induce specific enzymatic hydrolysis of legume proteins, resulting in the production of hydrolysates with diverse functional properties, including solubility, emulsibility, gelability, and foamability, which are determined by the composition (peptide/amino acid) and structure (secondary/tertiary) of legume proteins after LAB fermentation. The correlation between LAB-specific enzymatic hydrolysis, protein composition and structure, and protein functional properties will assist in selecting legume protein raw materials and LAB strains for legume plant-based food products and expand the application of legume proteins in the food industry.
Collapse
Affiliation(s)
- Qiwei Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Hang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Maolin Tu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Tao Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China
| | - Jianhua Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China.
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China; Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food Science and Engineering, Ningbo University, Ningbo, China; Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, China.
| |
Collapse
|
10
|
Jia J, Deng X, Jia X, Guo C, Liu X, Liu Y, Duan X. Comparison and evaluation of L. reuteri and L. rhamnosus-fermented egg yolk on the physicochemical and flavor properties of cookies. Food Chem X 2024; 21:101096. [PMID: 38229672 PMCID: PMC10790001 DOI: 10.1016/j.fochx.2023.101096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/18/2024] Open
Abstract
The study aims to explore an effective approach to improve the sensory quality and consumer satisfaction of cookies in the food industry. L. reuteri and L. rhamnosus were chosen to ferment egg yolk and their effects on dough properties and physicochemical properties, flavor, texture, color, and sensory acceptability of cookies were studied. Results show that the utilization of fermented egg yolk significantly decreased baking loss and increased spread factor of cookies. GC-MS analysis indicates different Lactobacillus species enhanced cookie flavor through unique mechanisms. Texture analysis shows cookies prepared with L. rhamnosus-fermented egg yolk had significantly lower hardness (1807.12 g) than control cookies (2028.34 g). Sensory evaluation reveals the L. reuteri-fermented egg yolk significantly improved the overall acceptability of cookies by enhancing appearance, flavor, and mouthfeel scores. These findings have practical implications for food manufacturers seeking to enhance their product's quality and appeal, thereby gaining a competitive edge in the market.
Collapse
Affiliation(s)
- Jie Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Xiaofan Deng
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Xin Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Chunfeng Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yuanjing Liu
- Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, PR China
| | - Xiang Duan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| |
Collapse
|
11
|
Yan Z, Liu J, Cao S, Wang Z, Li C, Ren J, Zhang R, Zhang M, Liu X. Substitution of sucrose by erythritol in angel cake: Effect on protein foaming, baking performance and digestion properties. Int J Biol Macromol 2023; 253:126759. [PMID: 37678696 DOI: 10.1016/j.ijbiomac.2023.126759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
Sugars played an important role in the processing of products such as cakes, however, their high-calorie character often posed a health risk to consumers. Therefore, this paper aimed to better investigate the effect of sugar substitutes on the improvement of egg white foaming properties and angle cake digestibility characteristics. It was demonstrated that the addition of erythritol improved the surface properties of egg whites, thus enhancing their foaming properties. Particularly, when the erythritol substitution was 50 %, the sugar-egg white complex structure unfolded and had the best foaming capacity. On this basis, the baking performance of angel cakes with sucrose replaced by erythritol was analyzed. When the erythritol substitution was lower than 50 %, the specific volume and the baking loss rate of the cakes were basically unchanged, and the texture and sensory taste of the cakes were all excellent. Finally, the gastrointestinal digestive kinetic analysis suggested that erythritol substitution for sucrose was beneficial for reducing blood glucose levels in vivo. Furthermore, for the MgCl2-based samples, both the degree of protein destruction after digestion was weakened and the glucose-lowering effect was better exerted. Overall, this study provided a new theoretical basis for the low-calorie sugar-substituted health food products development in the future.
Collapse
Affiliation(s)
- Zhaohui Yan
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Sijia Cao
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhi Wang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chenman Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jianqi Ren
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Renzhao Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Min Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
12
|
Gundogan BN, Saricoban C, Unal K. The effect of different drying methods on some physico-chemical, functional and protein structure properties of liquid egg white fermented by Lactobacillus rhamnosus GG. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:2433-2443. [PMID: 37424576 PMCID: PMC10326199 DOI: 10.1007/s13197-023-05766-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/03/2023] [Accepted: 05/09/2023] [Indexed: 07/11/2023]
Abstract
This research aims to understand the effect of Lactobacillus rhamnosus GG fermentation on egg white powder. In this study, some physico-chemical, functional, textural, and protein structure properties of microwave (MD) and oven dried (OD) egg white powders were determined. The fermentation process decreased the pH value (5.92, 5.82) and foaming capacity (20.83%, 27.20%) of MD and OD groups. The highest yield (11.61%) and emulsion capacity values (78.17%) were observed in fermented oven dried group. While MD group (703.22 g) had the lowest hardness value, OD group (3301.35 g) exhibited highest hardness value. The denaturation peaks of the samples were ranged between 61.00 °C and 80.43 °C. Scanning electron microscopy images of all sample groups showed broken glass structure. This study suggests that fermentation (L. rhamnosus GG) can effectively improve the quality properties of egg white powder and thus fermented egg white powders could be used in the food industry. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05766-4.
Collapse
Affiliation(s)
- Busra Nur Gundogan
- Department of Food Engineering, Agriculture Faculty, Selçuk University, Konya, 42075 Turkey
| | - Cemalettin Saricoban
- Department of Food Engineering, Agriculture Faculty, Selçuk University, Konya, 42075 Turkey
| | - Kubra Unal
- Department of Food Engineering, Agriculture Faculty, Selçuk University, Konya, 42075 Turkey
| |
Collapse
|
13
|
Jia J, Tian L, Song Q, Liu X, Rubert J, Li M, Duan X. Investigation on physicochemical properties, sensory quality and storage stability of mayonnaise prepared from lactic acid fermented egg yolk. Food Chem 2023; 415:135789. [PMID: 36870213 DOI: 10.1016/j.foodchem.2023.135789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/14/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023]
Abstract
In this research, the physicochemical properties, sensory quality, and storage stability of mayonnaise prepared from egg yolk fermented for different times (0, 3, 6, and 9 h) have been investigated. Compared with control mayonnaise (3.50 μm and 92.88%), mayonnaise prepared from fermented egg yolk possessed significantly lower particle size (3.32-3.41 μm) and higher emulsion stability (97.26-98.72%). Meanwhile, texture, color, and gas chromatography-mass spectrometry (GC-MS) analysis revealed that the fermented egg yolk significantly enhanced the firmness, consistency and cohesiveness, lightness and redness, and flavor profile of mayonnaise. Sensory evaluation showed that mayonnaise with 3 h-fermented egg yolk exhibited the highest sensory scores. And the microscopic and appearance characteristics revealed that fermented egg yolk endowed mayonnaise with a more stable appearance after 30 days of storage. These results indicated that lactic acid fermentation of egg yolk is a feasible way to improve consumer acceptability and shelf life of mayonnaise.
Collapse
Affiliation(s)
- Jie Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | | | - Qi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Josep Rubert
- Food Quality and Design Group, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Xiang Duan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
14
|
Chen Q, Dong L, Li Y, Liu Y, Xia Q, Sang S, Wu Z, Xiao J, Liu L, Liu L. Research advance of non-thermal processing technologies on ovalbumin properties: The gelation, foaming, emulsification, allergenicity, immunoregulation and its delivery system application. Crit Rev Food Sci Nutr 2023; 64:7045-7066. [PMID: 36803106 DOI: 10.1080/10408398.2023.2179969] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Ovalbumin (OVA) is the most abundant protein in egg white, with excellent functional properties (e.g., gelling, foaming, emulsifying properties). Nevertheless, OVA has strong allergenicity, which is usually mediated by specific IgE thus results in gut microbiota dysbiosis and causes atopic dermatitis, asthma, and other inflammation actions. Processing technologies and the interactions with other active ingredients can influence the functional properties and allergic epitopes of OVA. This review focuses on the non-thermal processing technologies effects on the functional properties and allergenicity of OVA. Moreover, the research advance about immunomodulatory mechanisms of OVA-mediated food allergy and the role of gut microbiota in OVA allergy was summarized. Finally, the interactions between OVA and active ingredients (such as polyphenols and polysaccharides) and OVA-based delivery systems construction are summarized. Compared with traditional thermal processing technologies, novel non-thermal processing techniques have less damage to OVA nutritional value, which also improve OVA properties. OVA can interact with various active ingredients by covalent and non-covalent interactions during processing, which can alter the structure or allergic epitopes to affect OVA/active components properties. The interactions can promote OVA-based delivery systems construction, such as emulsions, hydrogels, microencapsulation, nanoparticles to encapsulate bioactive components and monitor freshness for improving foods quality and safety.
Collapse
Affiliation(s)
- Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Qiang Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Shangyuan Sang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| | - Jianbo Xiao
- Department Analytic & Food Chemistry, Faculty of Science, University of Vigo, Vigo, Spain
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, PR China
| |
Collapse
|
15
|
Yu R, Wang L, Ma Y, Zang J, Qing M, Chi Y, Chi Y. Addition of NaCl or Sucrose on the Protein Content, and Functional and Physicochemical Properties of Egg Whites Liquid under Heat Treatment. Foods 2023; 12:foods12040881. [PMID: 36832956 PMCID: PMC9957389 DOI: 10.3390/foods12040881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
In this study, differences in the protein content and functional and physicochemical properties of four varieties of egg white (EW) were studied by adding 4-10% sucrose or NaCl and then heating them at 70 °C for 3 min. According to a high-performance liquid chromatography (HPLC) analysis, the percentages of ovalbumin, lysozyme and ovotransferrin rose with an increase in the NaCl or sucrose concentration; however, the percentages of ovomucin and ovomucoid decreased. Furthermore, the foaming properties, gel properties, particle size, α-helixes, β-sheets, sulfhydryl groups and disulfide bond content also increased, whereas the content of β-turns and random coils decreased. In addition, the total soluble protein content and functional and physicochemical properties of black bone (BB) chicken and Gu-shi (GS) EWs were higher than those of Hy-Line brown (HY-LINE) and Harbin White (HW) Ews (p < 0.05). Subsequently, transmission electron microscopy (TEM) confirmed the changes in the EW protein structure in the four varieties of Ews. As the aggregations increased, the functional and physicochemical properties decreased. The protein content and functional and physicochemical properties of Ews after heating were correlated with the concentration of NaCl and sucrose and the EW varieties.
Collapse
Affiliation(s)
- Ruihan Yu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lifeng Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yanqiu Ma
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jingnan Zang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Mingmin Qing
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yujie Chi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (Y.C.); (Y.C.); Tel.: +86-451-55191793 (Yujie Chi); Fax: +86-451-55190577 (Yujie Chi)
| | - Yuan Chi
- College of Engineering, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (Y.C.); (Y.C.); Tel.: +86-451-55191793 (Yujie Chi); Fax: +86-451-55190577 (Yujie Chi)
| |
Collapse
|
16
|
Ovalbumin, an outstanding food hydrocolloid: Applications, technofunctional attributes, and nutritional facts, A systematic review. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
17
|
Zhang T, Gong P, Wang Y, Jiang H, Zhang M, Yang M, Du Z, Liu J, Liu X. Oxidation-mediated structure and molecular interaction transformation of egg white protein: The underlying mechanism of functional properties and in vitro gastric digestibility improvement. Food Chem 2022; 405:134874. [DOI: 10.1016/j.foodchem.2022.134874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022]
|
18
|
Chen J, Wang J, Xu L, Lv Y, Tang T, Zhang M, Li J, Su Y, Gu L, Yang Y, Chang C. Study on gel properties of lysozyme-free egg white before and after Lactiplantibacillus plantarum fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5618-5627. [PMID: 35340026 DOI: 10.1002/jsfa.11897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/22/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Isolation of lysozyme from egg white (EW) using ion exchange resin adsorption method generates large quantities of lysozyme-free egg white (LFEW) with poor gelling property. To maximize the applications of LFEW, the effect of Lactiplantibacillus plantarum fermentation on the gel properties of LFEW was investigated in this study. RESULTS The fermentation efficiency of LFEW with lysozyme removed was significantly improved, and the sugar removal rate (2 g kg-1 Lactiplantibacillus plantarum, 37 °C, 7 h) was more than 90%. Removal of lysozyme resulted in increased stability and surface hydrophobicity of EW. After Lactiplantibacillus plantarum fermentation, the stability of EW decreased, and the average particle size and surface hydrophobicity increased. In addition, by comparing the gel properties of EW and LFEW before and after fermentation at different pH, it was found that the hardness, elasticity, and water holding capacity (WHC) of EW gel increased significantly. The removal of lysozyme effectively improved the WHC and springiness of the EW gel and promoted the formation of a denser network structure with smaller pores. After Lactiplantibacillus plantarum fermentation treatment, LFEW gel hardness decreased, with loose and porous network structure, no browning occurred after autoclaving. CONCLUSION This study provided the direction and theoretical basis for producing a fermented LFEW gel with pleasing texture and appearance. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jie Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Jing Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Lilan Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Yuanqi Lv
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Tingting Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Ming Zhang
- Guangzhou Beile Food Co., Ltd., Guangzhou, P. R. China
| | - Junhua Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Yujie Su
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Luping Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
19
|
Jin H, Jin Y, Pan J, Sun Y, Sheng L. Multidimensional evaluation of structural properties of ovalbumin at the air-water interface: Spectroscopy and molecular dynamics simulations. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
20
|
Jia J, Xiong D, Bai J, Yuan Y, Song Q, Lan T, Tian L, Guo C, Liu X, Wang C, Duan X. Investigation on flavor and physicochemical properties of angel food cakes prepared by lactic acid fermented egg white. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Tingting W, Chang C, Gu L, Su Y, Zhang M, Yang Y, Li J. Comparison of the functionality of egg white liquid with different desugaring treatments. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Wang Tingting
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi, Jiangsu, 214122 China
- School of Food Science and Technology Jiangnan University Wuxi, Jiangsu, 214122 China
| | - Cuihua Chang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi, Jiangsu, 214122 China
- School of Food Science and Technology Jiangnan University Wuxi, Jiangsu, 214122 China
| | - Luping Gu
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi, Jiangsu, 214122 China
- School of Food Science and Technology Jiangnan University Wuxi, Jiangsu, 214122 China
| | - Yujie Su
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi, Jiangsu, 214122 China
- School of Food Science and Technology Jiangnan University Wuxi, Jiangsu, 214122 China
| | - Ming Zhang
- Guangzhou Beile Food Co., Ltd. Fengying Road No. 10‐1, High‐tech Industrial Park, Conghua Economic Development Zone Guangzhou, Guangdong, 510900 PR China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi, Jiangsu, 214122 China
- School of Food Science and Technology Jiangnan University Wuxi, Jiangsu, 214122 China
- Hunan Engineering and Technology Research Center for Food Flavors and Flavorings Jinshi, Hunan, 415400 China
| | - Junhua Li
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi, Jiangsu, 214122 China
- School of Food Science and Technology Jiangnan University Wuxi, Jiangsu, 214122 China
- Hunan Engineering and Technology Research Center for Food Flavors and Flavorings Jinshi, Hunan, 415400 China
| |
Collapse
|
22
|
Differences in protein composition and functional properties of egg whites from four chicken varieties. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Zhang T, Zhang M, Gong P, Jiang H, Liu J, Liu X. Ions-induced ovalbumin foaming properties enhancement: Structural, rheological, and molecular aggregation mechanism. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
24
|
Mechanism study on enhanced emulsifying properties of phosvitin and calcium-binding capacity of its phosphopeptides by lactic acid bacteria fermentation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.113002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Wang J, Xu L, Lv Y, Su Y, Gu L, Chang C, Zhang M, Yang Y, Li J. To improve the gel properties of liquid whole egg by short-term lactic acid bacteria fermentation. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Lyu S, Pan F, Ge H, Yang Q, Duan X, Feng M, Liu X, Zhang T, Liu J. Fermented egg-milk beverage alleviates dextran sulfate sodium-induced colitis in mice through the modulation of intestinal flora and short-chain fatty acids. Food Funct 2021; 13:702-715. [PMID: 34935826 DOI: 10.1039/d1fo03040j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fermented egg-milk beverage (FEMB) can alleviate the symptoms of intestinal diseases by regulating intestinal flora and supplying nutrition. This study investigated the protective effect of FEMB on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice. The results showed that FEMB relieved the UC mice's pathological abnormalities and colonic inflammation, and restructured the intestinal flora composition simultaneously. After FEMB treatment for 14 days, the body weight of the mice rose and the disease activity index (DAI) value decreased. Furthermore, the length and form of colons in the UC mice were notably restored. Inflammatory cells decreased or disappeared, and goblet cells and crypt were enriched and modified. 16S rRNA gene sequencing results demonstrated that FEMB treatment could increase the abundance of beneficial bacteria in the cecum content of mice, including unclassified_f_Lachnospiraceae and Lactobacillus. Moreover, probiotics that can increase the content of short-chain fatty acids (SCFAs) may contribute to inflammation alleviation. An increase in amino acids was observed in our experiment, which may benefit nutritional supplements. In conclusion, FEMB treatment can alleviate the damage of DSS-induced colitis in Balb/c mice. This study provides a theoretical basis for both the relief of inflammation and the application of FEMB.
Collapse
Affiliation(s)
- Siwen Lyu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China. .,College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China.
| | - Fengguang Pan
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China. .,College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China.
| | - Huifang Ge
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China. .,College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China.
| | - Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China. .,College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China.
| | - Xuehui Duan
- College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China.
| | - Mengmeng Feng
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China. .,College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China.
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China. .,College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China.
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China. .,College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China.
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, People's Republic of China. .,College of Food Science and Engineering, Jilin University, Changchun, 130062, People's Republic of China.
| |
Collapse
|
27
|
Zhao Q, Ding L, Xia M, Huang X, Isobe K, Handa A, Cai Z. Role of lysozyme on liquid egg white foaming properties: Interface behavior, physicochemical characteristics and protein structure. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106876] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Li J, Zhai J, Gu L, Su Y, Gong L, Yang Y, Chang C. Hen egg yolk in food industry - A review of emerging functional modifications and applications. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Eweida BY, El-Moghazy AY, Pandey PK, Amaly N. Fabrication and simulation studies of high-performance anionic sponge alginate beads for lysozyme separation. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126556] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Jia J, Ji B, Tian L, Li M, Lu M, Ding L, Liu X, Duan X. Mechanism study on enhanced foaming properties of individual albumen proteins by Lactobacillus fermentation. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106218] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
|
32
|
Tian L, Hu S, Jia J, Tan W, Yang L, Zhang Q, Liu X, Duan X. Effects of short-term fermentation with lactic acid bacteria on the characterization, rheological and emulsifying properties of egg yolk. Food Chem 2020; 341:128163. [PMID: 33035853 DOI: 10.1016/j.foodchem.2020.128163] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/07/2020] [Accepted: 09/19/2020] [Indexed: 10/23/2022]
Abstract
Lactic acid bacteria fermentation is a safe and green technology that can modify the function of food ingredients (including proteins). In this article, egg yolks were subjected to fermentation with commercial lactic acid bacteria for 0, 3, 6 and 9 h, respectively. After fermentation treatment, the microbial composition has changed obviously (Streptococcus thermophilus increased significantly). The free sulfhydryl group (SH) contents and surface hydrophobicity of egg yolk proteins were significantly reduced. The rheological results indicated that the treated egg yolks possessed a decreased apparent viscosity. Correspondingly, the emulsifying activity of egg yolk was enhanced from 9.07 to 19.55, 23.40 and 24.61 m2/g for 3, 6 and 9 h of fermentation, respectively. And the emulsifying stability reached the maximum after 3 h of fermentation. This study investigated the relationship between structure and properties of yolk proteins, and showed that lactic acid fermentation endued egg yolk with better emulsifying properties.
Collapse
Affiliation(s)
- Liangjie Tian
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Shuting Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Jie Jia
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Wen Tan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Lu Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Qinjun Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| | - Xiang Duan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|