1
|
Wang Q, Rao Z, Jiang L, Lei X, Zhao J, Lei L, Zeng K, Ming J. The assembly mechanism of Zein/EGCG/PEG nanoparticles in a water system and their adsorption behavior at the oil-water interface. Food Chem 2025; 463:141051. [PMID: 39241419 DOI: 10.1016/j.foodchem.2024.141051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/10/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
In this study, the self-assembly mechanism of Zein/(-)-epigallocatechin-3-gallate/polyethylene glycol (Zein/EGCG/PEG) composite nanoparticles and their interface adsorption behavior at the oil-water interface were investigated by coarse-grained molecular dynamics simulation. Fourier transform infrared spectroscopy and conformation analysis demonstrated that there were electrostatic and hydrogen bond interactions between Zein and EGCG, physical entanglement between PEG and Zein, and hydrogen bond interaction between EGCG and PEG. The nanoparticles accumulated at the oil-water interface, and there was an obvious interface layer between oil phase and water phase, as indicated by confocal laser scanning microscope and scanning electron microscope. The adsorbing of Zein/EGCG/PEG nanoparticles at the oil-water interface was confirmed by coarse-grained molecular dynamics simulation. Further findings confirmed that Zein/EGCG/PEG nanoparticles could serve as stabilizers for oleogels with self-supporting structure, viscoelastic solid behavior and temperature response characteristics. The current research offered a novel approach to enhance protein interface characteristics and create food-grade emulsifiers and oleogelators.
Collapse
Affiliation(s)
- Qiming Wang
- College of Food Science, Southwest University, Chongqing, 400715, the, People's Republic of China
| | - Zhenan Rao
- College of Food Science, Southwest University, Chongqing, 400715, the, People's Republic of China
| | - Ling Jiang
- College of Food Science, Southwest University, Chongqing, 400715, the, People's Republic of China
| | - Xiaojuan Lei
- College of Food Science, Southwest University, Chongqing, 400715, the, People's Republic of China
| | - Jichun Zhao
- College of Food Science, Southwest University, Chongqing, 400715, the, People's Republic of China
| | - Lin Lei
- College of Food Science, Southwest University, Chongqing, 400715, the, People's Republic of China
| | - Kaihong Zeng
- Institute of Health Management & Department of Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China.
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing, 400715, the, People's Republic of China; Research Center for Fruits and Vegetables Logistics Preservation and Nutritional Quality Control, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China.
| |
Collapse
|
2
|
Li J, Shi W, Sun Y, Qin Z, Zheng S, Liang S, Li Y, Ritzoulis C, Zhang H. Fabrication, characterization, and oxidation resistance of gelatin/egg white protein cryogel-templated oleogels through apple polyphenol crosslinking. Int J Biol Macromol 2024; 277:134077. [PMID: 39053829 DOI: 10.1016/j.ijbiomac.2024.134077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/04/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Cryogel-templated oleogels (CTO) were fabricated via a facile polyphenol crosslinking strategy, where apple polyphenol was utilized to crosslink the gelatin/egg white protein conjugates without forming hydrogels. After freeze-drying, cryogel templates were obtained and used to construct CTO by oil absorption. Apple polyphenol crosslinking improved the emulsion-related properties with appearance changes on samples, and infrared spectroscopy further confirmed the interactions between proteins and apple polyphenol. The crosslinked cryogels presented porous microstructures (porosity of over 96 %), enhanced thermal/mechanical stabilities, and could absorb a high content of oil (14.41 g/g) with a considerable oil holding capacity (90.98 %). Apple polyphenol crosslinking also influenced the rheological performances of CTO, where the highly crosslinked samples owned the best thixotropic recovery of 85.88 %. Moreover, after the rapid oxidation of oleogels, the generation of oxidation products was effectively inhibited by crosslinking (POV: 0.48 nmol/g, and TBARS: 0.53 mg/L). The polyphenol crosslinking strategy successfully involved egg white protein and gelatin to fabricate CTO with desired physical/chemical properties. Apple polyphenol acted as both a crosslinker and an antioxidant, which provided a good reference for fabricating pure protein-based CTO.
Collapse
Affiliation(s)
- Jiawen Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wangjue Shi
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Yifeng Sun
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zeyu Qin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shijie Zheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Siheng Liang
- Aberdeen Institute of Data Science and Artificial Intelligence, South China Normal University, Guangzhou, China
| | - Yang Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Christos Ritzoulis
- Department of Food Science and Technology, International Hellenic University, Alexander Campus, Thessaloniki, Greece; School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China.
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Wang Q, Rao Z, Jiang L, Lei X, Zhao J, Lei L, Zeng K, Ming J. Oleogels loaded with lycopene structured using Zein/EGCG/Ca 2+ complexes: Preparation, characterization and potential application. Food Chem 2024; 463:140976. [PMID: 39362089 DOI: 10.1016/j.foodchem.2024.140976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 10/05/2024]
Abstract
Oleogels have attracted considerable attention due to their excellent viscoelasticity and high content of polyunsaturated fatty acid. This study explored the potential of Zein/(-)-epigallocatechin-3-gallate/Ca2+ complexes oleogels loaded with lycopene as potential substitute for solid fats in biscuit formulations. Utilizing an emulsion-templated method, oleogels were prepared and characterized for visual appearance, droplet size, microstructure, and rheological properties. The incorporation of lycopene indicated a dose-dependent effect on these characteristics, achieving optimal properties at a concentration of 0.3 mg/mL. At this concentration, oleogels exhibited higher encapsulation efficiency (> 90 %), lower oil loss (< 2 %), and denser network structures. Rheological analysis highlighted the shear-thinning behavior, gel-like structure, and thixotropic recovery of oleogels. Substituting of margarine with lycopene-loaded oleogels in biscuits yielded products with regular appearance, uniform color, and potential health benefits, demonstrating the viability of these oleogels as a healthier alternative to traditional solid fats in baking.
Collapse
Affiliation(s)
- Qiming Wang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Zhenan Rao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Ling Jiang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiaojuan Lei
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Jichun Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Lin Lei
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Kaihong Zeng
- Institute of Health Management & Department of Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, People's Republic of China.
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Research Center for Fruits and Vegetables Logistics Preservation and Nutritional Quality Control, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China.
| |
Collapse
|
4
|
Lu Y, Zhang Y, Zhang R, Gao Y, Miao S, Mao L. Different interfaces for stabilizing liquid-liquid, liquid-gel and gel-gel emulsions: Design, comparison, and challenges. Food Res Int 2024; 187:114435. [PMID: 38763682 DOI: 10.1016/j.foodres.2024.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/21/2024]
Abstract
Interfaces play essential roles in the stability and functions of emulsion systems. The quick development of novel emulsion systems (e.g., water-water emulsions, water-oleogel emulsions, hydrogel-oleogel emulsions) has brought great progress in interfacial engineering. These new interfaces, which are different from the traditional water-oil interfaces, and are also different from each other, have widened the applications of food emulsions, and also brought in challenges to stabilize the emulsions. We presented a comprehensive summary of various structured interfaces (stabilized by mixed-layers, multilayers, particles, nanodroplets, microgels etc.), and their characteristics, and designing strategies. We also discussed the applicability of these interfaces in stabilizing liquid-liquid (water-oil, water-water, oil-oil, alcohol-oil, etc.), liquid-gel, and gel-gel emulsion systems. Challenges and future research aspects were also proposed regarding interfacial engineering for different emulsions. Emulsions are interface-dominated materials, and the interfaces have dynamic natures, as the compositions and structures are not constant. Biopolymers, particles, nanodroplets, and microgels differed in their capacity to get absorbed onto the interface, to adjust their structures at the interface, to lower interfacial tension, and to stabilize different emulsions. The interactions between the interface and the bulk phases not only affected the properties of the interface, but also the two phases, leading to different functions of the emulsions. These structured interfaces have been used individually or cooperatively to achieve effective stabilization or better applications of different emulsion systems. However, dynamic changes of the interface during digestion are only poorly understood, and it is still challenging to fully characterize the interfaces.
Collapse
Affiliation(s)
- Yao Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Yanhui Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruoning Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanxiang Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Like Mao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
5
|
Liu J, Yang S, Liu J, Liu H, Wang Z. Preparation of Transglutaminase-Catalyzed Rice Bran Protein Emulsion Gels as a Curcumin Vehicle. Foods 2024; 13:2072. [PMID: 38998578 PMCID: PMC11241406 DOI: 10.3390/foods13132072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 07/14/2024] Open
Abstract
Protein-based emulsion gels have tunable viscoelasticity that can be applied to improve the stability of bioactive ingredients. As the by-product of rice processing, rice bran protein (RBP) has high nutritional value and good digestibility, exhibiting unique value in the development of hypoallergenic formula. In this study, the effect of transglutaminase (TGase) cross-linking on the physicochemical properties of RBP emulsion gels was investigated. To improve the stability of curcumin against environmental stress, the entrapment efficiency and stability of curcumin in the emulsion gel systems were also evaluated. The results indicated that TGase increased the viscoelastic modulus of RBP emulsion gels, resulting in a solid-like structure. Moreover, the entrapment efficiency of curcumin was increased to 93.73% after adding TGase. The thermal stability and photo-stability of curcumin were enhanced to 79.54% and 85.87%, respectively, compared with the sample without TGase addition. The FTIR results showed that TGase induced the cross-linking of protein molecules and the secondary structure change in RBP. Additionally, SEM observation confirmed that the incorporation of TGase promoted the formation of a compact network structure. This study demonstrated the potential of RBP emulsion gels in protecting curcumin and might provide an alternative strategy to stabilize functional ingredients.
Collapse
Affiliation(s)
- Jie Liu
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-Products), Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Siqi Yang
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-Products), Beijing Technology and Business University, Beijing 100048, China
| | - Jiayuan Liu
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-Products), Beijing Technology and Business University, Beijing 100048, China
| | - Hongzhi Liu
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-Products), Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| | - Ziyuan Wang
- National Center of Technology Innovation for Grain Industry (Comprehensive Utilization of Edible By-Products), Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Beijing 100048, China
| |
Collapse
|
6
|
Wang Q, Rao Z, Chen Y, Jiang L, Lei X, Zhao J, Li F, Lei L, Ming J. Fabrication and characterization of oleogels stabilized by metal-phenolic network coatings-decorated zein nanoparticles. Food Chem 2024; 430:137025. [PMID: 37549630 DOI: 10.1016/j.foodchem.2023.137025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/09/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023]
Abstract
Self-assembly coatings are used to functionalize the surface structures of protein. Herein, emulsion-templated approach was adopted to obtain oleogels using metal-phenolic network coatings-decorated zein nanoparticles. Two self-assembly strategies were used to decorate zein nanoparticles: 1) adding (-)-epigallocatechin-3-gallate (EGCG) first and then calcium ions (Ca2+) (zein/EGCG/Ca2+ nanoparticles). 2) adding Ca2+ first and then EGCG (zein/Ca2+/EGCG nanoparticles). The formation of nanoparticles, the stability of emulsions and the rheological behaviors of oleogels were modulated by using different adding sequences of EGCG and Ca2+. Nanoparticles prepared by two self-assembly strategies exhibited increasing diameter (340-360 nm). More Ca2+ participated in the formation of zein/EGCG/Ca2+ nanoparticles, as described by X-ray photoelectron spectroscopy analysis. Metal-phenolic network coatings facilitated the formation of well-structured emulsions and oleogels, which were candidates for fat substitutes and stable carriers. Findings confirmed metal-phenolic network coatings-decorated zein nanoparticles were effective stabilizers for emulsions and oleogels, further expanding the selectivity of oleogelators.
Collapse
Affiliation(s)
- Qiming Wang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Zhenan Rao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Yuanyuan Chen
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Ling Jiang
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiaojuan Lei
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, People's Republic of China
| | - Jichun Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, People's Republic of China
| | - Fuhua Li
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, People's Republic of China
| | - Lin Lei
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China; Research Center of Food Storage & Logistics, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
7
|
Hashemi B, Assadpour E, Zhang F, Jafari SM. A comparative study of the impacts of preparation techniques on the rheological and textural characteristics of emulsion gels (emulgels). Adv Colloid Interface Sci 2023; 322:103051. [PMID: 37981462 DOI: 10.1016/j.cis.2023.103051] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
A subtype of soft solid-like substances are emulsion gels (emulgels; EGs). These composite material's structures either consist of a network of aggregated emulsion droplets or a polymeric gel matrix that contains emulsion droplets. The product's rheological signature can be used to determine how effective it is for a specific application. The interactions between these structured system's separate components and production process, however, have a substantial impact on their rheological imprint. Therefore, rational comprehension of interdependent elements, their structural configurations, and the resulting characteristics of a system are essential for accelerating our progress techniques as well as for fine-tuning the technological and functional characteristics of the finished product. This article presents a comprehensive overview of the mechanisms and procedures of producing EGs (i.e., cold-set and heat-set) in order to determine the ensuing rheological features for various commercial applications, such as food systems. It also describes the influence of these methods on the rheological and textural characteristics of the EGs. Diverse preparation methods are the cause of the rheological-property correlations between different EGs. In many ways, EGs can be produced using various matrix polymers, processing techniques, and purposes. This may lead to various EG matrix structures and interactions between them, which in turn may affect the composition of EGs and ultimately their textural and rheological characteristics.
Collapse
Affiliation(s)
- Behnaz Hashemi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fuyuan Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071000, China.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
8
|
Khotsaeng N, Simchuer W, Imsombut T, Srihanam P. Effect of Glycerol Concentrations on the Characteristics of Cellulose Films from Cattail ( Typha angustifolia L.) Flowers. Polymers (Basel) 2023; 15:4535. [PMID: 38231905 PMCID: PMC10708089 DOI: 10.3390/polym15234535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Plastic waste has become a big problem for the environment globally. Biodegradable polymers are a potential replacement for plastics that can have a positive outcome both environmentally and economically. In this work, we used acid hydrolysis and alkaline treatment to extract cellulose fibers from cattails. The obtained cellulose was used as a substrate for the fabrication of cellulose film using a casting technique on plastic plates. Different concentrations of the plasticizer, glycerol, were used to prepare films for comparison, and its effects on the film's characteristics were observed. The morphology, chemical structure, and thermal stability of the cattail cellulose (CTC) films were studied using techniques such as scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), and thermogravimetric analysis (TGA), respectively. Measurements of transparency, moisture content (MC), water solubility (MS), and water contact angle (WCA) were also performed. Introducing glycerol into the films increased the transparency, MC, and WS values, as well as the gap width between film textures. However, it resulted in a decrease in the WCA of the films, showing that the hydrophilicity of the films is increased by the addition of glycerol. The interaction between the functional groups of cellulose and glycerol was established from the ATR-FTIR and XRD data. The obtained results indicated that glycerol affected the thermal stability and the degree of crystallinity of the produced films. Accordingly, the hydrophilicity of the cellulose film was increased by increasing the glycerol content; therefore, cattail cellulose films can be used as a biodegradable alternative to plastic in the future.
Collapse
Affiliation(s)
- Nuanchai Khotsaeng
- Faculty of Science and Health Technology, Kalasin University, Namon District, Kalasin 46230, Thailand;
| | - Wilaiwan Simchuer
- Faculty of Science and Technology, Loei Rajabhat University, Mueang District, Loei 42000, Thailand;
| | - Thanonchat Imsombut
- Department of Rubber and Polymer Technology, Faculty of Science and Technology, Rajabhat Mahasarakham University, Mueang District, Maha Sarakham 44000, Thailand;
| | - Prasong Srihanam
- Biodegradable Polymers Research Unit, Department of Chemistry, Centre of Excellence for Innovation in Chemistry, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand
| |
Collapse
|
9
|
Hu J, Liang Y, Huang X, Chen G, Liu D, Chen Z, Fang Z, Chen X. Thermal Stability Improvement of Core Material via High Internal Phase Emulsion Gels. Polymers (Basel) 2023; 15:4272. [PMID: 37959953 PMCID: PMC10647363 DOI: 10.3390/polym15214272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Biocompatible particle-stabilized emulsions have gained significant attention in the biomedical industry. In this study, we employed dynamic high-pressure microfluidization (HPM) to prepare a biocompatible particle emulsion, which effectively enhances the thermal stability of core materials without the addition of any chemical additives. The results demonstrate that the HPM-treated particle-stabilized emulsion forms an interface membrane with high expansion and viscoelastic properties, thus preventing core material agglomeration at elevated temperatures. Furthermore, the particle concentration used for constructing the emulsion gel network significantly impacts the overall strength and stability of the material while possessing the ability to inhibit oxidation of the thermosensitive core material. This investigation explores the influence of particle concentration on the stability of particle-stabilized emulsion gels, thereby providing valuable insights for the design, improvement, and practical applications of innovative clean label emulsions, particularly in the embedding and delivery of thermosensitive core materials.
Collapse
Affiliation(s)
- Jinhua Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.L.); (X.H.); (G.C.); (D.L.); (Z.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yongxue Liang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.L.); (X.H.); (G.C.); (D.L.); (Z.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xueyao Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.L.); (X.H.); (G.C.); (D.L.); (Z.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Guangxue Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.L.); (X.H.); (G.C.); (D.L.); (Z.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Dingrong Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.L.); (X.H.); (G.C.); (D.L.); (Z.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhuangzhuang Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; (Y.L.); (X.H.); (G.C.); (D.L.); (Z.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zheng Fang
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Xuelong Chen
- Atera Water Pte Ltd., 1 Corporation Drive, Singapore 619775, Singapore;
| |
Collapse
|
10
|
Zhang R, Liu J, Yan Z, Jiang H, Wu J, Zhang T, Wang E, Liu X. Tailoring a novel ovalbumin emulsion gel for stability improvement and functional properties enhancement: Effect of oil phase structure changes by beeswax. Food Chem 2023; 426:136575. [PMID: 37321120 DOI: 10.1016/j.foodchem.2023.136575] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/22/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023]
Abstract
This study aimed to form a novel emulsion gel (EG) through structured oil phase of natural component beeswax (BW), together with ovalbumin (OVA), and to investigate the mechanism of its formation and stabilization in terms of microstructure and processing properties. Confocal laser scanning microscopy (CLSM) demonstrated that the EG formed a continuous double network structure since the superior crystallinity of the oil phase was given by BW. Fourier transform infrared spectroscopy (FT-IR) illustrated that the acylation of the phenolic hydroxyl group in BW with an amide bond in OVA, increased the hydrogen bonding of EG. Furthermore, the immobilization of the oil phase results in better thermal and freeze-thaw stability of EG. Finally, EG was used as a curcumin delivery system, and the presence of BW significantly improved its adaptability to multiple environmental factors. In summary, our study would provide valuable ideas for developing the design of finely structured functional food.
Collapse
Affiliation(s)
- Renzhao Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Zhaohui Yan
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Hongyu Jiang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Junhao Wu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Erlei Wang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food and College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
11
|
Zhi L, Liu Z, Wu C, Ma X, Hu H, Liu H, Adhikari B, Wang Q, Shi A. Advances in preparation and application of food-grade emulsion gels. Food Chem 2023; 424:136399. [PMID: 37245468 DOI: 10.1016/j.foodchem.2023.136399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
Emulsion gel is a semi-solid or solid material with a three-dimensional net structure produced from emulsion through physical, enzymatic, chemical methods or their combination. Emulsion gels are widely used in food, pharmaceutical and cosmetic industries as carriers of bioactive substances and fat substitutes due to their unique properties. The modification of raw materials, and the application of different processing methods and associated process parameters profoundly affect the ease or difficult of gel formation, microstructure, hardness of the resulting emulsion gels. This paper reviews the important research undertaken in the last decade focusing on classification of emulsion gels, their preparation methods, the influence of processing method and associated process parameters on structure-function of emulsion gels. It also highlights current status of emulsion gels in food, pharmaceutical and medical industries and provides future outlook on research directions requiring to provide theoretical support for innovative applications of emulsion gels, particularly in food industry.
Collapse
Affiliation(s)
- Lanyi Zhi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhe Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chao Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xiaojie Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Hui Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Hongzhi Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne 3083, VIC, Australia
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
12
|
Ma Y, Lu Y, Wang Y, Gao Y, Mao L. Structural modification of zein-based oil-in-glycerol emulsion gels for improved textural and digestion behaviors. Food Funct 2023; 14:4583-4594. [PMID: 37139605 DOI: 10.1039/d3fo00834g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Zein can dissolve in glycerol, and can be developed into oil-in-glycerol emulsion gels to widen its applications. The current study focused on modulating the structures of zein-based emulsion gels by the addition of a surface active ingredient (Span 20, SP) to improve textural and digestion behaviors. Microstructural observation indicated that the addition of SP replaced zein from the oil-glycerol interface, and allowed a higher level of oil droplet aggregation. After adding SP, the gel hardness decreased from 3.43 ± 0.14 N to 1.62 ± 0.01 N, and the storage modulus also decreased with the increase of SP content. Viscoelasticity of the gels was thermo-responsive, and the presence of SP contributed to a higher recovery of the storage modulus after the heating-cooling process. The addition of SP reduced the oil-binding capacity of zein gel from 97.61 ± 0.19% to 82.00 ± 0.92% and the solvent-binding capacity from 75.97 ± 3.05% to 62.25 ± 0.22%, indicating that the zein network was weakened. Then, gels were mixed with simulated digestive juices to track the changes of gel structures and the release of free fatty acids. The addition of SP accelerated the digestion process, especially intestinal digestion. SP contributed to a higher fluorescence intensity in the digesta, which was a sign of a higher level of digestion of zein. Subsequently, the addition of SP increased the release content of free fatty acids from 4.27 ± 0.71% to 5.07 ± 1.27%. The above findings would be useful in designing zein-based functional food products with favored textural and digestion properties.
Collapse
Affiliation(s)
- Yinguo Ma
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yao Lu
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yichuan Wang
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yanxiang Gao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Like Mao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
13
|
Li J, Zhang H. Efficient fabrication, characterization, and in vitro digestion of aerogel-templated oleogels from a facile method: Electrospun short fibers. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108185] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Guo J, Gu X, Du L, Meng Z. Spirulina platensis protein nanoparticle-based bigels: Dual stabilization, phase inversion, and 3D printing. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Keshanidokht S, Kumar S, Thulstrup PW, Via MA, Clausen MP, Risbo J. Thermo-responsive behavior of glycerol-plasticized oleogels stabilized by zein. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
16
|
Impact of ethanol shock on the structural change and emulsifying capacity of bovine lactoferrin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Garavand F, Khodaei D, Mahmud N, Islam J, Khan I, Jafarzadeh S, Tahergorabi R, Cacciotti I. Recent progress in using zein nanoparticles-loaded nanocomposites for food packaging applications. Crit Rev Food Sci Nutr 2022; 64:3639-3659. [PMID: 36222362 DOI: 10.1080/10408398.2022.2133080] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Biopolymers are important due to their exceptional functional and barrier properties and also their non-toxicity and eco-friendly nature for various food, biomedical, and pharmaceutical applications. However, biopolymers usually need reinforcement strategies to address their poor mechanical, thermal, and physical properties as well as processability aspects. Several natural nanoparticles have been proposed as reinforcing agents for biopolymeric food packaging materials. Among them, zein nanoparticles (ZNPs) have attracted a lot of interest, being an environmentally friendly material. The purpose of the present review paper is to provide a comprehensive overview of the ZNPs-loaded nanocomposites for food packaging applications, starting from the synthesis, characteristics and properties of ZNPs, to the physicochemical properties of the ZNPs-loaded nanocomposites, in terms of morphology, permeability, solubility, optical features, hydrophobic/hydrophilic behavior, structural characteristics, thermal features, and mechanical attributes. Finally, at the end of this review, some considerations about the safety issues and gastrointestinal fate of ZNPs, as well as the use of ZNPs-based nanocomposites as food packaging, are reported, taking into account that, despite the enormous benefits, nanotechnology also presents some risks associated to the use of nanometric materials.
Collapse
Affiliation(s)
- Farhad Garavand
- Department of Food Chemistry and Technology, Teagasc Moorepark Food Research Centre, Co. Cork, Ireland
| | - Diako Khodaei
- Department of Sport, Exercise, and Nutrition, Atlantic Technological University, Galway, Ireland
| | - Niaz Mahmud
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Joinul Islam
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Injeela Khan
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Shima Jafarzadeh
- School of Engineering, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Reza Tahergorabi
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome 'Niccolò Cusano', Rome, Italy
| |
Collapse
|
18
|
Yuan D, Huang X, Meng Q, Ma J, Zhao Y, Ke Q, Kou X. Recent advances in the application of zein-based gels: A review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Guo J, Cui L, Huang Y, Meng Z. Spirulina platensis protein isolate nanoparticle stabilized O/W Pickering emulsions: Interfacial adsorption and bulk aggregation. Food Res Int 2022; 161:111815. [DOI: 10.1016/j.foodres.2022.111815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/29/2022] [Accepted: 08/18/2022] [Indexed: 11/04/2022]
|
20
|
Yang Y, Zhang M, Li J, Su Y, Gu L, Yang Y, Chang C. Construction of egg white protein particle and rhamnolipid based emulsion gels with β-sitosterol as gelation factor: The application in cookie. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Production and characterization of composite films with zein nanoparticles based on the complexity of continuous film matrix. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Facile synthesis of zein-based emulsion gels with adjustable texture, rheology and stability by adding β-carotene in different phases. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107178] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Campanholi KDSS, da Silva JB, Batistela VR, Gonçalves RS, Said Dos Santos R, Balbinot RB, Lazarin-Bidóia D, Bruschi ML, Nakamura TU, Nakamura CV, Caetano W. Design and Optimization of Stimuli-responsive Emulsion-filled Gel for Topical Delivery of Copaiba Oil-resin. J Pharm Sci 2021; 111:287-292. [PMID: 34662545 DOI: 10.1016/j.xphs.2021.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 01/30/2023]
Abstract
This study presents a phytotherapeutic emulsion-filled gel design composed of Pluronic® F127, Carbopol® C934P, and high level of copaiba oil-resin (PHY-ECO). Mathematical modeling and response surface methodology (RSM) were employed to access the optimal ratio between the oil and the polymer gel-matrix constituents. The chemometric approach showed robust mechanical and thermoresponsive properties for emulsion gel. The model predicts viscosity parameters at 35.0°C (skin temperature) from PHY-ECOs. Optimized PHY-ECOs were described by 18-20% (w/w) F127, 0.25% (w/w) C934P, and 15% (w/w) copaiba oil-resin, and showed interfacial layers properties that led to high physicochemical stability. Besides, it had thermal stimuli-responsive that led large viscosity range before and after skin administration, observed by oscillatory rheology. These behaviors give the optimized smart PHY-ECO high design potential to be used as a pharmaceutical platform for CO delivery, focusing on the anti-inflammatory therapy and skin wound care.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tânia Ueda Nakamura
- Department of Basic Health Sciences, State University of Maringa, Maringa, Brazil
| | | | - Wilker Caetano
- Department of Chemistry, State University of Maringa, Maringa, Brazil
| |
Collapse
|
24
|
Vélez-Erazo EM, Bosqui K, Rabelo RS, Hubinger MD. Effect of pH and Pea Protein: Xanthan Gum Ratio on Emulsions with High Oil Content and High Internal Phase Emulsion Formation. Molecules 2021; 26:5646. [PMID: 34577117 PMCID: PMC8469751 DOI: 10.3390/molecules26185646] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/14/2021] [Indexed: 11/28/2022] Open
Abstract
Electrostatic interaction between protein and polysaccharides could influence structured liquid oil stability when emulsification is used for this purpose. The objective of this work was to structure sunflower oil forming emulsions and High Internal Phase Emulsions (HIPEs) using pea protein (PP) and xanthan gum (XG) as a stabilizer, promoting or not their electrostatic attraction. The 60/40 oil-in-water emulsions were made varying the pH (3, 5, and 7) and PP:XG ratio (4:1, 8:1, and 12:1). To form HIPEs, samples were oven-dried and homogenized. The higher the pH, the smaller the droplet size (Emulsions: 15.60-43.96 µm and HIPEs: 8.74-20.38 µm) and the oil release after 9 weeks of storage at 5 °C and 25 °C (oil loss < 8%). All systems had weak gel-like behavior, however, the values of viscoelastic properties (G' and G″) increased with the increment of PP:XG ratio. Stable emulsions were obtained at pHs 5 and 7 in all PP:XG ratios, and at pH 3 in the ratio 4:1. Stable HIPEs were obtained at pH 7 in the ratios PP:XG 4:1, 8:1, and 12:1, and at pH 5 at PP:XG ratio 4:1. All these systems presented different characteristics that could be exploited for their application as fat substitutes.
Collapse
Affiliation(s)
- Eliana Marcela Vélez-Erazo
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, Monteiro Lobato Street, 80, Campinas 13083-862, Brazil; (K.B.); (M.D.H.)
| | - Karina Bosqui
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, Monteiro Lobato Street, 80, Campinas 13083-862, Brazil; (K.B.); (M.D.H.)
| | - Renata S. Rabelo
- Brazilian Synchrotron Light Laboratory (LNLS), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-970, Brazil;
| | - Miriam Dupas Hubinger
- Department of Food Engineering and Technology, School of Food Engineering, University of Campinas, Monteiro Lobato Street, 80, Campinas 13083-862, Brazil; (K.B.); (M.D.H.)
| |
Collapse
|
25
|
|
26
|
Ashkar A, Sosnik A, Davidovich-Pinhas M. Structured edible lipid-based particle systems for oral drug-delivery. Biotechnol Adv 2021; 54:107789. [PMID: 34186162 DOI: 10.1016/j.biotechadv.2021.107789] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/12/2021] [Accepted: 06/23/2021] [Indexed: 12/18/2022]
Abstract
Oral administration is the most popular and patient-compliant route for drug delivery, though it raises great challenges due to the involvement of the gastro-intestine (GI) system and the drug bioavailability. Drug bioavailability is directly related to its ability to dissolve, transport and/or absorb through the physiological environment. A great number of drugs are characterized with low water solubility due to their hydrophobic nature, thus limiting their oral bioavailability and clinical use. Therefore, new strategies aiming to provide a protective shell through the GI system and improve drug solubility and permeability in the intestine were developed to overcome this limitation. Lipid-based systems have been proposed as good candidates for such a task owing to their hydrophobic nature which allows high drug loading, drug micellization ability during intestinal digestion due to the lipid content, and the vehicle physical protective environment. The use of edible lipids with high biocompatibility paves the bench-to-bedside translation. Four main types of structured lipid-based drug delivery systems differing in the physical state of the lipid phase have been described in the literature, namely emulsions, solid lipid nanoparticles, nanostructured lipid carriers, and oleogel-based particles. The current review provides a comprehensive overview of the different structured edible lipid-based oral delivery systems investigated up to date and emphasizes the contribution of each system component to the delivery performance, and the oral delivery path of lipids.
Collapse
Affiliation(s)
- Areen Ashkar
- Laboratory of Lipids and Soft Matter, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Maya Davidovich-Pinhas
- Laboratory of Lipids and Soft Matter, Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel; Russell-Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel..
| |
Collapse
|
27
|
Glusac J, Fishman A. Enzymatic and chemical modification of zein for food application. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
28
|
Levy R, Okun Z, Davidovich-Pinhas M, Shpigelman A. Utilization of high-pressure homogenization of potato protein isolate for the production of dairy-free yogurt-like fermented product. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106442] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
29
|
Effect of interfacial compositions on the physical properties of alginate-based emulsion gels and chemical stability of co-encapsulated bioactives. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106389] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
|