Microbial transglutaminase (MTGase) modified fish gelatin-γ-polyglutamic acid (γ-PGA): Rheological behavior, gelling properties, and structure.
Food Chem 2021;
348:129093. [PMID:
33503534 DOI:
10.1016/j.foodchem.2021.129093]
[Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/30/2020] [Accepted: 01/10/2021] [Indexed: 01/02/2023]
Abstract
Fish gelatin (FG) has been extensively studied as a potential substitute for mammal gelatin. However, FG often requires different modification methods to change its physical and chemical properties due to its low gelling properties. Here, γ-polyglutamic acid (γ-PGA) and microbial transglutaminase (MTGase) were combined to modify FG to improve its gelling properties. The γ-PGA at 0.04% (w/v) and MTGase of different concentrations (0.02-0.08%, w/v) were used to modify FG, and the effects of complex modification on the gelling properties and structure of FG were studied. When the MTGase content was 0.08% (w/v), FG had the best gelling properties. In addition, the complex modification of MTGase and γ-PGA hindered the formation of the triple helix during the FG gel process. This reduced the gel rate, but significantly increased its viscosity. A schematic model was also proposed to illustrate the complex modifications of FG by MTGase and γ-PGA.
Collapse