1
|
Lim C, Blocher McTigue WC. Form Equals Function: Influence of Coacervate Architecture on Drug Delivery Applications. ACS Biomater Sci Eng 2024; 10:6766-6789. [PMID: 39423330 DOI: 10.1021/acsbiomaterials.4c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Complex coacervates, formed through electrostatic interactions between oppositely charged polymers, present a versatile platform for drug delivery, providing rapid assembly, selective encapsulation, and responsiveness to environmental stimuli. The architecture and properties of coacervates can be tuned by controlling structural and environmental design factors, which significantly impact the stability and delivery efficiency of the drugs. While environmental design factors such as salt, pH, and temperature play a crucial role in coacervate formation, structural design factors such as polymer concentration, polymer structure, mixing ratio, and chain length serve as the core framework that shapes coacervate architecture. These elements modulate the phase behavior and material properties of coacervates, allowing for a highly tunable system. In this review, we primarily analyze how these structural design factors contribute to the formation of diverse coacervate architecture, ranging from bulk coacervates to polyion complex micelles, vesicles, and cross-linked gels, though environmental design factors are considered. We then examine the effectiveness of these architectures in enhancing the delivery and efficacy of drugs across various administration routes, such as noninvasive (e.g., oral and transdermal) and invasive delivery. This review aims to provide foundational insights into the design of advanced drug delivery systems by examining how the origin and chemical structure of polymers influence coacervate architecture, which in turn defines their material properties. We then explore how the architecture can be tailored to optimize drug delivery for specific administration routes. This approach leverages the intrinsic properties derived from the coacervate architecture to enable targeted, controlled, and efficient drug release, ultimately enhancing therapeutic outcomes in precision medicine.
Collapse
Affiliation(s)
- Chaeyoung Lim
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Whitney C Blocher McTigue
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
2
|
Lv Y, Shi G, Ji Z, Shi C, Luo Y, Hong H, Tan Y, Yang X. Development and application of visual fish freshness indicator film incorporated with anthocyanins encapsulation by whey protein-propylene glycol alginate nanoparticles. Int J Biol Macromol 2024; 282:137054. [PMID: 39481698 DOI: 10.1016/j.ijbiomac.2024.137054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Intelligent indicator packaging has gained increased attention in meeting the demand for reducing food waste and mitigating the risk of food poisoning. This study focused on the preparation, characteristics, and application of freshness indicator films based on polyvinyl alcohol (PVA) and anthocyanins (ACNs)-encapsulated whey protein (WP)-propylene glycol alginate (PGA) nanoparticles. The successful encapsulation of ACNs by WP-PGA nanoparticles improved the stability of ACNs and their encapsulation efficiency (EE) reached 95.34 %. The incorporation of nanoparticles into the structure of the PVA films was justified by SEM, XRD, and ATR-FTIR, and resulted in a decrease in water vapor permeability (WVP) from 15.76 (×10-7 g·m-1·Pa-1·h-1) to 8.40 (×10-7 g·m-1·Pa-1·h-1) and an increase in scavenging rate of DPPH radical from 1.47 % to 18.92 %. The light-blocking property and mechanical properties of the films were also improved, and they showed visible color change in response to pH 2-12 and high color stability after 14 days of storage at 4 °C and 25 °C. Furthermore, the freshness indicator films underwent a noticeable transformation from rosy red to gray at bighead carp head spoilage. Therefore, the encapsulation of ACNs using WP-PGA nanoparticles provides a promising non-destructive and real-time freshness indication of aquatic products during both storage and transportation processes.
Collapse
Affiliation(s)
- Yongkang Lv
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100097, China
| | - Ge Shi
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100097, China; Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Cold Chain Logistics Technology for Agri-product, Ministry of Agriculture and Rural Affairs, Beijing 100097, China; National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Zengtao Ji
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Cold Chain Logistics Technology for Agri-product, Ministry of Agriculture and Rural Affairs, Beijing 100097, China; National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Ce Shi
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Cold Chain Logistics Technology for Agri-product, Ministry of Agriculture and Rural Affairs, Beijing 100097, China; National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China.
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100097, China
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100097, China; Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100097, China
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100097, China
| | - Xinting Yang
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; Key Laboratory of Cold Chain Logistics Technology for Agri-product, Ministry of Agriculture and Rural Affairs, Beijing 100097, China; National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
3
|
Zheng L, Chang Q, Chen X, Ding X, Xi C. Phase behavior and interaction of strong polyelectrolyte dextran sulfate and whey protein isolation: Effects of pH, protein/polysaccharide ratio, and salt addition. Food Chem 2024; 464:141815. [PMID: 39481152 DOI: 10.1016/j.foodchem.2024.141815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
The strong polyelectrolyte dextran sulfate (DS) is an anionic polysaccharide with a high negative charge, characterized by high stability and pH independence. DS and whey protein isolate (WPI) were selected to study the specific effects of highly negatively charged polysaccharides on the phase behavior and interaction of WPI/DS complexes (1 % w/v) under varying external conditions (pH, WPI:DS ratio, and salt addition). The phase diagrams, zeta potential, and laser confocal scanning microscopy measurements indicated that the WPI/DS complexes did not dissociate even at pH 1 due to the pH independence of DS. The exclusion volume effect of DS promoted WPI self-aggregation at high salt concentrations, which inhibited acidification-induced dissociation. Isothermal titration calorimetry indicated that the WPI/DS interaction is a spontaneous exothermic reaction driven by both enthalpy and entropy changes due to electrostatic interactions. This study provides valuable information on the interactions between highly negatively charged polysaccharides and proteins.
Collapse
Affiliation(s)
- Liyuan Zheng
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Qiushuo Chang
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Xing Chen
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Xuan Ding
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Chunyu Xi
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
4
|
Gu J, Pan MH, Chiou YS, Wei S, Ding B. Enhanced stability of Pickering emulsions through co-stabilization with nanoliposomes and thermally denatured ovalbumin. Int J Biol Macromol 2024; 278:134561. [PMID: 39127283 DOI: 10.1016/j.ijbiomac.2024.134561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Pickering emulsions were co-stabilized by nanoliposome (NL) and thermally denatured ovalbumin (DOVA) based on the induction of OVA with strong particle characteristics through thermal denaturation. DOVA-NL particles were spherical and their sizes were mainly distributed between 50 and 100 nm. The surface tension and interfacial tension of DOVA-NL were significantly reduced, and the surface hydrophobicity, amphiphilicity and free -SH content of DOVA were enhanced after complexation with NL. The content of α-helix and β-sheet in DOVA decreased, whereas the content of β-turn and random coil increased after complexation with NL. Hydrophobic interactions, hydrogen bonding and electrostatic forces played a vital role in the interactions between NL and DOVA, leading to conformational changes in DOVA. The number of binding sites between NL and DOVA was more than one, and the interaction between NL and DOVA was exothermic and spontaneous. The emulsification index showed that DOVA-NL-stabilized Pickering emulsions (DNPE) were significantly more stable than DOVA-stabilized emulsions. DOVA-NL particles adsorbed at the oil-water interface and the droplet size of DNPE was smaller than that of DOVA-stabilized emulsions. This study suggests that it may be an effective strategy to improve the stability of Pickering emulsions through co-stabilization with NL and DOVA.
Collapse
Affiliation(s)
- Jinhui Gu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Yi-Shiou Chiou
- College of Pharmacy, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan, ROC
| | - Shudong Wei
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, PR China
| | - Baomiao Ding
- College of Life Science, Yangtze University, Jingzhou, Hubei 434025, PR China.
| |
Collapse
|
5
|
Zhang RY, Zhang HM, Guan TZ, Wang ZR, Li HX, Yuan L, Yang YJ, Rao SQ. Formation mechanism, environmental sensitivity and functional characteristics of succinylated ovalbumin/ε-polylysine electrostatic complexes: The roles of succinylation modification and ε-polylysine combination. Food Chem 2024; 447:138951. [PMID: 38489883 DOI: 10.1016/j.foodchem.2024.138951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/17/2024]
Abstract
Biocomplex materials formed by oppositely charged biopolymers (proteins) tend to be sensitive to environmental conditions and may lose part functional properties of original proteins, and one of the approaches to address these weaknesses is protein modification. This study established an electrostatic composite system using succinylated ovalbumin (SOVA) and ε-polylysine (ε-PL) and investigated the impact of varying degrees of succinylation and ε-PL addition on microstructure, environmental responsiveness and functional properties. Molecular docking illustrated that the most favorable binding conformation was that ε-PL binds to OVA groove, which was contributed by the multi‑hydrogen bonding and hydrophobic interactions. Transmission electron microscopy observed that SOVA/ε-PL had a compact spherical structure with 100 nm. High-degree succinylation reduced complex sensitivity to heat, ionic strength, and pH changes. ε-PL improved the gel strength and antibacterial properties of SOVA. The study suggests possible uses of SOVA/ε-PL complex as multifunctional protein complex systems in the field of food additives.
Collapse
Affiliation(s)
- Ru-Yi Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Hui-Min Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Tian-Zhu Guan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Zhi-Rong Wang
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Hua-Xiang Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Lei Yuan
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Yan-Jun Yang
- State key laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Sheng-Qi Rao
- College of Food Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China.
| |
Collapse
|
6
|
Zhang Z, Liu H, Yu DG, Bligh SWA. Alginate-Based Electrospun Nanofibers and the Enabled Drug Controlled Release Profiles: A Review. Biomolecules 2024; 14:789. [PMID: 39062503 PMCID: PMC11274620 DOI: 10.3390/biom14070789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Alginate is a natural polymer with good biocompatible properties and is a potential polymeric material for the sustainable development and replacement of petroleum derivatives. However, the non-spinnability of pure alginate solutions has hindered the expansion of alginate applications. With the continuous development of electrospinning technology, synthetic polymers, such as PEO and PVA, are used as co-spinning agents to increase the spinnability of alginate. Moreover, the coaxial, parallel Janus, tertiary and other diverse and novel electrospun fiber structures prepared by multi-fluid electrospinning have found a new breakthrough for the problem of poor spinning of natural polymers. Meanwhile, the diverse electrospun fiber structures effectively achieve multiple release modes of drugs. The powerful combination of alginate and electrostatic spinning is widely used in many biomedical fields, such as tissue engineering, regenerative engineering, bioscaffolds, and drug delivery, and the research fever continues to climb. This is particularly true for the controlled delivery aspect of drugs. This review provides a brief overview of alginate, introduces new advances in electrostatic spinning, and highlights the research progress of alginate-based electrospun nanofibers in achieving various controlled release modes, such as pulsed release, sustained release, biphasic release, responsive release, and targeted release.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.Z.); (H.L.)
| | - Hui Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.Z.); (H.L.)
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.Z.); (H.L.)
| | - Sim-Wan Annie Bligh
- School of Health Sciences, Saint Francis University, Hong Kong 999077, China
| |
Collapse
|
7
|
Zhang M, Zhou N, Zhao L, Zhao L. Black rice anthocyanins nanoparticles based on bovine serum albumin and hyaluronic acid: Preparation, characterization, absorption and intestinal barrier function protection in Caco-2 monolayers. Int J Biol Macromol 2024; 267:131325. [PMID: 38604425 DOI: 10.1016/j.ijbiomac.2024.131325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/13/2024]
Abstract
Black rice anthocyanins (BRA) nanoparticles (NPs) were prepared using hyaluronic acid (HA), oxidized hyaluronic acid (OHA) and bovine serum albumin (BSA) to enhance the absorption and bioactivity of anthocyanins (ACNs). Results showed that HA/OHA-BSA-BRA NPs had a spherical morphology and excellent dispensability, with hydrated radius ~ 500 nm, zeta potential ~ - 30 mV, and encapsulation efficiency ~21 %. Moreover, using in vitro gastrointestinal release assay, we demonstrated that both BRA-loaded NPs exhibited effective controlled release properties of ACNs, significantly enhancing the accessibility of ACNs to the intestine. Cellular experiments showed that both two NPs had good biocompatibility and increased uptake of BRA. Furthermore, in comparison to the free BRA group, both BRA NPs groups significantly decreased the TEER value and increased the expression of tight junction proteins (Claudin 1, Occludin and ZO-1) in Caco-2 cell monolayers with LPS-induced damage. Therefore, our study demonstrated that HA/OHA-BSA-BRA NPs are promising carriers of ACNs and can effectively prevent the LPS-induced intestinal barrier injury in vitro.
Collapse
Affiliation(s)
- Mingxin Zhang
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, 100048, China
| | - Na Zhou
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, 100048, China
| | - Lei Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, 100048, China.
| | - Liang Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Green Manufacturing and Biosynthesis of Food Bioactive Substances, China General Chamber of Commerce, 100048, China.
| |
Collapse
|
8
|
Zhang Y, Xie S, Huang W, Zhan L, Huang Y, Chen P, Xie F. Fabrication and characterization of complex coacervates utilizing gelatin and carboxymethyl starch. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3585-3593. [PMID: 38150581 DOI: 10.1002/jsfa.13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Modified polysaccharides have greatly expanded applications in comparison with native polysaccharides due to their improved compatibility and interactions with proteins and active compounds in food-related areas. Nonetheless, there is a noticeable dearth of research concerning the utilization of carboxymethyl starch (CMS) as a microcapsule wall material in food processing, despite its common use in pharmaceutical delivery. The development of an economical and safe embedding carrier using CMS and gelatin (GE) holds immense importance within the food-processing industry. In this work, the potential of innovative coacervates formed by the combination of GE and CMS as a reliable, stable, and biodegradable embedding carrier is evaluated by turbidity measurements, thermogravimetric analysis (TGA), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and rheological measurements. RESULTS The results indicate that GE-CMS coacervates primarily resulted from electrostatic interactions and hydrogen bonding. The optimal coacervation was observed at pH 4.6 and with a GE/CMS blend ratio of 3:1 (w/w). However, the addition of NaCl reduced coacervation and made it less sensitive to temperature changes (35-55 °C). In comparison with individual GE or CMS, the coacervates exhibited higher thermal stability, as shown by TGA. X-ray diffraction analysis shows that the GE-CMS coacervates maintained an amorphous structure. Rheological testing reveals that the GE-CMS coacervates exhibited shear-thinning behavior and gel-like properties. CONCLUSION Overall, attaining electroneutrality in the mixture boosts the formation of a denser structure and enhances rheological properties, leading to promising applications in food, biomaterials, cosmetics, and pharmaceutical products. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yiling Zhang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Shumin Xie
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Weijuan Huang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lei Zhan
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yingwei Huang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Pei Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Fengwei Xie
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
9
|
Kim W, Ngo HV, Nguyen HD, Park JM, Lee KW, Park C, Park JB, Lee BJ. Nanonization and Deformable Behavior of Fattigated Peptide Drug in Mucoadhesive Buccal Films. Pharmaceutics 2024; 16:468. [PMID: 38675128 PMCID: PMC11054133 DOI: 10.3390/pharmaceutics16040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
This study was tasked with the design of mucoadhesive buccal films (MBFs) containing a peptide drug, leuprolide (LEU), or its diverse nanoparticles (NPs), for enhanced membrane permeability via self-assembled nanonization and deformable behavior. An LEU-oleic acid conjugate (LOC) and its self-assembled NPs (LON) were developed. Additionally, a deformable variant of LON (d-LON) was originally developed by incorporating l-α-phosphatidylcholine into LON as an edge activator. The physicochemical properties of LON and d-LON, encompassing particle size, zeta potential, and deformability index (DI), were evaluated. MBFs containing LEU, LOC, and NPs (LON, d-LON) were prepared using the solvent casting method by varying the ratio of Eudragit RLPO and hydroxypropyl methylcellulose, with propylene glycol used as a plasticizer. The optimization of MBF formulations was based on their physicochemical properties, including in vitro residence time, dissolution, and permeability. The dissolution results demonstrated that the conjugation of oleic acid to LEU exhibited a more sustained LEU release pattern by cleaving the ester bond of the conjugate, as compared to the native LEU, with reduced variability. Moreover, the LOC and its self-assembled NPs (LON, d-LON), equivalent to 1 mg LEU doses in MBF, exhibited an amorphous state and demonstrated better permeability through the nanonization process than LEU alone, regardless of membrane types. The incorporation of lauroyl-L-carnitine into the films as a permeation enhancer synergistically augmented drug permeability. Most importantly, the d-LON-loaded buccal films showed the highest permeability, due to the deformability of NPs. Overall, MBF-containing peptide NPs and permeation enhancers have the potential to replace parenteral LEU administration by improving LEU druggability and patient compliance.
Collapse
Affiliation(s)
- Woojun Kim
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (W.K.); (H.V.N.); (H.D.N.); (J.-M.P.)
| | - Hai V. Ngo
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (W.K.); (H.V.N.); (H.D.N.); (J.-M.P.)
| | - Hy D. Nguyen
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (W.K.); (H.V.N.); (H.D.N.); (J.-M.P.)
| | - Ji-Min Park
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (W.K.); (H.V.N.); (H.D.N.); (J.-M.P.)
| | - Kye Wan Lee
- Dongkook Pharmaceutical Co., Ltd., Seoul 06072, Republic of Korea;
| | - Chulhun Park
- College of Pharmacy, Jeju National University, Jeju 63243, Republic of Korea;
| | - Jun-Bom Park
- College of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; (W.K.); (H.V.N.); (H.D.N.); (J.-M.P.)
- Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
10
|
Wang XH, Tai ZJ, Song XJ, Li ZJ, Zhang DJ. Effects of Germination on the Structure, Functional Properties, and In Vitro Digestibility of a Black Bean ( Glycine max (L.) Merr.) Protein Isolate. Foods 2024; 13:488. [PMID: 38338623 PMCID: PMC10855124 DOI: 10.3390/foods13030488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
The utilization of black beans as a protein-rich ingredient presents remarkable prospects in the protein food industry. The objective of this study was to assess the impact of germination treatment on the physicochemical, structural, and functional characteristics of a black bean protein isolate. The findings indicate that germination resulted in an increase in both the total and soluble protein contents of black beans, while SDS-PAGE demonstrated an increase in the proportion of 11S and 7S globulin subunits. After germination, the particle size of the black bean protein isolate decreased in the solution, while the absolute value of the zeta potential increased. The above results show that the stability of the solution was improved. The contents of β-sheet and β-turn gradually decreased, while the content of α-helix increased, and the fluorescence spectrum of the black bean protein isolate showed a red shift phenomenon, indicating that the structure of the protein isolate and its polypeptide chain were prolonged, and the foaming property, emulsification property and in vitro digestibility were significantly improved after germination. Therefore, germination not only improves functional properties, but also nutritional content.
Collapse
Affiliation(s)
- Xin-Hui Wang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (X.-H.W.); (Z.-J.T.); (X.-J.S.); (Z.-J.L.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Zhen-Jia Tai
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (X.-H.W.); (Z.-J.T.); (X.-J.S.); (Z.-J.L.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Xue-Jian Song
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (X.-H.W.); (Z.-J.T.); (X.-J.S.); (Z.-J.L.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Zhi-Jiang Li
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (X.-H.W.); (Z.-J.T.); (X.-J.S.); (Z.-J.L.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
| | - Dong-Jie Zhang
- College of Food, Heilongjiang Bayi Agricultural University, Xinfeng Road 5, Daqing 163319, China; (X.-H.W.); (Z.-J.T.); (X.-J.S.); (Z.-J.L.)
- National Coarse Cereals Engineering Research Center, Daqing 163319, China
- Key Laboratory of Agro-Products Processing and Quality Safety of Heilongjiang Province, Daqing 163319, China
| |
Collapse
|
11
|
Wang K, Ni J, Tian X, Xiang S, Li H, Shang W, Liu B, Tan M, Su W. Survivability of probiotics in Pickering emulsion gels stabilized by salmon by-product protein / sodium alginate soluble complexes at neutral pH. Int J Biol Macromol 2024; 255:128190. [PMID: 37979738 DOI: 10.1016/j.ijbiomac.2023.128190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/20/2023]
Abstract
Adequate amounts of live probiotics reaching the gut are necessary to maintain host health. However, the harsh environment during processing, the low pH of human gastric acid, and the high concentration of bile salts in the gut can significantly reduce survivability of probiotics. In this work, we propose a simple Pickering emulsion gels strategy to encapsulate Lactobacillus plantarum Lp90 into oil droplets filled in calcium alginate gels to improve its viability under pasteurization and gastrointestinal conditions. The emulsion gels were stabilized by the soluble complexes of salmon by-product protein (SP) and sodium alginate (ALG), and the aqueous phase was solidified by the addition of calcium. The interaction between SP and ALG and the effect of ALG concentration on emulsifying ability and emulsion stability were studied. The results from optical imaging, nuclear magnetic resonance, and rheological properties showed that the stability and viscosity of the emulsions gradually increased with the increased ALG concentration, while the droplet size of the emulsions and the content of free water in the system decreased significantly. Especially when the concentration of ALG was 1 %, the emulsion system was stable under the environment of high temperature and high ionic strength, and the water holding capacity was the highest. Through pasteurization and gastrointestinal digestion experiments, it was found that the survival rate of probiotics encapsulated in emulsion gels was significantly higher than that encapsulated in emulsions or hydrogels, which benefited from the dual action of oil droplets and calcium alginate gels network. These results provide a new strategy for the processing of probiotics and the high-value utilization of marine fish by-products.
Collapse
Affiliation(s)
- Kuiyou Wang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jialu Ni
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xueying Tian
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Siyuan Xiang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Hongliang Li
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wenbo Shang
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Bo Liu
- Dalian Rich Foods Co.,Ltd, Dalian 116113, Liaoning, China
| | - Mingqian Tan
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Wentao Su
- Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; SKL of Marine Food Processing & Safety Control, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, Liaoning, China.
| |
Collapse
|
12
|
Wang Y, Li X, Gao N, Wang X, Sun S. Multivariable analysis of egg white protein-chitosan interaction: Influence of pH, temperature, biopolymers ratio, and ionic concentration. Food Chem X 2023; 19:100817. [PMID: 37780322 PMCID: PMC10534167 DOI: 10.1016/j.fochx.2023.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 10/03/2023] Open
Abstract
The influence of pH, temperature, biopolymer ratio, total concentration, and ionic concentration on the interaction between egg white protein (EWP) and chitosan (CS) was investigated through turbidity, zeta potential, and state diagram in our research. In addition, phase behavior was observed under various conditions. The turbidity of EWP remained low (turbidity < 0.03) and basically unchanged at a wide range of pH (4.0-8.0), while the turbidity of CS was slightly higher (turbidity < 0.2) after pH 7.0 than before. Moreover, under the same conditions, a sharply rising peak pattern was observed for the complex between EWP and CS. The maximum turbidity value was observed at 55 °C, and the temperature had a mild effect on turbidity. The optimum EWP to CS ratio was found to be 12:1 based on the turbidity curves and state diagrams influenced by different biopolymer mixing ratios. With the enhanced concentrations of total biopolymer, the maximum turbidity rose insignificantly above 0.1%.
Collapse
Affiliation(s)
- Yuemeng Wang
- School of Food and Biological Engineering, Yantai Institute of Technology, Yantai, Shandong 264003, PR China
- Yantai Key Laboratory of Special Medical Food, Industrial Research Institute of Special Food, Yantai 264003, PR China
| | - Xin Li
- School of Life Sciences, Yantai University, Yantai, Shandong 264005, PR China
| | - Na Gao
- School of Food and Biological Engineering, Yantai Institute of Technology, Yantai, Shandong 264003, PR China
- Yantai Key Laboratory of Special Medical Food, Industrial Research Institute of Special Food, Yantai 264003, PR China
| | - Xiaojun Wang
- School of Food and Biological Engineering, Yantai Institute of Technology, Yantai, Shandong 264003, PR China
- Yantai Key Laboratory of Special Medical Food, Industrial Research Institute of Special Food, Yantai 264003, PR China
| | - Shengqian Sun
- School of Food and Biological Engineering, Yantai Institute of Technology, Yantai, Shandong 264003, PR China
- Yantai Key Laboratory of Special Medical Food, Industrial Research Institute of Special Food, Yantai 264003, PR China
| |
Collapse
|
13
|
Li D, Hu M, Hou L, Gao Y, Tian Z, Wen W, Fan B, Li S, Wang F. The structural and functional properties of soybean protein-polyglutamic acid complex effected the stability of W/O/W emulsion encapsulated Nattokinase. Food Chem 2023; 414:135724. [PMID: 36821916 DOI: 10.1016/j.foodchem.2023.135724] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Nattokinase (NK) derived from food is a sustainable thrombolytic agent. In this study, to protect vulnerable biological activity of NK, the targeted modified W/O/W emulsions were fabricated from complexes of soybean isolate protein (SPI) and polyglutamic acid (PGA). The results showed that the SPI-PGA complex formed a tighter internal structure through non-covalent bonds. The secondary structure, α-helix and β-sheet content of the 1:3 (v/v) ratio complex of SPI to PGA increased by 6.14% and 8.62%, respectively. The emulsification and stability of the complexes were improved by refining structural properties as against SPI. The W/O/W emulsions coated by complexes formed the stronger network structure with higher encapsulation efficiency, better interfacial features, and better storage stability. Moreover, the highest bioavailability was achieved by W/O/W emulsions coated with 1:3 ratio complex at 80.69%. This study provided a new strategy towards tailoring ideal emulsion vehicles and expanded the NK application in food formulations.
Collapse
Affiliation(s)
- Danfeng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Miao Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Lizhen Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Yaxin Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Zhiliang Tian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Wei Wen
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Shuying Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China.
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
14
|
Post-synthesis of covalent organic frameworks as a hydrophilic platform for specific detection of egg ovalbumin under physiological pH. Food Chem 2023; 412:135562. [PMID: 36716628 DOI: 10.1016/j.foodchem.2023.135562] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 01/16/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Ovalbumin (OVA) is an important protein source in our daily life. Unfortunately, the food safety problem has become more and more serious, such as protein allergy and contaminated protein. Therefore, it is necessary to detect vital proteins efficiently and rapidly. Mass spectrometry (MS) is a powerful tool for the detection of proteins. Herein, dual amino acids functionalized covalent organic frameworks containing disulfide covalent bonds (COF@SS@GC, where G is glutathione and C is cysteine) were facilely prepared for OVA enrichment through hydrophilic interaction liquid chromatography (HILIC) under physiological pH. The results showed that COF@SS@GC had displayed sensitive detection (0.1 fmol), good selectivity (OVA: BSA = 1:100), adsorption capacity (311 mg/g), stability, reproducibility, linearity, LOQ level (42 μg/mL) and recovery ratio (64.83 %) for OVA. COF@SS@GC also demonstrated satisfactory purification ability in the enrichment of egg white, indicating that COF@SS@GC had great potential in the enrichment of protein from complex samples.
Collapse
|
15
|
Wan X, Zhao M, Guo M, Li P, Shi H, Zhang X, Liu Z, Xia G. Characterization of coacervation behavior between whey protein isolate and gum Arabic: Effects of heat treatment. Food Chem X 2023; 18:100703. [PMID: 37215198 PMCID: PMC10192680 DOI: 10.1016/j.fochx.2023.100703] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
Currently, the effect of heat treatment on the complex coacervation behavior of whey isolate protein (WPI) with gum arabic (GA) is undiscussed. In this work, the complex coacervation behavior of WPI with or without heat treatment and GA in different environments was investigated. The results showed that coacervates were formed at a mass ratio of 2:1 and a pH of 3.5, which was confirmed by the fluorescence spectroscopy results. Heat treatment increased the surface charge of WPI, reduced the saturated adsorption concentration of GA, and enhanced the sensitivity of the complex coacervation reaction to salt ions. Fourier infrared spectroscopy, intermolecular force analysis and molecular docking results confirm that the formation of coacervates is the result of electrostatic interactions. From the scanning electron microscope and differential scanning calorimetry results, it is clear that the whey isolate protein combined with gum arabic forms a gel-like conjugate with higher thermal stability and a dense structure. This study provides more in-depth theoretical guidance for the application of WPI and GA based coacervation and more advanced theoretical data for the study of hWPI.
Collapse
Affiliation(s)
- Xiaoshan Wan
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Meihui Zhao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Mengxue Guo
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Peng Li
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Haohao Shi
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Xueying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Zhongyuan Liu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, Engineering Research Center of Utilization of Tropical Polysaccharide Resources of MOE, College of Food Science and Technology, Hainan University, Hainan 570228, China
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
16
|
Xiao S, Ahn DU. Co-encapsulation of fish oil with essential oils and lutein/curcumin to increase the oxidative stability of fish oil powder. Food Chem 2023; 410:135465. [PMID: 36641907 DOI: 10.1016/j.foodchem.2023.135465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
The oxidation-resistant and multi-functional fish oil powders were produced by co-encapsulating fish oil with essential oils, lutein, and curcumin. The ovalbumin/alginate complex was used as the wall, and the wall-to-oil ratio was fixed at 1:1 based on yield, oil recovery, and internalization efficiency (IE). Surface oil was removed to better understand the characteristics of the fish oil powders. Scanning electron microscopy (SEM) results indicated that the freeze-dried fish oil powders had irregular shapes with visible pores on the surface. Covalent bonds and electrostatic interactions within the ovalbumin/alginate complex were detected through FTIR. The garlic essential oil-added sample showed the strongest oxidative stability throughout the storage period (30 days). This work showed that fish oil had been encapsulated successfully and multi-functional fish oil powders could be produced by dissolving lipophilic bioactive compounds in fish oil before encapsulation.
Collapse
Affiliation(s)
- Shulan Xiao
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States; Department of Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, United States.
| | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, IA 50011, United States.
| |
Collapse
|
17
|
Shan H, Zhao Q, Guo Y, Gao M, Xu X, McClements DJ, Cao C, Yuan B. Impact of pH on the Formation and Properties of Whey Protein Coronas around TiO 2 Nanoparticles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5756-5769. [PMID: 37013898 DOI: 10.1021/acs.jafc.3c00073] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
In aqueous media, titanium dioxide (TiO2) nanoparticles can interact with proteins in their environment and form a protein corona. The pH of the aqueous media affects the structure and properties of the protein corona, and currently there is a lack of understanding of the effects of pH on the characteristics of protein coronas. In this study, we examined the impact of pH (2-11) on the structural and physicochemical properties of whey protein coronas formed around TiO2 nanoparticles. The pH of the solution influenced the structure of whey protein molecules, especially around their isoelectric point. Thermogravimetric and quartz crystal microbalance analyses showed that the adsorption capacity of the whey proteins was the largest at their isoelectric points and the lowest under highly acidic or alkaline conditions. The majority of the proteins were tightly bound to the nanoparticle surfaces, forming a hard corona. The influence of solution pH on protein corona properties was mainly attributed to its impact on the electrostatic forces in the system, which impacted the protein conformation and interactions. This study provides useful insights into the influence of pH on the formation and properties of protein coronas around inorganic nanoparticles, which may be important for understanding the gastrointestinal and environmental fates.
Collapse
Affiliation(s)
- Honghong Shan
- School of Life Science, Shaoxing University, Shaoxing 312000, Zhejiang, China
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Qiaorun Zhao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Ying Guo
- School of Life Science, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - Mengchao Gao
- Nanjing Institute for Food and Drug Control, Nanjing 211198, China
| | - Xiao Xu
- School of Life Science, Shaoxing University, Shaoxing 312000, Zhejiang, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Chongjiang Cao
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| | - Biao Yuan
- Department of Food Quality and Safety/National R&D Center for Chinese Herbal Medicine Processing, College of Engineering, China Pharmaceutical University, Nanjing 211198, Jiangsu, China
| |
Collapse
|
18
|
Razzak MA, Cho SJ. Physicochemical and functional properties of capsaicin loaded cricket protein isolate and alginate complexes. J Colloid Interface Sci 2023; 641:653-665. [PMID: 36963258 DOI: 10.1016/j.jcis.2023.03.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/26/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
As people become more aware of the health benefits of foods and their nutritional benefits for preventing diseases and promoting health, the demand for functional foods rich in proteins, fiber, and bioactives like capsaicin (CAP) is constantly rising. This study hypothesized that the electrostatic complexes developed by cricket protein isolate (CPI) and alginate (AL) could be utilized to encapsulate CAP, making it more water-soluble and protecting it at acidic pHs. Quantitative analysis revealed that CAP was efficiently encapsulated into the CPI-AL complexes with a maximum encapsulation efficiency of 91%, improving its aqueous solubility 45-fold. In vitro release tests showed that CAP was retained at acidic pHs (3.0 and 5.0) in CPI-AL complexes but released steadily at neutral pH (7.4), which will protect CAP in the stomach while enabling its release in the small intestine. Moreover, the antioxidant activity of CAP-CPI-AL complexes was superior to that of their individual bare equivalents. The complexes also demonstrated enhanced emulsifying capabilities and stability at acidic pHs (2.0-5.0) as the CPI fraction in the complexes increased. Our findings thus contribute to the growing body of knowledge that validates protein-polysaccharide complexation as a promising strategy for developing edible delivery systems.
Collapse
Affiliation(s)
- Md Abdur Razzak
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea; Kangwon Institute of Inclusive Technology (KIIT), 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, Republic of Korea.; Department of Food Science, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Seong-Jun Cho
- Department of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea; Kangwon Institute of Inclusive Technology (KIIT), 1 Gangwondaehak-gil, Chuncheon-si, Gangwon-do, Republic of Korea..
| |
Collapse
|
19
|
Shi G, Shi C, Luo Y, Hong H, Zhang J, Li Y, Tan Y. Interaction and phase behavior of whey protein and propylene glycol alginate complex condensates. Food Chem 2023; 404:134556. [PMID: 36444012 DOI: 10.1016/j.foodchem.2022.134556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/12/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
Abstract
Whey protein (WP) is ubiquitously applied in food products, but its sensitivity to food processing conditions has limited its application. Herein, we chose propylene glycol alginate (PGA) to combine with WP to enhance its stability. The ideal ratio of WP/PGA for coacervation was 3:1, and the soluble complex and insoluble complex were formed at pH 5.2 (pHc) and pH 4.4 (pHφ1) at this ratio, respectively. The UV absorption spectra, fluorescence spectra, and XRD results revealed that the interaction between PGA and WP changed the tertiary conformation of WP. The FTIR and molecular docking results suggested electrostatic interactions, hydrogen bonding and hydrophobic interactions were all involved in the formation of WP-PGA complexes, and the thermal stability of WP was improved based on the DSC results. These findings supported PGA to keep dairy products stable and transparent at the isoelectric point and WP-PGA complexes could be applied in encapsulating bioactive substances.
Collapse
Affiliation(s)
- Ge Shi
- Beijing Laboratory for Food Quality and Sfety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China.
| | - Ce Shi
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China.
| | - Yongkang Luo
- Beijing Laboratory for Food Quality and Sfety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Hui Hong
- Beijing Laboratory for Food Quality and Sfety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Center of Food Colloids and Delivery for Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Jiaran Zhang
- Information Technology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China; National Engineering Laboratory for Agri-product Quality Traceability, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China.
| | - Yan Li
- Beijing Laboratory for Food Quality and Sfety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yuqing Tan
- Beijing Laboratory for Food Quality and Sfety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
20
|
Cheng C, Tu Z, Wang H. pH-induced complex coacervation of fish gelatin and carboxylated chitosan: phase behavior and structural properties. Food Res Int 2023; 167:112652. [PMID: 37087241 DOI: 10.1016/j.foodres.2023.112652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 02/19/2023] [Accepted: 02/25/2023] [Indexed: 03/11/2023]
Abstract
The aim of this study was to investigate the phase behavior and structural properties of fish gelatin complex coacervation with carboxylated chitosan as a function of pH by varying the amount of carboxylated chitosan added (0-0.25%, w/v) while keeping the fish gelatin concentration constant at 0.667% (w/v). Zeta potential indicated that electrostatic interaction drove the complex coalescence of fish gelatin and carboxylated chitosan to form soluble or insoluble complexes. The turbidity of the fish gelatin-carboxylated chitosan complex system was greatest at a carboxylated chitosan concentration of 0.2%. UV and fluorescence spectroscopy indicated that the carboxylated chitosan changed the tertiary conformation of fish gelatin. Circular dichroism showed that complexation of fish gelatin with carboxylated chitosan resulted in a shift from the α-helix to the β-sheet structure of fish gelatin. In particular, at pH 5, the fish gelatin complexed with carboxylated chitosan had a disordered structure. X-ray diffraction and scanning electron microscopy of the composite coacervates both investigated that electrostatic interaction between the two replaced molecular interaction within the carboxylated chitosan to form a new lamellar porous structure. These findings may in future enable the use of fish gelatin-carboxylated chitosan complex systems in the design of new food matrices.
Collapse
|
21
|
Yu Y, Li SY, Xu TC, Huang GQ, Xiao JX. Assembly of zein/propylene glycol alginate nanoparticles in aqueous ethanol and the binding kinetics. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
22
|
Zhang X, Sun Z, Zeng Q, Jin H, Wang S, Jin Y, Hu Y, Cai Z. Utilization of ovalbumin-propylene glycol alginate complex system for superior foam: The effect of pH-driven phase behavior. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Bora AFM, Kouame KJEP, Li X, Liu L, Sun Y, Ma Q, Liu Y. Development, characterization and probiotic encapsulating ability of novel Momordica charantia bioactive polysaccharides/whey protein isolate composite gels. Int J Biol Macromol 2023; 225:454-466. [PMID: 36410535 DOI: 10.1016/j.ijbiomac.2022.11.097] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022]
Abstract
In this study, a polysaccharide (MP1) with a molecular weight of 38 kDa was isolated from Momordica charantia which contains arabinose, galactose, xylose, and rhamnose. (MP1) was used to formulate composite gels with Whey Protein Isolate (WPI) that were characterized for their functional properties, microstructure, thermal resistance, probiotic encapsulating ability, and potential toward metabolic syndrome (MS). Results showed that the highest complex index was obtained at MP concentration of 2 %. MP-WPIs demonstrated superior (p < 0.05) water holding capacity and emulsifying properties than WPI gels. MP-WPIs also had higher (p < 0.05) thermal stability via TGA and DSC analysis. MP-WPI morphology was observed via SEM whereas protein structure as affected by MP concentration was studied using CLSM. Also, FTIR revealed that MP and WPI bonded mainly through electrostatic, hydrophobic and hydrogen interactions. More, MP-WPIs successfully enhanced probiotic Lactobacillus acidophilus (LA) survival upon freeze-drying with high encapsulation efficiency (98 %) and improved storage stability. MP-WPIs improved LA survival upon digestion suggesting a potential prebiotic activity. Finally, synbiotic formulation LA-MP-WPIs exhibited effective biological activity against MS. Therefore, MP-WPIs is a propitious strategy for effective probiotic gastrointestinal delivery with potential toward MS.
Collapse
Affiliation(s)
- Awa Fanny Massounga Bora
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Kouadio Jean Eric-Parfait Kouame
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Xiaodong Li
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China.
| | - Lu Liu
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Yue Sun
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Qian Ma
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| | - Yibo Liu
- Food College, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China; Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, No. 600 Changjiang St., Xiangfang Dist, 150030, Harbin, China
| |
Collapse
|
24
|
Ovalbumin, an outstanding food hydrocolloid: Applications, technofunctional attributes, and nutritional facts, A systematic review. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
25
|
The type of gum arabic affects interactions with soluble pea protein in complex coacervation. Carbohydr Polym 2022; 295:119851. [DOI: 10.1016/j.carbpol.2022.119851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 11/22/2022]
|
26
|
Xi C, Sun Z, Chen X, Ding X, Zhang T. Characterization of coacervation behavior between whey protein isolate and propylene glycol alginate: A morphology, spectroscopy, and thermodynamics study. Food Chem X 2022; 15:100402. [PMID: 36211725 PMCID: PMC9532732 DOI: 10.1016/j.fochx.2022.100402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022] Open
|
27
|
Huang W, Chen L. Fabrication of protein nanomaterials as delivery systems. ADVANCES IN FOOD AND NUTRITION RESEARCH 2022; 101:237-275. [PMID: 35940707 DOI: 10.1016/bs.afnr.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Bioactive compounds in foods, nutraceuticals and pharmaceutical have been gaining interest due to health benefits, which can help to reduce the risk of certain chronic diseases. Recently, nanoencapsulation have attract attention because it is an efficient and promising approach for protection of bioactive compounds, and delivery them to the target physiological sites for controlled release and improvement absorption. Food proteins are promising materials to be fabricated into a variety of nanostructured delivery systems because of their high nutritional value, good functional properties, and health-benefiting effects. Various techniques and approaches are utilized to prepare nanostructured food protein. This chapter introduces the major techniques for the fabrication of nanoparticles and nanoemulsions from food proteins. The basic principles, advantages, and limitations of the techniques are discussed. The encapsulation and release of bioactive compounds in different nanostructured food proteins are illustrated in specific case studies. Due to the fast growing interest of bioactive encapsulation in various sectors, this chapter is of importance for guiding the development of nanostructured food protein loaded with bioactive ingredients for food, nutraceutical and pharmaceutical applications.
Collapse
Affiliation(s)
- Weijuan Huang
- College of Food Science, South China Agricultural University, Guangzhou, China; Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Lingyun Chen
- Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
28
|
Liu L, Shi S, Zhang Y, Li Y, Guo J, Zhang M. Effect of microwave freeze drying on moisture migration and gel characteristics of egg white protein. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lili Liu
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security Henan University of Science and Technology 471023 Luoyang China
| | - Shengjuan Shi
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security Henan University of Science and Technology 471023 Luoyang China
| | - Yueqi Zhang
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security Henan University of Science and Technology 471023 Luoyang China
| | - Yuanyuan Li
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security Henan University of Science and Technology 471023 Luoyang China
| | - Jingfang Guo
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security Henan University of Science and Technology 471023 Luoyang China
| | - Mengjun Zhang
- College of Food and Bioengineering, National Experimental Teaching Demonstration Center for Food Processing and Security Henan University of Science and Technology 471023 Luoyang China
| |
Collapse
|
29
|
Wang L, Wei Z, Xue C. The presence of propylene glycol alginate increased the stability and intestine-targeted delivery potential of carboxymethyl starch-stabilized emulsions. Food Res Int 2022; 157:111387. [PMID: 35761643 DOI: 10.1016/j.foodres.2022.111387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 12/31/2022]
Abstract
Propylene glycol alginate (PGA) was added to improve the stability and delivery performance of carboxymethyl starch (CMS)-stabilized emulsion. In the first instance, the CMS/PGA complexes were characterized, which proved that the formation of CMS/PGA complexes mainly depended on hydrogen bonding, and the CMS/PGA complexes showed porous networks. The CMS/PGA complexes were more hydrophobic than CMS, and the interaction of CMS with PGA enhanced the thermal stability of CMS. Next, the effects of CMS/PGA complexes on the properties of emulsions were investigated, and the intestine-targeted delivery potential of emulsions was evaluated through the in vitro release study as well. The droplet size of CMS/PGA complex-stabilized emulsions gradually decreased and the encapsulation efficiency (EE) improved with increasing the PGA content in CMS/PGA complexes. The addition of PGA also greatly improved the physical stability of emulsions, including anti-flocculation and anti-coalescence stabilities. All emulsions exhibited non-Newtonian pseudoplastic properties. Furthermore, the emulsions stabilized by CMS/PGA complexes showed reduced curcumin (Cur) release in the simulated gastric fluid (SGF), whereas exhibited sustained release in the α-amylase-containing simulated intestinal fluid (SIF). These results demonstrated that the emulsion stabilized by CMS/PGA complex was able to control and modulate the release of Cur in the gastrointestinal tract, and was therefore a promising intestine-targeted delivery system for Cur.
Collapse
Affiliation(s)
- Luhui Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| |
Collapse
|
30
|
Wang Q, Xie Y, Xiong Z, Gu X, Nie X, Lan Y, Chen B. Structural and physical properties of spray-dried fish oil microcapsules via pea protein isolate based emulsification or complex coacervation with sugar beet pectin. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Hamedi F, Razavi SMA, Sharif A. Structural, morphological and rheological characterisation of bovine serum albumin–cress seed gum complex coacervate. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Fatemeh Hamedi
- Center of Excellence in Native Natural Hydrocolloids of Iran Ferdowsi University of Mashhad 91775‐1163 Mashhad Iran
| | - Seyed Mohammad Ali Razavi
- Center of Excellence in Native Natural Hydrocolloids of Iran Ferdowsi University of Mashhad 91775‐1163 Mashhad Iran
| | - Ali Sharif
- Department of Food Science and Technology Ferdowsi University of Mashhad 91775‐1163 Mashhad Iran
| |
Collapse
|
32
|
Insights from alpha-Lactoalbumin and beta-Lactoglobulin into mechanisms of nanoliposome-whey protein interactions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107436] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Qi X, Xu D, Zhu J, Wang S, Peng J, Gao W, Cao Y. Interaction of ovalbumin with lutein dipalmitate and their effects on the color stability of marigold lutein esters extracts. Food Chem 2022; 372:131211. [PMID: 34601423 DOI: 10.1016/j.foodchem.2021.131211] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 01/01/2023]
Abstract
In this study, the interaction of ovalbumin with lutein dipalmitate and the effect of ovalbumin on marigold lutein esters extracts were investigated. Lutein dipalmitate quenched the fluorescence of ovalbumin by static quenching. Binding and thermodynamic parameters proved that lutein dipalmitate bound to ovalbumin spontaneously by van der Waals force and hydrogen bond, and the complex stoichiometry was 1:1. Through three-dimensional fluorescence spectroscopy, Fourier transform infrared spectroscopy and circular dichroism experiments, the conformation of ovalbumin was unfolded, and alteration in the ovalbumin secondary structure induced by lutein dipalmitate was observed. The results of transmission electron microscopy and particle size revealed that there were spherical and nano-sized aggregates in the ovalbumin-lutein dipalmitate system, indicating the lutein dipalmitate not only could bind to ovalbumin at molecular level, but also promote the aggregation of ovalbumin. Additionally, the addition of ovalbumin had a positive effect on the stability of marigold lutein esters extracts.
Collapse
Affiliation(s)
- Xin Qi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology & Business University (BTBU), Beijing, China
| | - Duoxia Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology & Business University (BTBU), Beijing, China
| | - Jinjin Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology & Business University (BTBU), Beijing, China
| | - Shaojia Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology & Business University (BTBU), Beijing, China.
| | | | - Wei Gao
- Chenguang Biotech Group Co., Ltd., Hebei, China.
| | - Yanping Cao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health (BTBU), School of Food and Health, Beijing Higher Institution Engineering Research Center of Food Additives and Ingredients, Beijing Technology & Business University (BTBU), Beijing, China.
| |
Collapse
|
34
|
Wang Q, Pan MH, Chiou YS, Li Z, Wei S, Yin X, Ding B. Mechanistic understanding of the effects of ovalbumin-nanoliposome interactions on ovalbumin emulsifying properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Leite Milião G, Souza Soares LD, Balbino DF, Almeida Alves Barbosa ÉD, Bressan GC, Carvalho Teixeira AVND, dos Reis Coimbra JS, Oliveira EBD. pH influence on the mechanisms of interaction between chitosan and ovalbumin: a multi-spectroscopic approach. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107137] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
36
|
Sun C, Zhong Q. Alkaline conjugation of caseinate and propylene glycol alginate to prepare biopolymer complexes stabilizing oil-in-water emulsion gels. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
37
|
Zhang X, Zou W, Xia M, Zeng Q, Cai Z. Intelligent colorimetric film incorporated with anthocyanins-loaded ovalbumin-propylene glycol alginate nanocomplexes as a stable pH indicator of monitoring pork freshness. Food Chem 2022; 368:130825. [PMID: 34496332 DOI: 10.1016/j.foodchem.2021.130825] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/02/2021] [Accepted: 08/06/2021] [Indexed: 11/04/2022]
Abstract
Protein-polysaccharide nanocomplexes system could improve the low stability of ACNs, making ACNs become a potential and stable pH indicator. In this study, intelligent colorimetric film was designed to monitor pork freshness by incorporating ACNs-loaded ovalbumin-propylene glycol alginate nanocomplexes (ACNs-loaded OVA-PGA) into polyvinyl alcohol/ glycerol (PG) matrix. The intelligent film (PG/ACNs-loaded OVA-PGA film) presented well barrier performance (lower water vapor permeability and light transmittance at 200-600 nm). Fourier transform infrared spectroscopy further confirmed the hydrogen bonds among film-forming components. Moreover, Scanning electron microscope and X-ray diffraction showed that ACNs-loaded OVA-PGA was uniformly distributed in film matrix but decreased the crystallinity of polyvinyl alcohol. PG/ACNs-loaded OVA-PGA film had distinguishable colorimetric response to pH 2.0-11.0 buffers and volatile ammonia. In the test, PG/ACNs-loaded OVA-PGA film displayed visible color alterations from purplish-red to dark-blue as pork freshness decreased, suggesting it can be used in intelligent packaging for real-time monitoring freshness of meat products.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, Wuhan 430070, China
| | - Wenjie Zou
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, Wuhan 430070, China
| | - Minquan Xia
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, Wuhan 430070, China
| | - Qi Zeng
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, Wuhan 430070, China
| | - Zhaoxia Cai
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, National Research and Development Centre for Egg Processing, Wuhan 430070, China.
| |
Collapse
|
38
|
Mi S, Xia M, Zhang X, Liu J, Cai Z. Formation of Natural Egg Yolk Granule Stabilized Pickering High Internal Phase Emulsions by Means of NaCl Ionic Strength and pH Change. Foods 2022; 11:229. [PMID: 35053961 PMCID: PMC8774576 DOI: 10.3390/foods11020229] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/16/2022] Open
Abstract
Pickering high internal phase emulsions (HIPEs) are gel-like concentrated emulsions that have the potential to be an alternative to partially hydrogenated oil (PHO). In this study, egg yolk granules (EYGs), natural complexes of protein and lipid isolated from egg yolk, were used as an emulsifier to prepare Pickering HIPEs. Gel-like HIPEs with an oil phase volume fraction of 85% and with an emulsifier concentration of only 0.5% could be prepared by using EYGs as an emulsifier. The EYGs were able to form stable HIPEs at NaCl ionic strengths over 0.2 M and at pH over 5.0 with NaCl ionic strength of 0.3 M. The EYGs, which could stabilize HIPEs, were easily to adsorb and cover the oil-water interface to form emulsion droplets with small particle size. In addition, interacting EYGs in the aqueous phase formed a continuous network structure, and the oil droplets packed closely, exhibiting high elasticity and shear thinning behavior. Furthermore, the formed HIPEs had suitable storage stability with no significant changes in appearance and microstructure after storage for 60 days. This work can transform traditional oils from liquid-like to solid-like by using EYGs to enrich food processing diversity and improve the storage stability of oils while reducing the intake of PHO and providing a healthier diet for consumers.
Collapse
Affiliation(s)
- Sijie Mi
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (M.X.); (X.Z.)
| | - Minquan Xia
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (M.X.); (X.Z.)
| | - Xinyue Zhang
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (M.X.); (X.Z.)
| | - Jihong Liu
- College of Science, Huazhong Agricultural University, Wuhan 430070, China;
| | - Zhaoxia Cai
- Hubei Hongshan Laboratory, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (S.M.); (M.X.); (X.Z.)
| |
Collapse
|
39
|
Effect of sodium chloride on formation and structure of whey protein isolate/hyaluronic acid complex and its ability to loading curcumin. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
40
|
Interaction between Negatively Charged Fish Gelatin and Cyclodextrin in Aqueous Solution: Characteristics and Formation Mechanism. Gels 2021; 7:gels7040260. [PMID: 34940321 PMCID: PMC8701615 DOI: 10.3390/gels7040260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/01/2021] [Accepted: 12/03/2021] [Indexed: 11/20/2022] Open
Abstract
The effect that ratios of fish gelatin (FG) to α/β/γ cyclodextrins (α, β, γCDs) had on the phase behavior of a concentrated biopolymer mixture were comparatively investigated. This showed that the formed biopolymer mixture had the highest gel strength at ratios of FG–CD = 90:10. FG could interact with CDs to form stable soluble complexes with lower values of turbidity, particle size and ζ-potential. All of the FG–CD mixture solutions exhibited pseudo-plastic behaviors, and FG–αCD samples had the highest viscosity values than others. The addition of CDs could unfold FG molecules and make conformation transitions of FG from a random coil to β-turn, leading to the environmental change of hydrophobic residues and presenting higher fluorescence intensity, especially for βCDs. FTIR results revealed that the formation of intermolecular hydrogen bonds between FG and CD could change the secondary structure of FG. These findings might help further apply FG–CD complexes in designing new food matrixes.
Collapse
|
41
|
The underlying mechanism of alkali-induced ovalbumin gel transforms to sol: Physicochemical properties, structure and quantitative protein degradation analysis. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
42
|
Zhang X, Zeng Q, Liu Y, Cai Z. Enhancing the resistance of anthocyanins to environmental stress by constructing ovalbumin-propylene glycol alginate nanocarriers with novel configurations. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106668] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Jin H, Li P, Jin Y, Sheng L. Effect of sodium tripolyphosphate on the interaction and aggregation behavior of ovalbumin-lysozyme complex. Food Chem 2021; 352:129457. [PMID: 33706135 DOI: 10.1016/j.foodchem.2021.129457] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/10/2021] [Accepted: 02/21/2021] [Indexed: 12/14/2022]
Abstract
The mechanism by which sodium tripolyphosphate affected the aggregation behavior of ovalbumin-lysozyme complexes was investigated in this work. The highest stability coefficients were detected for natural ovalbumin and lysozyme at pH 9.0 and pH 5.0, with values of 0.981 and 0.931, respectively. The turbidity of the phosphorylated ovalbumin-lysozyme complexes was 1.71-fold to the natural complexes at pH 7.0. This result was related to the fact that the phosphorylated sample had a lower isoelectric point. Besides, both intermolecular forces and SDS-PAGE analysis indicated that the disulfide bond was the most important interaction in the complex. Circular dichroism analysis showed that phosphorylation weakened the unfolding and stretching of the structure caused by heat treatment. Moreover, transmission electron microscopy pictures confirmed that the network structure of phosphorylated ovalbumin-lysozyme complex was broader than natural protein. This study provides information for further understanding the effect of phosphorylation on protein aggregation behavior.
Collapse
Affiliation(s)
- Haobo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peishan Li
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongguo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Long Sheng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
44
|
Cao YQ, Huang GQ, Li XD, Guo LP, Xiao JX. Complex coacervation of carboxymethyl konjac glucomannan and ovalbumin and coacervate characterization. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1888747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ya-Qian Cao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Guo-Qing Huang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Xiao-Dan Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Li-Ping Guo
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| | - Jun-Xia Xiao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
45
|
Interaction between ovalbumin and pectin and coacervate characterization. Colloid Polym Sci 2021. [DOI: 10.1007/s00396-021-04818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Naderi B, Keramat J, Nasirpour A, Aminifar M. Complex coacervation between oak protein isolate and gum Arabic: optimization & functional characterization. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2020. [DOI: 10.1080/10942912.2020.1825484] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Behnaz Naderi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Javad Keramat
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Ali Nasirpour
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Mehrnaz Aminifar
- Department of Food, Halal and Agricultural Products, Food Technology and Agricultural Products Research Center, Standard Research Institute – SRI, Karaj, Iran
| |
Collapse
|
47
|
Gharanjig H, Gharanjig K, Farzi G, Hosseinnezhad M, Jafari SM. Novel complex coacervates based on Zedo gum, cress seed gum and gelatin for loading of natural anthocyanins. Int J Biol Macromol 2020; 164:3349-3360. [PMID: 32882277 DOI: 10.1016/j.ijbiomac.2020.08.218] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/23/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023]
Abstract
This study aimed to characterize novel complex coacervates based on Zedo gum and cress seed gum as natural polysaccharides with gelatin (type-A and type-B) as potential wall materials for encapsulation of anthocyanins. The coacervates were prepared under optimum conditions (pH and gum to gelatin ratio), freeze-dried, and the resulted powders were analyzed in terms of thermal stability, morphology, and molecular interactions. The thermogravimetric analysis revealed that molecular interaction between polysaccharides and gelatins led to enhance the thermal stability of gums. The morphology of coacervates showed that while ZG-gelatin and CSG-gelatin coacervates resulted in cubic and irregular particles, freeze-drying severely changed the morphology of coacervates. Moreover, SEM images at lower magnification showed big voids for lyophilized coacervates, while SEM images confirmed a compact and dense microstructure of coacervates at higher magnification and BET method. Also, the molecular interaction of polysaccharides and gelatin in aqueous media was assessed using Raman spectroscopy. Furthermore, findings showed that the type-A of gelatin is a more suitable protein to form coacervates with polysaccharides. In the next step, natural anthocyanins from barberry were encapsulated by proposed coacervates as wall material. The encapsulated extract had elevated thermal stability and showed a lower degradation rate.
Collapse
Affiliation(s)
- Hamid Gharanjig
- Department of Organic Colorants, Institute for Color Science and Technology, Tehran 16765-654, Iran
| | - Kamaladin Gharanjig
- Department of Organic Colorants, Institute for Color Science and Technology, Tehran 16765-654, Iran; Center of Excellence for Color Science and Technology, Institute for Color Science and Technology, Tehran 16765-654, Iran.
| | - Gholamali Farzi
- Department of Materials and Polymer Engineering, Faculty of Engineering, Hakim Sabzevari University, P.O. Box 397, Sabzevar, Iran
| | - Mozhgan Hosseinnezhad
- Department of Organic Colorants, Institute for Color Science and Technology, Tehran 16765-654, Iran; Center of Excellence for Color Science and Technology, Institute for Color Science and Technology, Tehran 16765-654, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|