1
|
Yue C, Ding C, Xu M, Hu M, Zhang R. Self-Assembly Behavior of Collagen and Its Composite Materials: Preparation, Characterizations, and Biomedical Engineering and Allied Applications. Gels 2024; 10:642. [PMID: 39451295 PMCID: PMC11507467 DOI: 10.3390/gels10100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Collagen is the oldest and most abundant extracellular matrix protein and has many applications in biomedical, food, cosmetic, and other industries. Previous reviews have already introduced collagen's sources, structures, and biosynthesis. The biological and mechanical properties of collagen-based composite materials, their modification and application forms, and their interactions with host tissues are pinpointed. It is worth noting that self-assembly behavior is the main characteristic of collagen molecules. However, there is currently relatively little review on collagen-based composite materials based on self-assembly. Herein, we briefly reviewed the biosynthesis, extraction, structure, and properties of collagen, systematically presented an overview of the various factors and corresponding characterization techniques that affect the collagen self-assembly process, and summarize and discuss the preparation methods and application progress of collagen-based composite materials in different fields. By combining the self-assembly behavior of collagen with preparation methods of collagen-based composite materials, collagen-based composite materials with various functional reactions can be selectively prepared, and these experiences and outcomes can provide inspiration and practical techniques for the future development directions and challenges of collagen-based composite biomaterials in related applications fields.
Collapse
Affiliation(s)
- Chengfei Yue
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (C.Y.)
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Changkun Ding
- Tianjin Key Laboratory of Advanced Fibers and Energy Storage, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Minjie Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (C.Y.)
| | - Min Hu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (C.Y.)
| | - Ruquan Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; (C.Y.)
| |
Collapse
|
2
|
Sarker P, Jani PK, Hsiao LC, Rojas OJ, Khan SA. Interacting collagen and tannic acid Particles: Uncovering pH-dependent rheological and thermodynamic behaviors. J Colloid Interface Sci 2023; 650:541-552. [PMID: 37423181 DOI: 10.1016/j.jcis.2023.06.209] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/04/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
HYPOTHESIS Biomaterials such as collagen and tannic acid (TA) particles are of interest in the development of advanced hybrid biobased systems due to their beneficial therapeutic functionalities and distinctive structural properties. The presence of numerous functional groups makes both TA and collagen pH responsive, enabling them to interact via non-covalent interactions and offer tunable macroscopic properties. EXPERIMENT The effect of pH on the interactions between collagen and TA particles is explored by adding TA particles at physiological pH to collagen at both acidic and neutral pH. Rheology, isothermal titration calorimetry (ITC), turbidimetric analysis and quartz crystal microbalance with dissipation monitoring (QCM-D) are used to study the effects. FINDINGS Rheology results show significant increase in elastic modulus with an increase in collagen concentration. However, TA particles at physiological pH provide stronger mechanical reinforcement to collagen at pH 4 than collagen at pH 7 due to the formation of a higher extent of electrostatic interaction and hydrogen bonding. ITC results confirm this hypothesis, with larger changes in enthalpy, |ΔH|, observed when collagen is at acidic pH and |ΔH| > |TΔS| indicating enthalpy-driven collagen-TA interactions. Turbidimetric analysis and QCM-D help to identify structural differences of the collagen-TA complexes and their formation at both pH conditions.
Collapse
Affiliation(s)
- Prottasha Sarker
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Pallav K Jani
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Lilian C Hsiao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Orlando J Rojas
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| | - Saad A Khan
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States.
| |
Collapse
|
3
|
Liu F, Yu Z, Wang B, Chiou BS. Changes in Structures and Properties of Collagen Fibers during Collagen Casing Film Manufacturing. Foods 2023; 12:foods12091847. [PMID: 37174385 PMCID: PMC10178574 DOI: 10.3390/foods12091847] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Collagen casing is an edible film, which is widely used in the industrial production of sausages. However, the detailed changes in the collagen fibers, from the raw material to the final collagen film, have rarely been reported. In this research, the changes in the collagen fibers during the manufacturing process, including the fiber arrangement, the triple-helix structure and the thermal stability, were investigated using scanning electron microscopy (SEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR) spectroscopy. The relationship between the structure stability and the arrangement of the collagen fibers was also discussed. According to the SEM, XRD, TGA, DSC and FTIR results, the collagen fibers were depolymerized during the acid swelling and became uniformly aligned after the homogenization process. Degassing had no obvious effect on the triple-helix structure. Alkaline neutralization with ammonia destroyed the triple-helix structure, which could be partly reversed through the washing and soaking processes. During the final drying step, the depolymerized triple helix of the collagen fibers recombined to form new structures that showed decreased thermal stability. This study expands our knowledge about the behavior of collagen fibers during the industrial process of producing collagen biobased casings.
Collapse
Affiliation(s)
- Fei Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhe Yu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Beibei Wang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bor-Sen Chiou
- Western Regional Research Center, ARS, U.S. Department of Agriculture, Albany, CA 94710, USA
| |
Collapse
|
4
|
Pei Y, Yang W, Tang K, Kaplan DL. Collagen processing with mesoscale aggregates as templates and building blocks. Biotechnol Adv 2023; 63:108099. [PMID: 36649798 DOI: 10.1016/j.biotechadv.2023.108099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Collagen presents a well-organized hierarchical multilevel structure. Microfibers, fibers, and fiber bundles are the aggregates of natural collagen; which achieve an ideal balance of mechanical strength and toughness at the mesoscopic scale for biological tissue. These mesostructured aggregates of collagen isolated from biological tissues retain these inherent organizational features to enable their use as building blocks for constructing new collagen materials with ideal mechanical performance, thermal and dimensional stability. This strategy is distinct from the more common bottom-up or molecular-level design and assembly approach to generating collagen materials. The present review introduces the hierarchical structure of biological collagen with a focus on mesostructural features. Isolation strategies for these collagen aggregates (CAs) are summarized. Recent progress in the use of these mesostructural components for the construction of new collagen materials with emerging applications is reviewed, including in catalysis, environmental applications, biomedicine, food packaging, electrical energy storage, and flexible sensors. Finally, challenges and prospects are assessed for controllable production of CAs as well as material designs.
Collapse
Affiliation(s)
- Ying Pei
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - Wen Yang
- Institute of Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| | - Keyong Tang
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China.
| | - David L Kaplan
- Biomedical Engineering, Tufts University, MA 02155, United States
| |
Collapse
|
5
|
Evolution of conformation and thermal properties of bovine hides collagen in the sodium sulphide solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Yue C, Ding C, Yang N, Luo Y, Su J, Cao L, Cheng B. Strong and tough collagen/cellulose nanofibril composite films via the synergistic effect of hydrogen and metal–ligand bonds. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Wang L, Lyu H, Zhang X, Xiao Y, Li A, Ma Z, Guo C, Pei Y. Revealing the aggregation behaviors of mesostructured collagen by the evaluation of reconstituted collagen performance. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Sobanwa M, Foster T, Yakubov G, Watson N. How hydrocolloids can control the viscoelastic properties of acid-swollen collagen pastes. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
9
|
Tang C, Zhou K, Zhu Y, Zhang W, Xie Y, Wang Z, Zhou H, Yang T, Zhang Q, Xu B. Collagen and its derivatives: From structure and properties to their applications in food industry. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107748] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
10
|
Yan M, An X, Jiang Z, Duan S, Wang A, Zhao X, Li Y. Effects of cross-linking with EDC/NHS and genipin on characterizations of self-assembled fibrillar gel prepared from tilapia collagen and alginate. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Zhang T, Yu Z, Ma Y, Chiou BS, Liu F, Zhong F. Modulating physicochemical properties of collagen films by cross-linking with glutaraldehyde at varied pH values. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107270] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Li J, Xiao P, Xu Y, Dong L, Wang Z, Liu F, Shen J, Van der Bruggen B. Collagen Fibril-Assembled Skin-Simulated Membrane for Continuous Molecular Separation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7358-7368. [PMID: 35025208 DOI: 10.1021/acsami.1c23811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A skin-simulated thin-film-composite membrane was fabricated using a vacuum-assisted interfacial polymerization method. A negatively charged surface-selective layer on a polyacrylonitrile (PAN) substrate was cross-linked using trimesoyl chloride to form polyamide and polyester with a three-layer structure that was similar to skin. The loading of collagen fibrils assembled on the membrane surface was varied, and a selective layer was obtained, of which the thickness, morphology, and hydrophilicity can be manipulated. The optimal membrane decorated with 0.5 mg of collagen fibril had a selective layer thickness of around 130 nm with pure water permeability up to 84.7 LMH bar-1. Furthermore, the membrane exhibited impressive rejections toward dyes (Congo red with a molecular weight of 696.68 Da: 99.6%, reactive blue 19 with a molecular weight of 626.54 Da: 99.8%, and Coomassie blueG-250 with a molecular weight of 854.02 Da: 98.6%) while high permeations of Na2SO4 and NaCl were achieved. This facile strategy provides a useful guideline for constructing bionic membranes through biomaterials.
Collapse
Affiliation(s)
- Jian Li
- Laboratory of Environmental Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Pei Xiao
- Laboratory of Environmental Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yilin Xu
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Liangliang Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhenyu Wang
- Laboratory of Environmental Biotechnology, Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Fei Liu
- State Key Laboratory of Food Science and Technology, Science Center for Future Foods, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Jiangnan Shen
- Chemical Engineering College, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001, Leuven 3001, Belgium
- Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| |
Collapse
|
13
|
Thapa RK, Grønlien KG, Tønnesen HH. Protein-Based Systems for Topical Antibacterial Therapy. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:685686. [PMID: 35047932 PMCID: PMC8757810 DOI: 10.3389/fmedt.2021.685686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
Recently, proteins are gaining attention as potential materials for antibacterial therapy. Proteins possess beneficial properties such as biocompatibility, biodegradability, low immunogenic response, ability to control drug release, and can act as protein-mimics in wound healing. Different plant- and animal-derived proteins can be developed into formulations (films, hydrogels, scaffolds, mats) for topical antibacterial therapy. The application areas for topical antibacterial therapy can be wide including bacterial infections in the skin (e.g., acne, wounds), eyelids, mouth, lips, etc. One of the major challenges of the healthcare system is chronic wound infections. Conventional treatment strategies for topical antibacterial therapy of infected wounds are inadequate, and the development of newer and optimized formulations is warranted. Therefore, this review focuses on recent advances in protein-based systems for topical antibacterial therapy in infected wounds. The opportunities and challenges of such protein-based systems along with their future prospects are discussed.
Collapse
Affiliation(s)
- Raj Kumar Thapa
- Section for Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, Oslo, Norway
| | | | - Hanne Hjorth Tønnesen
- Section for Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, Oslo, Norway
| |
Collapse
|
14
|
Fan H, Liu H, Chen Y, Chen B, Wang D, Zhang S, Liu T, Zhang Y. Effect of high temperature high pressure-acidic solution treated Auricularia auricula on the rheological property and structure of wheat flour dough. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Wang H, Ding F, Ma L, Zhang Y. Recent advances in gelatine and chitosan complex material for practical food preservation application. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hongxia Wang
- College of Food Science Southwest University Chongqing 400715 China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education Chongqing 400715 China
- The Ecological Fishery Technological System of Chongqing Municipal Agricultural and Rural Committee Chongqing 400715 China
| | - Fuyuan Ding
- School of Food and Biological Engineering Jiangsu University Zhenjiang 212013 China
| | - Liang Ma
- College of Food Science Southwest University Chongqing 400715 China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education Chongqing 400715 China
- The Ecological Fishery Technological System of Chongqing Municipal Agricultural and Rural Committee Chongqing 400715 China
| | - Yuhao Zhang
- College of Food Science Southwest University Chongqing 400715 China
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University) Ministry of Education Chongqing 400715 China
- The Ecological Fishery Technological System of Chongqing Municipal Agricultural and Rural Committee Chongqing 400715 China
| |
Collapse
|
16
|
Xu J, Liu F, Yu Z, Chen M, Zhong F. Influence of softwood cellulose fiber and chitosan on the film-forming properties of collagen fiber. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Wang X, Sun S, Zhu X, Guo P, Liu X, Liu C, Lei M. Application of amphoteric polymers in the process of leather post-tanning. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-021-00050-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
With the characteristics of controllable charge and environmental friendliness, amphoteric polymers can be used in post-tanning process to solve the problems that arise during leather making and are caused by the low absorption rate of single-charge chemicals, incompatibility with new tanning methods, and complex operation process. In this review, the structure, performance, and preparation of amphoteric polymers are reported. Then, the charge change of collagen during different tanning and pH treatments is introduced. Finally, the application and development of amphoteric polymers during the post-tanning process of leather making are discussed. This review has certain guiding significance to the preparation and application of amphoteric polymers for tanning system.
Graphical abstract
Collapse
|
18
|
Gopalakrishnan S, Xu J, Zhong F, Rotello VM. Strategies for Fabricating Protein Films for Biomaterials Applications. ADVANCED SUSTAINABLE SYSTEMS 2021; 5:2000167. [PMID: 33709022 PMCID: PMC7942017 DOI: 10.1002/adsu.202000167] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Indexed: 05/10/2023]
Abstract
Proteins are naturally occurring functional building blocks that are useful for the fabrication of materials. Naturally-occurring proteins are biodegradable and most are biocompatible and non-toxic, making them attractive for the fabrication of biomaterials. Moreover, the fabrication of protein-based materials can be conducted in a green and sustainable manner due to their high aqueous solubility. Consequently, the applicability of protein-based materials is limited by their aqueous and mechanical instability. This review summarizes strategies for the stabilization of protein films, highlighting their salient features and potential limitations. Applications of protein films ranging from food packaging materials, tissue engineering scaffolds, antimicrobial coatings etc. are also discussed. Finally, the need for robust and efficient fabrication strategies for translation to commercial applications as well as potential applications of protein films in the field of sensing, diagnostics and controlled release systems are discussed.
Collapse
Affiliation(s)
- Sanjana Gopalakrishnan
- Department of Chemistry, University of Massachusetts, Amherst, 710 N Pleasant St., Amherst, MA, 01002
| | - Jinlong Xu
- Department of Chemistry, University of Massachusetts, Amherst, 710 N Pleasant St., Amherst, MA, 01002
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fang Zhong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts, Amherst, 710 N Pleasant St., Amherst, MA, 01002
| |
Collapse
|