1
|
Kim W, Yiu CCY, Wang Y, Zhou W, Selomulya C. Toward Diverse Plant Proteins for Food Innovation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2408150. [PMID: 39119828 DOI: 10.1002/advs.202408150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Indexed: 08/10/2024]
Abstract
This review highlights the development of plant proteins from a wide variety of sources, as most of the research and development efforts to date have been limited to a few sources including soy, chickpea, wheat, and pea. The native structure of plant proteins during production and their impact on food colloids including emulsions, foams, and gels are considered in relation to their fundamental properties, while highlighting the recent developments in the production and processing technologies with regard to their impacts on the molecular properties and aggregation of the proteins. The ability to quantify structural, morphological, and rheological properties can provide a better understanding of the roles of plant proteins in food systems. The applications of plant proteins as dairy and meat alternatives are discussed from the perspective of food structure formation. Future directions on the processing of plant proteins and potential applications are outlined to encourage the generation of more diverse plant-based products.
Collapse
Affiliation(s)
- Woojeong Kim
- School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | | | - Yong Wang
- School of Chemical Engineering, UNSW, Sydney, NSW, 2052, Australia
| | - Weibiao Zhou
- Department of Food Science and Technology, National University of Singapore, Singapore, 117542, Singapore
| | | |
Collapse
|
2
|
Gao Y, Fan M, Cheng X, Liu X, Yang H, Ma W, Guo M, Li L. Deep eutectic solvent: Synthesis, classification, properties and application in macromolecular substances. Int J Biol Macromol 2024; 278:134593. [PMID: 39127290 DOI: 10.1016/j.ijbiomac.2024.134593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Deep eutectic solvent (DES) is a kind of solvent prepared by mixing hydrogen bond donors and hydrogen bond acceptors, and have become a hot topic in ecological civilization construction due to its low toxicity and sustainability. Its excellent properties such as low volatility, thermal stability and biodegradability make it stand out among many organic solvents and widely used in fields including medicine, chemical industry and agriculture, with broad development prospects. In recent years, the application of DES in the food field has mostly focused on the extraction of small molecular substances, and there are few summaries on the application of DES in macromolecular substances. In this review, we introduced the synthesis, classification and properties of DES, and summarized the application of DES in the food industry for macromolecular substances, including the extraction of macromolecular substances such as chitosan and pectin, as well as the preparation of related macromolecular substrate films. At the same time, we analyzed the characteristics of DES and its advantages and limitations in application, and provided prospects for future development.
Collapse
Affiliation(s)
- Yuying Gao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Min Fan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China.
| | - Xiaoxiao Cheng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaofang Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Hui Yang
- Xin Yang Vocational and Technical College, Xinyang 464000, China
| | - Wenya Ma
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Min Guo
- COFCO Nutrition and Health Research Institute, Beijing 102209, China
| | - Li Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Engineering Research Center of Food Thermal-Processing Technology, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
3
|
Afifah N, Sarifudin A, Purwanto WW, Krisanti EA, Mulia K. Glucomannan isolation from porang (Amorphophallus muelleri Blume) flour using natural deep eutectic solvents and ethanol: A comparative study. Food Chem 2024; 453:139610. [PMID: 38761726 DOI: 10.1016/j.foodchem.2024.139610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024]
Abstract
Ethanol is a common solvent to isolate glucomannan from porang (Amorphophallus muelleri Blume) flour (NPF). This study investigated the use of natural deep eutectic solvents (NADESs) in glucomannan isolation from NPF. NADESs formed by the hydrogen bond acceptors (choline chloride and betaine) and the hydrogen bond donors (glycerol, 1,2-propanediol, formic acid, and acetic acid) in varying molar ratios of 1:2, 1:3, and 1:4 were characterized to optimize glucomannan isolation. The results showed that higher molar ratios of NADES tended to yield porang glucomannan flour (PGF) with higher glucomannan content and viscosity. The gel of PGF exhibited pseudoplastic behavior. The FTIR spectra indicated that betaine-based NADES removed the acetyl groups from glucomannan chains. The PGF obtained from NADESs with a molar ratio of 1:4 was comparable to those obtained from ethanol with a glucomannan content of 87.34 %-93.28 % and a weight-average molecular weight of 9.12 × 105-1.20 × 106 g/mol.
Collapse
Affiliation(s)
- Nok Afifah
- Department of Chemical Engineering, Universitas Indonesia, Depok 16424, Indonesia; Research Center for Appropriate Technology, National Research and Innovation Agency, Subang 41213, Indonesia
| | - Achmat Sarifudin
- Research Center for Appropriate Technology, National Research and Innovation Agency, Subang 41213, Indonesia
| | | | - Elsa Anisa Krisanti
- Department of Chemical Engineering, Universitas Indonesia, Depok 16424, Indonesia
| | - Kamarza Mulia
- Department of Chemical Engineering, Universitas Indonesia, Depok 16424, Indonesia.
| |
Collapse
|
4
|
Negi T, Kumar A, Sharma SK, Rawat N, Saini D, Sirohi R, Prakash O, Dubey A, Dutta A, Shahi NC. Deep eutectic solvents: Preparation, properties, and food applications. Heliyon 2024; 10:e28784. [PMID: 38617909 PMCID: PMC11015381 DOI: 10.1016/j.heliyon.2024.e28784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024] Open
Abstract
Deep Eutectic Solvents (DESs) emerge as innovative 21st-century solvents, supplanting traditional ones like ethanol and n-hexane. Renowned for their non-toxic, biodegradable, and water-miscible nature with reduced volatility, DESs are mostly synthesized through heating and stirring method. Physicochemical properties such as polarity, viscosity, density and surface tension of DESs influenced their application. This review paper gives the overview of application of eco-benign DESs in fruits, vegetables, cereals, pulses, spices, herbs, plantation crops, oil seed crops, medicinal and aromatic plants, seaweed, and milk for the extraction of bioactive compounds. Also, it gives insight of determination of pesticides, insecticides, hazardous and toxic compounds, removal of heavy metals, detection of illegal milk additive, purification of antibiotics and preparation of packaging film. Methodologies for separating bioactive compounds from DESs extracts are systematically examined. Further, safety regulations of DESs are briefly discussed and reviewed literature reveals prevalent utilization of DES-based bioactive compound rich extracts in cosmetics, indicating untapped potential of their application in the food industry.
Collapse
Affiliation(s)
- Taru Negi
- Department of Food Science and Technology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Anil Kumar
- Department of Food Science and Technology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Satish Kumar Sharma
- Department of Food Science and Technology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Neha Rawat
- Department of Food Science and Technology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Deepa Saini
- Department of Food Science and Technology, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Ranjna Sirohi
- Sri Karan Narendra Agriculture University, Jobner, 303329, Rajasthan, India
| | - Om Prakash
- Department of Chemistry, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Ashutosh Dubey
- Department of Biochemistry, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Anuradha Dutta
- Department of Foods & Nutrition, College of Community Sciences, Pantnagar, 263145, Uttarakhand, India
| | - Navin Chand Shahi
- Department of Post-Harvest Process and Food Engineering, Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, 263145, India
| |
Collapse
|
5
|
Patra A, Arun Prasath V. Isolation of detoxified cassava (Manihot esculenta L.) leaf protein by alkaline extraction-isoelectric precipitation: Optimization and its characterization. Food Chem 2024; 437:137845. [PMID: 37922801 DOI: 10.1016/j.foodchem.2023.137845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
The cassava leaves protein isolate extraction and optimization were investigated using response surface methodology, where the maximum protein content (21.83 ± 0.41 g/100 g dm), extraction yield (18.31 ± 0.53%), and protein recovery yield (69 ± 1.31%) were obtained at optimal conditions: 114 min extraction time, 46 °C extraction temperature, 23.5 mL/g solvent/solute ratio and pH 11.0 value. The presence of toxicant (Cyanide) and anti-nutrient (tannin) in cassava leaves reduced the bio-accessibility of its protein isolate, strictly prohibiting its consumption. Therefore, detoxification was applied to diminish cyanide and tannin to 85% and 69% in leaves, respectively, where the protein content was reduced to 9.7%. However, detoxified cassava leaf protein isolate exhibited changes in the compositional, structural, morphological, molecular, and thermal characteristics compared to the controlled one. Moreover, the functional properties in protein isolate improved after detoxification at different pH conditions, which can be used as an active ingredient in various foods.
Collapse
Affiliation(s)
- Abhipriya Patra
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha 769008, India
| | - V Arun Prasath
- Department of Food Process Engineering, National Institute of Technology Rourkela, Odisha 769008, India.
| |
Collapse
|
6
|
Sargautis D, Kince T, Gramatina I. Characterisation of the Enzymatically Extracted Oat Protein Concentrate after Defatting and Its Applicability for Wet Extrusion. Foods 2023; 12:2333. [PMID: 37372544 DOI: 10.3390/foods12122333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
An oat protein concentrate (OC1) was isolated from oat flour through starch enzymatic hydrolysis, by subsequent defatting by ethanol and supercritical fluid extraction (SFE) reaching protein concentrations of 78% and 77% by weight in dry matter, respectively. The protein characterisation and functional properties of the defatted oat protein concentrates were evaluated, compared and discussed. The solubility of defatted oat protein was minor in all ranges of measured pH (3-9), and foamability reached up to 27%. Further, an oat protein concentrate defatted by ethanol (ODE1) was extruded by a single screw extruder. The obtained extrudate was evaluated by scanning electron microscope (SEM), texture and colour analysers. The extrudate's surface was well formed, smooth, and lacking a tendency to form a fibrillar structure. Textural analysis revealed a non-unform structure (fracturability 8.8-20.9 kg, hardness 26.3-44.1 kg) of the oat protein extrudate.
Collapse
Affiliation(s)
- Darius Sargautis
- Department of Food Technologies, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| | - Tatjana Kince
- Department of Food Technologies, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| | - Ilze Gramatina
- Department of Food Technologies, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| |
Collapse
|
7
|
Evaluating the status quo of deep eutectic solvent in food chemistry. Potentials and limitations. Food Chem 2023; 406:135079. [PMID: 36463595 DOI: 10.1016/j.foodchem.2022.135079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Conventional organic solvents (e.g., methanol, ethanol, ethyl acetate) are widely used for extraction, reaction, and separation of valuable compounds. Although these solvents are effective, they have disadvantages, including flammability, toxicity, and persistence in the environment. Deep eutectic solvents (DESs) are valued for their biodegradability/low impact on the environment, low cost, and ease of manufacture. The objective of this review was to provide an overview of applications of DES in food chemistry, specifically in regard of extraction of polyphenols (e.g., anthocyanin, rutin, kaempferol, quercetin, resveratrol), protein, carbohydrates (e.g., chitin, pectins), lipids and lipid-soluble compounds (e.g., free fatty acids, astaxanthin, β-carotene, terpenoids), biosensor development, and use in food safety (pyrethroids, Sudan I, bisphenol A, Pb2+, Cd2+, etc.) over the past five years. A comprehensive analysis and discussion of DES types, preparation, structures, and influencing factors is provided. Furthermore, the potential and disadvantages of using DESs to extract biomolecules were assessed. We concluded that DES is a viable alternative for extracting polyphenols, carbohydrates, and lipids as well as use in food safety monitoring and biosensor development. However, more work is needed to address shortcomings, and determine whether using compounds extracted with DES can be consumed safely.
Collapse
|
8
|
Kovaleski G, Kholany M, Dias LMS, Correia SFH, Ferreira RAS, Coutinho JAP, Ventura SPM. Extraction and purification of phycobiliproteins from algae and their applications. Front Chem 2022; 10:1065355. [PMID: 36531328 PMCID: PMC9752866 DOI: 10.3389/fchem.2022.1065355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/14/2022] [Indexed: 09/02/2023] Open
Abstract
Microalgae, macroalgae and cyanobacteria are photosynthetic microorganisms, prokaryotic or eukaryotic, living in saline or freshwater environments. These have been recognized as valuable carbon sources, able to be used for food, feed, chemicals, and biopharmaceuticals. From the range of valuable compounds produced by these cells, some of the most interesting are the pigments, including chlorophylls, carotenoids, and phycobiliproteins. Phycobiliproteins are photosynthetic light-harvesting and water-soluble proteins. In this work, the downstream processes being applied to recover fluorescent proteins from marine and freshwater biomass are reviewed. The various types of biomasses, namely macroalgae, microalgae, and cyanobacteria, are highlighted and the solvents and techniques applied in the extraction and purification of the fluorescent proteins, as well as their main applications while being fluorescent/luminescent are discussed. In the end, a critical perspective on how the phycobiliproteins business may benefit from the development of cost-effective downstream processes and their integration with the final application demands, namely regarding their stability, will be provided.
Collapse
Affiliation(s)
- Gabriela Kovaleski
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
- Department of Physics, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | - Mariam Kholany
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | - Lília M. S. Dias
- Department of Physics, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | | | - Rute A. S. Ferreira
- Department of Physics, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | - João A. P. Coutinho
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | - Sónia P. M. Ventura
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
9
|
Zhou Y, Wu W, Zhang N, Soladoye OP, Zhang Y, Fu Y. Deep eutectic solvents as new media for green extraction of food proteins: Opportunity and challenges. Food Res Int 2022; 161:111842. [DOI: 10.1016/j.foodres.2022.111842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 12/07/2022]
|
10
|
Successive extraction using natural deep eutectic solvents and pressurized liquids for a greener and holistic recovery of proteins from pomegranate seeds. Food Res Int 2022; 161:111862. [DOI: 10.1016/j.foodres.2022.111862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/28/2022] [Accepted: 08/21/2022] [Indexed: 11/21/2022]
|
11
|
Novel Extraction technologies for developing plant protein ingredients with improved functionality. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Quintana AA, Sztapka AM, Santos Ebinuma VDC, Agatemor C. Enabling Sustainable Chemistry with Ionic Liquids and Deep Eutectic Solvents: A Fad or the Future? Angew Chem Int Ed Engl 2022; 61:e202205609. [PMID: 35789078 DOI: 10.1002/anie.202205609] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 12/17/2022]
Abstract
Ionic liquids (ILs) and deep eutectic solvents (DESs) debuted with a promise of a superior sustainability footprint due to their low vapor pressure. However, their toxicity and high cost compromise this footprint, impeding their real-world applications. Fortunately, their property tunability through a rational selection of precursors, including bioderived ones, provides a strategy to ameliorate toxicity, lower cost, and endow new functions. This Review discusses whether ILs and DESs are sustainable solvents and how they contribute to sustainable chemical processes.
Collapse
Affiliation(s)
| | | | - Valéria de Carvalho Santos Ebinuma
- Department of Engineering of Bioprocesses and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Christian Agatemor
- Department of Chemistry, University of Miami, Coral Gables, FL 33124, USA.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
13
|
Bowen H, Durrani R, Delavault A, Durand E, Chenyu J, Yiyang L, Lili S, Jian S, Weiwei H, Fei G. Application of deep eutectic solvents in protein extraction and purification. Front Chem 2022; 10:912411. [PMID: 36147253 PMCID: PMC9485462 DOI: 10.3389/fchem.2022.912411] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022] Open
Abstract
Deep eutectic solvents (DESs) are a mixture of hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) molecules that can consist, respectively, of natural plant metabolites such as sugars, carboxylic acids, amino acids, and ionic molecules, which are for the vast majority ammonium salts. Media such as DESs are modular tools of sustainability that can be pointed toward the extraction of bioactive molecules due to their excellent physicochemical properties, their relatively low price, and accessibility. The present review focuses on the application of DESs for protein extraction and purification. The in-depth effects and principles that apply to DES-mediated extraction using various renewable biomasses will be discussed as well. One of the most important observations being made is that DESs have a clear ability to maintain the biological and/or functional activity of the extracted proteins, as well as increase their stability compared to traditional solvents. They demonstrate true potential for a reproducible but more importantly, scalable protein extraction and purification compared to traditional methods while enabling waste valorization in some particular cases.
Collapse
Affiliation(s)
- Hou Bowen
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, China
| | - Rabia Durrani
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Zhejiang, China
| | - André Delavault
- Technical Biology, Institute of Process Engineering in Life Sciences II, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Erwann Durand
- CIRAD, UMR QUALISUD, Montpellier, France
- Qualisud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, Université de la Réunion, Montpellier, France
| | - Jiang Chenyu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Zhejiang, China
| | - Long Yiyang
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, China
| | - Song Lili
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Zhejiang, China
| | - Song Jian
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou, Zhejiang, China
| | - Huan Weiwei
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou, Zhejiang, China
- *Correspondence: Gao Fei, ; Huan Weiwei,
| | - Gao Fei
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A & F University, Hangzhou, China
- *Correspondence: Gao Fei, ; Huan Weiwei,
| |
Collapse
|
14
|
Magnetic solid-phase extraction method with modified magnetic ferroferric oxide nanoparticles in a deep eutectic solvent and high-performance liquid chromatography used for the analysis of pharmacologically active ingredients of Epimedium folium. J Chromatogr A 2022; 1679:463395. [DOI: 10.1016/j.chroma.2022.463395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/17/2022] [Accepted: 07/31/2022] [Indexed: 11/18/2022]
|
15
|
Agatemor C, Quintana AA, Sztapka LM, Ebinuma VDCS. Enabling Sustainable Chemistry with Ionic Liquids and Deep Eutectic Solvents: a Fad or the Future? Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Christian Agatemor
- University of Miami - Coral Gables Campus: University of Miami Chemistry 1301 Memorial Dr 33146 Coral Gables UNITED STATES
| | - Aline Andrea Quintana
- University of Miami - Coral Gables Campus: University of Miami Chemistry UNITED STATES
| | - Lani Maria Sztapka
- University of Miami - Coral Gables Campus: University of Miami Chemistry UNITED STATES
| | | |
Collapse
|
16
|
Ling JKU, Hadinoto K. Deep Eutectic Solvent as Green Solvent in Extraction of Biological Macromolecules: A Review. Int J Mol Sci 2022; 23:3381. [PMID: 35328803 PMCID: PMC8949459 DOI: 10.3390/ijms23063381] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 02/01/2023] Open
Abstract
Greater awareness of environmental sustainability has driven many industries to transition from using synthetic organic solvents to greener solvents in their manufacturing. Deep eutectic solvents (DESs) have emerged as a highly promising category of green solvents with well-demonstrated and wide-ranging applications, including their use as a solvent in extraction of small-molecule bioactive compounds for food and pharmaceutical applications. The use of DES as an extraction solvent of biological macromolecules, on the other hand, has not been as extensively studied. Thereby, the feasibility of employing DES for biomacromolecule extraction has not been well elucidated. To bridge this gap, this review provides an overview of DES with an emphasis on its unique physicochemical properties that make it an attractive green solvent (e.g., non-toxicity, biodegradability, ease of preparation, renewable, tailorable properties). Recent advances in DES extraction of three classes of biomacromolecules-i.e., proteins, carbohydrates, and lipids-were discussed and future research needs were identified. The importance of DES's properties-particularly its viscosity, polarity, molar ratio of DES components, and water addition-on the DES extraction's performance were discussed. Not unlike the findings from DES extraction of bioactive small molecules, DES extraction of biomacromolecules was concluded to be generally superior to extraction using synthetic organic solvents.
Collapse
Affiliation(s)
| | - Kunn Hadinoto
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore;
| |
Collapse
|
17
|
A Green Method of Extracting and Recovering Flavonoids from Acanthopanax senticosus Using Deep Eutectic Solvents. Molecules 2022; 27:molecules27030923. [PMID: 35164188 PMCID: PMC8838195 DOI: 10.3390/molecules27030923] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
In recent years, green extraction of bioactive compounds from herbal medicines has generated widespread interest. Deep eutectic solvents (DES) have widely replaced traditional organic solvents in the extraction process. In this study, the efficiencies of eight DESs in extracting flavonoids from Acanthopanax senticosus (AS) were compared. Response surface methodology (RSM) was employed to optimize the independent variable including ultrasonic power, water content, solid-liquid ratio, extraction temperature, and extraction time. DES composed of glycerol and levulinic acid (1:1) was chosen as the most suitable extraction medium. Optimal conditions were ultrasonic power of 500 W, water content of 28%, solid-liquid ratio of 1:18 g·mL−1, extraction temperature of 55 °C, and extraction time of 73 min. The extraction yield of total flavonoids reached 23.928 ± 0.071 mg·g−1, which was 40.7% higher compared with ultrasonic-assisted ethanol extraction. Macroporous resin (D-101, HPD-600, S-8 and AB-8) was used to recover flavonoids from extracts. The AB-8 resin showed higher adsorption/desorption performance, with a recovery rate of total flavonoids of up to 71.56 ± 0.256%. In addition, DES solvent could efficiently be reused twice. In summary, ultrasonic-assisted DES combined with the macroporous resin enrichment method is exceptionally effective in recovering flavonoids from AS, and provides a promising environmentally friendly and recyclable strategy for flavonoid extraction from natural plant sources.
Collapse
|
18
|
Yue J, Zhu Z, Yi J, Li H, Chen B, Rao J. One-step extraction of oat protein by choline chloride-alcohol deep eutectic solvents: Role of chain length of dihydric alcohol. Food Chem 2021; 376:131943. [PMID: 34971894 DOI: 10.1016/j.foodchem.2021.131943] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/05/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022]
Abstract
The aim of this study is to investigate the effect of dihydric alcohol chain length (1,2-ethanediol, 1,3-propanediol, and 1,4-butanediol) on the structure of deep eutectic solvents (DESs) and the properties of the extracted oat proteins. Herein, five anhydrous and nine hydrated DESs were successfully prepared by mixing choline chloride, dihydric alcohol, and/or water in a heating method. The structures of DESs were confirmed by FTIR and 1H NMR. Among them, only four anhydrous and six hydrated DESs were able to extract oat proteins from flours by one-step extraction. SDS-PAGE and FTIR analyses indicated that the structural properties of the oat proteins were highly reliant on the composition of the DESs; while physicochemical properties were primarily ruled by the environmental pH. Overall, the hydrated DES composing of all food-grade compounds, including choline chloride, 1,3-propanediol, and water at a molar ratio of 1:3:1, demonstrated its great potential for one-step biorefinery of oat proteins.
Collapse
Affiliation(s)
- Jianxiong Yue
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA; School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Zhenbao Zhu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Jianhua Yi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, PR China
| | - Hui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Jiajia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
19
|
Zuo J, Ma P, Geng S, Kong Y, Li X, Fan Z, Zhang Y, Dong A, Zhou Q. Optimization of the extraction process of flavonoids from Trollius ledebouri with natural deep eutectic solvents. J Sep Sci 2021; 45:717-727. [PMID: 34845820 DOI: 10.1002/jssc.202100802] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 12/12/2022]
Abstract
In recent years, natural deep eutectic solvents have been favored greatly due to their environment friendly, mild biological toxicity and simple biodegradability. Natural deep eutectic solvents gradually applied for the extracting bioactive compounds from natural products efficiently. In this study, 20 natural deep eutectic solvents were prepared and their physical and chemical properties were tested. The ultrasonic-assisted extraction method was used to extract flavonoids from Trollius ledebouri and high-performance liquid chromatography-ultraviolet was applied to examine two main bioactive flavonoids (orientin and vitexin). Compared with traditional solvents (water and 60% ethanol solution), natural deep eutectic solvents composed of L(-)-proline and levulinic acid (molar ratio 1:2) show a super extraction efficiency. On this basis, the response surface method was used to optimize the extraction temperature, extraction time, water contents, and solid-liquid ratio. As a consequence, the extraction temperature 60℃, extraction time 18 min, water content 14% (v/v), and the solid-liquid ratio 48 mL·g-1 were chosen as the best extraction process. This study shows that natural deep eutectic solvents can effectively extract flavonoids from T. ledebouri, laying a foundation for the further application of natural deep eutectic solvents to extract bioactive compounds from natural products.
Collapse
Affiliation(s)
- Jiale Zuo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, P. R. China
| | - Peirong Ma
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, P. R. China
| | - Shuqin Geng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, P. R. China
| | - Yangzhi Kong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, P. R. China
| | - Xiang Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, P. R. China
| | - Zhaosheng Fan
- Technology Center, Shanghai Tobacco Group Beijing Cigarette Factory Co., Ltd., Beijing, P. R. China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, P. R. China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolian University, Hohhot, P. R. China
| | - Qun Zhou
- Department of Chemistry, Tsinghua University, Beijing, P. R. China
| |
Collapse
|
20
|
Mel R, Malalgoda M. Oat protein as a novel protein ingredient: Structure, functionality, and factors impacting utilization. Cereal Chem 2021. [DOI: 10.1002/cche.10488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Roshema Mel
- Department of Food and Human Nutritional Sciences University of Manitoba Winnipeg Manitoba Canada
| | - Maneka Malalgoda
- Department of Food and Human Nutritional Sciences University of Manitoba Winnipeg Manitoba Canada
| |
Collapse
|
21
|
Wang H, Xiang L, Rao P, Ke L, Wu B, Chen S, Wang S, Shi Y, Su P. Effects of pretreatments on structural and functional changes of oat protein isolate. Cereal Chem 2021. [DOI: 10.1002/cche.10480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Hailin Wang
- Food Nutrition Science Centre School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| | - Leiwen Xiang
- College of Food and Bioengineering Fujian Polytechnic Normal University Fuqing China
| | - Pingfan Rao
- Food Nutrition Science Centre School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| | - Lijing Ke
- Food Nutrition Science Centre School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou China
| | - Benyang Wu
- College of Food and Bioengineering Fujian Polytechnic Normal University Fuqing China
| | - Sheng Chen
- College of Food and Bioengineering Fujian Polytechnic Normal University Fuqing China
| | - Shaoyun Wang
- College of Bioscience and Engineering Fuzhou University Fuzhou China
| | - Yuande Shi
- College of Food and Bioengineering Fujian Polytechnic Normal University Fuqing China
| | - Pingping Su
- College of Food and Bioengineering Fujian Polytechnic Normal University Fuqing China
| |
Collapse
|
22
|
Sim SYJ, SRV A, Chiang JH, Henry CJ. Plant Proteins for Future Foods: A Roadmap. Foods 2021; 10:1967. [PMID: 34441744 PMCID: PMC8391319 DOI: 10.3390/foods10081967] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022] Open
Abstract
Protein calories consumed by people all over the world approximate 15-20% of their energy intake. This makes protein a major nutritional imperative. Today, we are facing an unprecedented challenge to produce and distribute adequate protein to feed over nine billion people by 2050, in an environmentally sustainable and affordable way. Plant-based proteins present a promising solution to our nutritional needs due to their long history of crop use and cultivation, lower cost of production, and easy access in many parts of the world. However, plant proteins have comparatively poor functionality, defined as poor solubility, foaming, emulsifying, and gelling properties, limiting their use in food products. Relative to animal proteins, including dairy products, plant protein technology is still in its infancy. To bridge this gap, advances in plant protein ingredient development and the knowledge to construct plant-based foods are sorely needed. This review focuses on some salient features in the science and technology of plant proteins, providing the current state of the art and highlighting new research directions. It focuses on how manipulating plant protein structures during protein extraction, fractionation, and modification can considerably enhance protein functionality. To create novel plant-based foods, important considerations such as protein-polysaccharide interactions, the inclusion of plant protein-generated flavors, and some novel techniques to structure plant proteins are discussed. Finally, the attention to nutrition as a compass to navigate the plant protein roadmap is also considered.
Collapse
Affiliation(s)
- Shaun Yong Jie Sim
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore; (A.S.); (J.H.C.); (C.J.H.)
| | - Akila SRV
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore; (A.S.); (J.H.C.); (C.J.H.)
| | - Jie Hong Chiang
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore; (A.S.); (J.H.C.); (C.J.H.)
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre (CNRC), Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 117599, Singapore; (A.S.); (J.H.C.); (C.J.H.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| |
Collapse
|
23
|
Li H, Wang Y, He X, Chen J, Xu F, Liu Z, Zhou Y. A green deep eutectic solvent modified magnetic titanium dioxide nanoparticles for the solid-phase extraction of chymotrypsin. Talanta 2021; 230:122341. [PMID: 33934791 DOI: 10.1016/j.talanta.2021.122341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/05/2021] [Accepted: 03/18/2021] [Indexed: 01/15/2023]
Abstract
Magnetic titanium dioxide nanoparticles modified with green deep eutectic solvent (DES) composed of choline chloride (ChCl) and xylitol (Xyl) (Fe3O4@TiO2@[ChCl][Xyl]) were synthesized and applied to the solid-phase extraction(MSPE) of chymotrypsin (Chy). The physicochemical properties and morphology of Fe3O4@TiO2@[ChCl][Xyl] was characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), Zeta potential, X-ray diffraction (XRD), vibrating sample magnetometer (VSM) and transmission electron microscope (TEM). The experiment parameters such as initial concentration of Chy, extraction time, pH value, ionic strength, extraction temperature and sample matrix were effectively optimized. Under the optimal experimental conditions, the extraction capacity of Fe3O4@TiO2@[ChCl][Xyl] obtained a significantly improvement after the modification of Fe3O4@TiO2 nanoparticles by [ChCl][Xyl], and reached up to 347.8 mg g-1. In the elution experiment, 10% sodium dodecyl sulfate-acetic acid (SDS-HAc) was used as eluent, achieving an elution rate of 85.9% for the Chy on Fe3O4@TiO2@[ChCl][Xyl]. And the Fe3O4@TiO2@[ChCl][Xyl] still maintained a good extraction capacity for Chy after six times of reuse. The application result in the extraction of Chy from porcine pancreas crude extract showed a good practical application ability for Chy extraction. All the results indicated that the synthesized Fe3O4@TiO2@[ChCl][Xyl] has good application potential in the extraction of biomolecular molecules such as protein.
Collapse
Affiliation(s)
- Heqiong Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Yuzhi Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| | - Xiyan He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Jing Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Fangting Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Ziwei Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Yigang Zhou
- Department of Microbiology, College of Basic Medicine, Central South University, Changsha, 410083, PR China
| |
Collapse
|