1
|
Ribeiro DM, Costa MM, Trevisi P, Carvalho DFP, Correa F, Martins CF, Pinho M, Mourato M, de Almeida AM, Freire JPB, Mestre Prates JA. Piglets performance, nutrient digestibility and gut health in response to feeding Ulva lactuca seaweed supplemented with a recombinant ulvan lyase or a commercial carbohydrase mixture. J Anim Physiol Anim Nutr (Berl) 2024; 108:1624-1640. [PMID: 38890812 DOI: 10.1111/jpn.14005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/20/2024]
Abstract
Ulva lactuca, a green seaweed, may be an alternative source of nutrients and bioactive compounds for weaned piglets. However, it has a recalcitrant cell wall rich in a sulphated polysaccharide - ulvan - that is indigestible to monogastrics. The objective of this study was to evaluate the effect of dietary incorporation of 7% U. lactuca, combined with carbohydrases supplementation (commercial carbohydrase mixture or recombinant ulvan lyase), on growth performance, nutrient digestibility and gut health parameters (morphology and microbiota) of weaned piglets. The experiment was conducted over 14 days using 40 weaned piglets randomly allocated to one of four experimental diets: a control diet based on wheat-maize-soybean meal, a diet with 7% U. lactuca replacing the control diet (UL), a diet with UL supplemented with 0.005% Rovabio® Excel AP, and a diet with UL supplemented with 0.01% of a recombinant ulvan lyase. The dietary treatments had no major effects on growth performance, nitrogen balance and gut content variables, as well as histological measurements. Contrarily, dry matter and organic matter digestibility decreased with dietary seaweed inclusion, while hemicellulose digestibility increased, suggesting a high fermentability of this cell wall fraction independently of carbohydrases supplementation. Some beneficial microbial populations increased as a consequence of enzymatic supplementation (e.g., Prevotella), while seaweed diets as a whole led to an increased abundance of Shuttleworthia, Anaeroplasma and Lachnospiraceae_NK3A20_group, all related with a healthier gut. It also decreased Lactobacillus when compared to controls, which is possibly related to increased bioavailability of seaweed zinc. This study indicates that, under these experimental conditions, up to 7% dietary U. lactuca has no detrimental effect on piglet growth, despite decreasing acid detergent fibre digestibility. Carbohydrases supplementation of Ulva diets is not required at this incorporation level.
Collapse
Affiliation(s)
- David Miguel Ribeiro
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Mónica M Costa
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisboa, Portugal
| | - Paolo Trevisi
- DISTAL - Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Daniela Filipa Pires Carvalho
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Federico Correa
- DISTAL - Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Cátia F Martins
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisboa, Portugal
| | - Mário Pinho
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisboa, Portugal
| | - Miguel Mourato
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - André M de Almeida
- LEAF - Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - João Pedro Bengala Freire
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisboa, Portugal
| | - José António Mestre Prates
- CIISA - Centre for Interdisciplinary Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Lisboa, Portugal
| |
Collapse
|
2
|
Daza LD, Montealegre MÁ, Reche C, Sandoval-Aldana A, Eim VS, Váquiro HA. Chachafruto starch: Physicochemical characterization, film-forming properties, and 3D printability. Int J Biol Macromol 2023; 247:125795. [PMID: 37442511 DOI: 10.1016/j.ijbiomac.2023.125795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
This work aimed to characterize the physicochemical, film-forming properties, and 3D printability of a nonconventional starch from chachafruto. The chachafruto native starch (CHS) presented an excellent extraction yield (10 % db) and purity (99 % db), along with an oval and round morphology, a smooth surface with few defects, and a mean diameter of 15.4 μm. The typical B-type diffraction pattern was observed in the CHS with a crystallinity of 17.4 %. The starch presented a paste temperature of 66.1 °C, an enthalpy of 11.5 J g-1, and a final viscosity of 596 Brabender Units. The thermal analysis demonstrated good thermal stability. The evaluated film presented a reduction in crystallinity (8.18 %) to the CHS, which generated a good elasticity in the material. Likewise, it presented a continuous structure without cracks, providing good barrier properties (2.3 × 10-9 g∙m-1∙s-1∙Pa-1) and high transparency. Meanwhile, 3D prints prepared with CHS showed good textural properties and high consistency. The morphological analysis showed that the prints generated organized cell structures. However, high concentrations of CHS were not efficient in obtaining 3D prints. The results of this work demonstrate the tremendous industrial potential of chachafruto as an unconventional source of starch and some alternative uses for adding value to the crop.
Collapse
Affiliation(s)
- Luis Daniel Daza
- Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa km. 7.5, 07122 Palma de Mallorca, Spain; Departamento de Producción y Sanidad Vegetal, Facultad Ingeniería Agronómica, Universidad del Tolima, 730006 Ibagué, Colombia.
| | - Miguel Ángel Montealegre
- Departamento de Producción y Sanidad Vegetal, Facultad Ingeniería Agronómica, Universidad del Tolima, 730006 Ibagué, Colombia
| | - Cristina Reche
- Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa km. 7.5, 07122 Palma de Mallorca, Spain
| | - Angélica Sandoval-Aldana
- Departamento de Producción y Sanidad Vegetal, Facultad Ingeniería Agronómica, Universidad del Tolima, 730006 Ibagué, Colombia
| | - Valeria Soledad Eim
- Department of Chemistry, University of the Balearic Islands, Ctra. Valldemossa km. 7.5, 07122 Palma de Mallorca, Spain.
| | - Henry Alexander Váquiro
- Departamento de Producción y Sanidad Vegetal, Facultad Ingeniería Agronómica, Universidad del Tolima, 730006 Ibagué, Colombia.
| |
Collapse
|
3
|
Daza LD, Umaña M, Simal S, Váquiro HA, Eim VS. Non-conventional starch from cubio tuber (Tropaeolum tuberosum): Physicochemical, structural, morphological, thermal characterization and the evaluation of its potential as a packaging material. Int J Biol Macromol 2022; 221:954-964. [PMID: 36108747 DOI: 10.1016/j.ijbiomac.2022.09.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/16/2022] [Accepted: 09/10/2022] [Indexed: 11/28/2022]
Abstract
This work aimed to characterize the physicochemical, structural, morphological, and thermal properties of a non-conventional starch obtained from cubio (Tropaeolum tuberosum), as well as to evaluate the potential use of this native Andean tuber in the preparation of biodegradable packaging. The cubio starch (CUS) showed an intermediated apparent amylose content (31.2 %) accompanied by a high CIE whiteness index (90.8). About the morphology and particle size, the CUS exhibited irregular oval and round shapes and a smooth surface with a mean particle diameter of 14.04 ± 0.1 μm. Although it showed good stability regarding pasting properties, the final viscosity was low. Native CUS exhibits a typical B-type diffraction structure, with a relative crystallinity of 16 %. The resistant starch (RS) fraction of the CUS was 94 %, indicating a low susceptibility to enzymatic hydrolysis. The thermal analysis demonstrated that the CUS showed good thermal stability. Additionally, the films prepared using CUS as raw material showed continuous surfaces without porosities, good thermal stability, and high transparency. The results of this work demonstrate the industrial potential of the CUS as it presents characteristics comparable to commercial potato starch.
Collapse
Affiliation(s)
- Luis Daniel Daza
- Department of Chemistry, University of the Balearic Islands, Ctra Valldemossa, km 7.5, Palma de Mallorca, 07122 Baleares, Spain; Departamento de Producción y Sanidad Vegetal, Facultad Ingeniería Agronómica, Universidad del Tolima, 730006 Ibagué, Colombia.
| | - Mónica Umaña
- Department of Chemistry, University of the Balearic Islands, Ctra Valldemossa, km 7.5, Palma de Mallorca, 07122 Baleares, Spain
| | - Susana Simal
- Department of Chemistry, University of the Balearic Islands, Ctra Valldemossa, km 7.5, Palma de Mallorca, 07122 Baleares, Spain
| | - Henry Alexander Váquiro
- Departamento de Producción y Sanidad Vegetal, Facultad Ingeniería Agronómica, Universidad del Tolima, 730006 Ibagué, Colombia
| | - Valeria Soledad Eim
- Department of Chemistry, University of the Balearic Islands, Ctra Valldemossa, km 7.5, Palma de Mallorca, 07122 Baleares, Spain.
| |
Collapse
|
4
|
Asymmetrical flow field-flow fractionation combined with liquid chromatography enables rapid, quantitative, and structurally informative detection of resistant starch. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|