1
|
Ma W, Tang J, Cheng H, Tian J, Wu Z, Zhou J, Xu E, Chen J. High-Resistant Starch Based on Amylopectin Cluster via Extrusion: From the Perspective of Chain-Length Distribution and Structural Formation. Foods 2024; 13:2532. [PMID: 39200459 PMCID: PMC11353313 DOI: 10.3390/foods13162532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Resistant starch (RS) has the advantage of reshaping gut microbiota for human metabolism and health, like glycemic control, weight loss, etc. Among them, RS3 prepared from pure starch is green and safe, but it is hard to achieve structural control. Here, we regulate the crystal structure of starch with different chain-length distributions (CLDs) via extrusion at low/high shearing levels. The change in CLDs in extruded starch was obtained, and their effects on the fine structure (Dm, dBragg, dLorentz, degree of order and double helix, degree of crystal) of RS and its physicochemical properties were investigated by SAXS, FTIR, XRD and 13C NMR analyses. The results showed that the RS content under a 250 r/min extrusion condition was the highest at 61.52%. Furthermore, the crystalline system induced by high amylopectin (amylose ≤ 4.78%) and a small amount of amylose (amylose ≥ 27.97%) was favorable for obtaining a high content of RS3-modified products under the extruding environment. The control of the moderate proportion of the A chains (DP 6-12) in the starch matrix was beneficial to the formation of RS.
Collapse
Affiliation(s)
- Wen Ma
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.M.); (J.T.); (H.C.); (J.T.)
| | - Junyu Tang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.M.); (J.T.); (H.C.); (J.T.)
| | - Huan Cheng
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.M.); (J.T.); (H.C.); (J.T.)
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China;
| | - Jinhu Tian
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.M.); (J.T.); (H.C.); (J.T.)
| | - Zhengzong Wu
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China;
| | - Jianwei Zhou
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China;
| | - Enbo Xu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.M.); (J.T.); (H.C.); (J.T.)
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China;
| | - Jianchu Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; (W.M.); (J.T.); (H.C.); (J.T.)
| |
Collapse
|
2
|
Marta H, Wijaya C, Sukri N, Cahyana Y, Mohammad M. A Comprehensive Study on Starch Nanoparticle Potential as a Reinforcing Material in Bioplastic. Polymers (Basel) 2022; 14:polym14224875. [PMID: 36433002 PMCID: PMC9693780 DOI: 10.3390/polym14224875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/15/2022] Open
Abstract
Starch can be found in the stems, roots, fruits, and seeds of plants such as sweet potato, cassava, corn, potato, and many more. In addition to its original form, starch can be modified by reducing its size. Starch nanoparticles have a small size and large active surface area, making them suitable for use as fillers or as a reinforcing material in bioplastics. The aim of reinforcing material is to improve the characteristics of bioplastics. This literature study aims to provide in-depth information on the potential use of starch nanoparticles as a reinforcing material in bioplastic packaging. This study also reviews starch size reduction methods including acid hydrolysis, nanoprecipitation, milling, and others; characteristics of the nano-starch particle; and methods to produce bioplastic and its characteristics. The use of starch nanoparticles as a reinforcing material can increase tensile strength, reduce water vapor and oxygen permeability, and increase the biodegradability of bioplastics. However, the use of starch nanoparticles as a reinforcing material for bioplastic packaging still encounters obstacles in its commercialization efforts, due to high production costs and ineffectiveness.
Collapse
Affiliation(s)
- Herlina Marta
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, Bandung 45363, Indonesia
- Correspondence:
| | - Claudia Wijaya
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Nandi Sukri
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Yana Cahyana
- Department of Food Technology, Faculty of Agro-Industrial Technology, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Masita Mohammad
- Solar Energy Research Institute, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
3
|
Wang J, Yu YD, Zhang ZG, Wu WC, Sun PL, Cai M, Yang K. Formation of sweet potato starch nanoparticles by ultrasonic—assisted nanoprecipitation: Effect of cold plasma treatment. Front Bioeng Biotechnol 2022; 10:986033. [PMID: 36185450 PMCID: PMC9523013 DOI: 10.3389/fbioe.2022.986033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Starch nanoparticles (SNPs) were produced from sweet potato starches by ultrasonic treatment combined with rapid nanoprecipitation. The starch concentration, ultrasonic time, and the ratio of starch solution to ethanol were optimized through dynamic light scattering (DLS) technique to obtain SNPs with a Z-average size of 64.51 ± 0.15 nm, poly dispersity index (PDI) of 0.23 ± 0.01. However, after freeze drying, the SNPs showed varying degrees of aggregation depending on the particle size of SNPs before freeze-drying. The smaller the particle size, the more serious the aggregation. Therefore, we tried to treat SNPs with dielectric barrier discharge cold plasma before freeze drying. Properties including morphological features, crystalline structure and apparent viscosity of various starches were measured by field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and rheometer, respectively. The results showed that, after cold plasma (CP) treatment, the aggregation of SNPs during freeze drying was significantly inhibited. Compared to the native sweet potato starch, SNPs showed a higher relative crystallinity and a lower apparent viscosity. After CP treatment, the relative crystallinity of CP SNPs was further higher, and the apparent viscosity was lower. This work provides new ideas for the preparation of SNPs and could promote the development of sweet potato SNPs in the field of active ingredient delivery.
Collapse
Affiliation(s)
- Jian Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Yu-Die Yu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Zhi-Guo Zhang
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Wei-Cheng Wu
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Pei-Long Sun
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Ming Cai
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- *Correspondence: Ming Cai, ; Kai Yang,
| | - Kai Yang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, Zhejiang, China
- *Correspondence: Ming Cai, ; Kai Yang,
| |
Collapse
|