1
|
Xu Y, Wang S, Xin L, Zhang L, Liu H. Interfacial mechanisms, environmental influences, and applications of polysaccharide-based emulsions: A review. Int J Biol Macromol 2024; 293:139420. [PMID: 39746414 DOI: 10.1016/j.ijbiomac.2024.139420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/30/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
To develop stable polysaccharide-based emulsions, many studies have focused on the interfacial behavior of adsorbed polysaccharides. This review first discussed the mechanism of polysaccharides self-assembly at the oil-water interface. It can be concluded that polysaccharides can form a thick and strong interfacial membrane that stabilizes emulsions through steric hindrance and electrostatic interactions. In particular, we also investigated the influence of various conditions (i.e., mechanical stress, heating, pH, enzymatic treatment, and ionic strength) on the architecture and properties of polysaccharide-based emulsions. Additionally, the interactions of polysaccharides with other molecules in the emulsion system were summarized, revealing that co-adsorption further changes their properties. Furthermore, current approaches for monitoring the behavior of adsorbed polysaccharides at the oil/water interface were reviewed, highlighting their advantages and limitations. Lastly, we emphasized the potential of polysaccharides for producing environmental-friendly emulsions in the food industry.
Collapse
Affiliation(s)
- Yan Xu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China.
| | - Liwen Xin
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - Lanxin Zhang
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou 121013, China
| |
Collapse
|
2
|
Sharma M, Bains A, Goksen G, Ali N, Rehman MZ, Chawla P. Arabinogalactans-rich microwave-assisted nanomucilage originated from garden cress seeds as an egg replacement in the production of cupcakes: Market orientation and in vitro digestibility. Int J Biol Macromol 2024; 282:136929. [PMID: 39490856 DOI: 10.1016/j.ijbiomac.2024.136929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
The increasing demand for functional foods arises from concerns regarding food allergies, dietary restrictions, and ethical considerations related to egg consumption. Consequently, this study investigates the feasibility of using arabinogalactan-rich nanomucilage derived from garden cress seeds as an egg replacement in cupcake production. The microwave-assisted process resulted in 23.28 ± 0.34 % yield and it demonstrated a nanoscale particle size of 146.3 ± 2.67 nm. Smooth surfaces with spherical concavities-shaped particles were observed containing carbohydrate and protein-based functional groups. A market survey involving 250 participants indicated a notable interest in egg-free cupcakes, with 75% of respondents determining a willingness to sample them. Cupcakes containing 15% nanomucilage (C3) exhibited comparable sensory acceptability and similar physicochemical properties, along with significantly improved hardness (751.03 ± 1.24 g), resilience (23.98 ± 0.56), and chewiness (513.75 ± 1.37 g) when compared to egg-based cupcakes. In vitro digestibility exhibited a significant reduction in the area under the curve for reducing sugars in C3 (155.68 mg g-1) relative to the control (238.83 mg g-1), suggesting a lower glycemic index. Hence, this study reveals that garden cress seed mucilage could be an effective egg substitute in cupcakes, offering comparable sensory and textural attributes with potentially lower glycemic index.
Collapse
Affiliation(s)
- Madhu Sharma
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, PO Box 2457, Saudi Arabia
| | - Mohd Ziaur Rehman
- Department of Finance, College of Business Administration, King Saud University, PO Box 71115, Riyadh 11587, Saudi Arabia
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, India.
| |
Collapse
|
3
|
Pu X, Yu S, Cui Y, Tong Z, Wang C, Wang L, Han J, Zhu H, Wang S. Stability of electrostatically stabilized emulsions and its encapsulation of astaxanthin against environmental stresses: Effect of sodium caseinate-sugar beet pectin addition order. Curr Res Food Sci 2024; 9:100821. [PMID: 39253722 PMCID: PMC11381615 DOI: 10.1016/j.crfs.2024.100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/23/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Two addition orders, i.e., the layer-by-layer (L) and mixed biopolymer (M) orders, were used to generate sodium caseinate - sugar beet pectin electrostatically stabilized o/w emulsions with 0.5% oil and varying sodium caseinate: sugar beet pectin ratios (3:1-1:3) at pH 4.5. Emulsion stability against environmental stresses (i.e., pH, salt addition, thermal treatment, storage and in vitro simulated gastrointestinal digestion) and its astaxanthin encapsulation against degradation during storage and in vitro digestion were evaluated. Results indicated that a total biopolymer concentration of 0.5% was optimal, with the preferred sodium caseinate-sugar beet pectin ratios for L and M emulsions being 1:1 and 1:3, respectively. L emulsions generally exhibited smaller droplet diameters than M emulsions across all ratios, except at 1:3. Lowering the pH to 1.5 substantially reduced the net negative charge of all emulsions, with only L emulsions precipitating at pH 3. M emulsions showed greater tolerance to salt addition, remaining stable up to 500 mM sodium and calcium concentrations, whereas L emulsions destabilized at levels exceeding 50 mM and 30 mM, respectively. All emulsions were stable when heated at 37 °C or 90 °C for 30 min. Astaxanthin degradation rates increased with prolonged storage, reaching 61.66% and 54.08% by day 7 for L and M emulsions, respectively. Encapsulation efficiency of astaxanthin in freshly prepared M emulsions (86.85%) was significantly higher compared to L emulsions (72.82%). M emulsions had 30% and 25% higher encapsulation efficiency of astaxanthin than L emulsions after in vitro digestion for 120 min and 240 min respectively. This study offers suggestions for interface design and process optimization to improve the performance of protein-polysaccharide emulsion systems, such as in beverages and dairy products, as well as their delivery effect of bioactives.
Collapse
Affiliation(s)
- Xiaolu Pu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 China
| | - Shuaipeng Yu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 China
| | - Yue Cui
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 China
| | - Ziqian Tong
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 China
| | - Changyan Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 China
| | - Lin Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 China
- Junlebao Dairy Group, Shijiazhuang, Hebei 050221 China
| | - Junhua Han
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 China
| | - Hong Zhu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 China
| | - Shijie Wang
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018 China
- Junlebao Dairy Group, Shijiazhuang, Hebei 050221 China
| |
Collapse
|
4
|
Zhang Y, Sun X, Yang B, Li F, Yu G, Zhao J, Li Q. Comprehensive Assessment of Polysaccharides Extracted from Squash by Subcritical Water under Different Conditions. Foods 2024; 13:1211. [PMID: 38672884 PMCID: PMC11049192 DOI: 10.3390/foods13081211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The effects of subcritical water microenvironment on the physiochemical properties, antioxidant activity and in vitro digestion of polysaccharides (SWESPs) from squash were investigated. After single-factor experiments, twenty samples were successfully prepared at different extraction temperatures (110, 130, 150, 170 and 190 °C) and extraction times (4, 8, 12 and 16 min). Under a low temperature environment, the whole process was mainly based on the extraction of SWESP. At this time, the color of SWESP was white or light gray and the molecular mass was high. When the temperature was 150 °C, since the extraction and degradation of SWESP reached equilibrium, the maximum extraction rate (18.67%) was reached at 150 °C (12 min). Compared with traditional methods, the yield of squash SWESP extracted by subcritical water was 3-4 times higher and less time consuming. Under high temperature conditions, SWESPs were degraded and their antioxidant capacity and viscosity were reduced. Meanwhile, Maillard and caramelization reactions turned the SWESPs yellow-brown and produced harmful substances. In addition, different SWESPs had different effects on in vitro digestion. In brief, SWESPs prepared under different conditions have different structures and physicochemical properties, allowing the obtainment of the required polysaccharide. Our results show that squash polysaccharides prepared in different subcritical water states had good development potential and application in the food industry.
Collapse
Affiliation(s)
- Yu Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (X.S.); (B.Y.); (J.Z.)
- China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Xun Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (X.S.); (B.Y.); (J.Z.)
- China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Bingjie Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (X.S.); (B.Y.); (J.Z.)
- China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Fei Li
- College of Life Science, Qingdao University, Qingdao 266071, China;
| | - Guoyong Yu
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen 518172, China;
| | - Jing Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (X.S.); (B.Y.); (J.Z.)
- China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| | - Quanhong Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.Z.); (X.S.); (B.Y.); (J.Z.)
- China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture, Beijing 100083, China
| |
Collapse
|
5
|
Gao Y, Wang S, Liu H, Gu Y, Zhu J. Design and characterization of low salt myofibrillar protein-sugar beet pectin double-crosslinked gels pretreated by ultrasound and konjac glucomannan: Conformational and gelling properties. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
6
|
Chen H, Guo X, Li J, Liu Z, Hu Y, Tao X, Song S, Zhu B. Pickering emulsions synergistically stabilized by sugar beet pectin and montmorillonite exhibit enhanced storage stability and viscoelasticity. Int J Biol Macromol 2023; 242:124788. [PMID: 37164140 DOI: 10.1016/j.ijbiomac.2023.124788] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/16/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Sugar beet pectin (SBP) is a naturally occurring emulsifying type of pectin fabricated into nanocomposites with montmorillonite (MMT) and then introduced as a stabilizer for high internal phase emulsions (HIPEs). SBP-MMT composites performed well in emulsifying medium-chain triglyceride with an oil volume fraction (φ) of 0.1-0.85 and SBP/MMT mass ratios of 1:0.1-1:0.75. The two representative high internal phase emulsions stabilized by SBP-MMT composites at different SBP/MMT mass ratios exhibited good stability against creaming and coalescence. In these emulsion systems, SBP and MMT formed a network in the continuous phase that markedly improved the rheological properties, including the storage modulus (by 3 orders of magnitude). Confocal light scattering microscopy analysis indicated that a fraction of MMT could work synergistically with SBP in adsorbing on oil droplet surfaces, enhancing stability. SBP-MMT composites stabilized high internal phase emulsions destabilized after the freeze-thaw treatment (-40 °C for 20 h and 25 °C for 4 h) but could be facilely re-emulsified via high-speed shearing. The gastrointestinal digestion behaviors were also modified by stabilizing SBP and MMT. Overall, this work reveals a hitherto undocumented strategy for fabricating highly stable emulsions based on SBP-MMT composites which have huge prospects for application in the food and related industries.
Collapse
Affiliation(s)
- Hualei Chen
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China.
| | - Jinjin Li
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Zhengqi Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Xiaoya Tao
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
| | - Shuang Song
- National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian 116034, China
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study and Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, Dalian 116034, China.
| |
Collapse
|
7
|
Influences of Ultrasonic Treatments on the Structure and Antioxidant Properties of Sugar Beet Pectin. Foods 2023; 12:foods12051020. [PMID: 36900538 PMCID: PMC10001074 DOI: 10.3390/foods12051020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/08/2023] Open
Abstract
The objective of this study was to explore the structural changes and oxidation resistance of ultrasonic degradation products of sugar beet pectin (SBP). The changes in the structures and antioxidant activity between SBP and its degradation products were compared. As the ultrasonic treatment time increased, the content of α-D-1,4-galacturonic acid (GalA) also increased, to 68.28%. In addition, the neutral sugar (NS) content, esterification degree (DE), particle size, intrinsic viscosity and viscosity-average molecular weight (MV) of the modified SBP decreased. Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM) were used to study the degradation of the SBP structure after ultrasonication. After ultrasonic treatment, the DPPH and ABTS free radical scavenging activities of the modified SBP reached 67.84% and 54.67% at the concentration of 4 mg/mL, respectively, and the thermal stability of modified SBP was also improved. All of the results indicate that the ultrasonic technology is an environmentally friendly, simple, and effective strategy to improve the antioxidant capacity of SBP.
Collapse
|