1
|
Tao Y, Cai J, Wang P, Zhou L, Chai J, Wang Z, Xu X. Improving the rheological and tribological properties of emulsion-filled gel by ultrasound-assisted cross-linked myofibrillar protein emulsion: Insight into the simulation of oral processing. ULTRASONICS SONOCHEMISTRY 2024; 112:107205. [PMID: 39700886 DOI: 10.1016/j.ultsonch.2024.107205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/01/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
This study aimed to investigate the effect of ultrasound-assisted cross-linking of myofibrillar protein (MP) emulsions on the enhancement of rheological and tribological properties of emulsion-filled gel. The micro-morphology, texture, water hold capacity (WHC), chemical forces, linear shear rheological behavior, large amplitude oscillatory shear (LAOS), oil-released content, and simulated oral friction of the water-filled gel (WP-G), the original MP fabricated emulsion-filled gel (NP-G), the crosslinked MP fabricated emulsion-filled gel (NPG-G), and the ultrasound treated crosslinked MP fabricated emulsion-filled gel (NPGU-G) were determined. Results indicated that emulsion as filler phase significantly improved the rheological and tribological properties of the gel, especially for the ultrasound-assisted MP emulsion-filled gel (NPGU-G) group, the smaller droplet size of emulsion contributed to the density and structural uniformity of the gel. Based on the excellent hydrophobic interaction between emulsion droplets and protein matrix, the NPGU-G group presented enhanced hardness, gumminess, chewiness, hydrophobic interaction, creep-recovery behavior, and the retarded transition of nonlinear response. Furthermore, the lower oil-released content and reduced friction coefficient in the NPGU-G group also indicated that the smaller emulsion droplets contributed to the gel quality and mouth lubrication. Consequently, this study demonstrated that ultrasound-assisted cross-linked MP emulsion with smaller droplets can be successfully filled into gel structures, form a denser network structure, and improve the quality of the emulsion-filled gel.
Collapse
Affiliation(s)
- Ye Tao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaming Cai
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Peng Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiale Chai
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zixu Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Key Laboratory of Meat Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Sun Y, Zhao M, Liu Z, Shi H, Zhang X, Zhao Y, Ma Z, Yu G, Xia G, Shen X. Relationship between the interfacial properties of lactoferrin-(-)-epigallocatechin-3-gallate covalent complex and the macroscopic properties of emulsions. Food Chem 2024; 460:140536. [PMID: 39089037 DOI: 10.1016/j.foodchem.2024.140536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/03/2024]
Abstract
This study explored the relationship between the interfacial behavior of lactoferrin-(-)-epigallocatechin-3-gallate covalent complex (LF-EGCG) and the stability of high internal phase Pickering emulsions (HIPPEs). The formation of covalent bond between lactoferrin and polyphenol was verified by the increase in molecular weight. In LF-EGCG group, the surface hydrophobicity, interfacial pressure, and adsorption rate were decreased, while the molecular flexibility, interfacial film viscoelasticity, and interfacial protein content were increased. Meanwhile, LF-EGCG HIPPE possessed reduced droplet size, increased ζ-potential and stability. Rheology showed the viscoelasticity, structural recovery and gel strength of LF-EGCG HIPPE were improved, giving HIPPE inks better 3D printing integrity and clarity. Moreover, the free fatty acids (FFA) release of LF-EGCG HIPPE (62.6%) was higher than that of the oil group (50.1%). Therefore, covalent treatment effectively improved the interfacial properties of protein particles and the stability of HIPPEs. The macroscopic properties of HIPPEs were positively regulated by the interfacial properties of protein particles. The result suggested that the stability of emulsions can be improved by regulating the interfacial properties of particles.
Collapse
Affiliation(s)
- Ying Sun
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Mantong Zhao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Zhongyuan Liu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Haohao Shi
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Xueying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Yongqiang Zhao
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Zhenhua Ma
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Gang Yu
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, College of Food Science and Technology, Hainan University, Hainan 570228, China.; Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China..
| | - Xuanri Shen
- College of Food Science and Technology, Hainan Tropical Ocean University, Sanya 572022, China
| |
Collapse
|
3
|
Yao XN, Dong RL, Li YC, Lv AJ, Zeng LT, Li XQ, Lin Z, Qi J, Zhang CH, Xiong GY, Zhang QY. pH-shifting treatment improved the emulsifying ability of gelatin under low-energy emulsification. Int J Biol Macromol 2024; 282:136979. [PMID: 39490473 DOI: 10.1016/j.ijbiomac.2024.136979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
The effects of pH-shifting treatments (pH 3, 5, 7, 9, and 11) on the stability of gelatin emulsions made by low-energy stirring were investigated. pH-shifting treatments significantly enhanced the ESI and EAI of the emulsion (P < 0.05) and reduced its particle size (P < 0.05) under low-energy emulsifying conditions. The pH11-7 shifting treatment significantly increased the degree of depolymerization and the level of ordered structure of gelatin (P < 0.05). These transformations resulted in a significant increase in the exposure of hydrophobic and negatively charged residues (P < 0.05) on the surface of gelatin, facilitating a faster adsorption rate of gelatin onto the oil-water interface as well as an increase in the amount of gelatin adsorbed at the interface. Moreover, the alkali-shifting treatment promoted the formation of a thin viscoelastic interfacial film, which contributed to the enhanced stability of the emulsion.
Collapse
Affiliation(s)
- Xiu-Ning Yao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Rui-Ling Dong
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Yu-Cong Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Ao-Jing Lv
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Li-Ting Zeng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Xue-Qing Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Zhou Lin
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China
| | - Jun Qi
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Food and Nutrition, Anhui Agricultural University, Hefei 23006, China.
| | - Chun-Hui Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Guo-Yuan Xiong
- School of Food Engineering, Anhui Science and Technology University, Chuzhou 233100, China
| | - Qing-Yong Zhang
- Shandong Province Grilled Chicken Co., Ltd., Dezhou 253000, China
| |
Collapse
|
4
|
Liu T, Meng H, Guo X, Liu Y, Zhang J. Influences of different ultrasonic treatment intensities on the molecular chain conformation and interfacial behavior of sugar beet pectin. Int J Biol Macromol 2024; 275:133643. [PMID: 38964680 DOI: 10.1016/j.ijbiomac.2024.133643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 07/06/2024]
Abstract
In this study, the effects of different ultrasonic treatment intensities (57, 170, and 283 W/cm2) on the chemical composition, molecular chain characteristics, crystal structure, micromorphology, interfacial adsorption behavior and emulsifying properties of sugar beet pectin (SBP) were investigated. Ultrasonic treatment did not change the types of SBP monosaccharides, but it had impacts on their various monosaccharide contents. Moreover, the feruloylated, acetyl, and methoxy groups of SBP also undergo varying degrees of changes. The increase in ultrasonic treatment intensity led to transition in the molecular chain conformation of SBP from rigid semi-flexible chains to flexible chains, accompanied by modification in its crystal structure. Microstructural analysis of SBP confirmed the significant change in molecular chain conformation. Modified SBP could form an elastic interfacial film with higher deformation resistance on the oil-water interface. The SBP sample modified with 170 W/cm2 exhibited better emulsifying properties owing to its better interfacial adsorption behavior. Moreover, the emulsions prepared with modified SBP exhibited better stability capability under different environmental stresses (pH value, salt ion concentration, heating temperature and freeze-thaw treatment). The results revealed that the ultrasonic technology is useful to improve the emulsifying properties of SBP.
Collapse
Affiliation(s)
- Ting Liu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Hecheng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaobing Guo
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| | - Yibo Liu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory of Agricultural Product Processing and Quality Control of Specialty (Co-construction by Ministry and Province), School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China.
| |
Collapse
|
5
|
Wei X, Li H, Liu Y, Lin Q, Wu X, Wu W. Effect of epigallocatechin-3-gallate modification on the structure and emulsion stability of rice bran protein in the presence of soybean protein isolate. Int J Biol Macromol 2024; 263:130269. [PMID: 38387630 DOI: 10.1016/j.ijbiomac.2024.130269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/11/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
For improving the emulsion stability of rice bran protein (RBP), RBP was modified by different concentrations of epigallocatechin-3-gallate (EGCG) in the presence of soybean protein isolate (SPI), and RBP-EGCG-SPI conjugate was prepared by alkaline pH-shifting. The results showed that the addition of EGCG led to an increase in the bound phenol content and the flexibility of the secondary structure, a decrease in the free sulfhydryl and disulfide bond content of the RBP-EGCG-SPI conjugate. EGCG covalently bound to RBP and SPI through non-disulfide bonds. When the concentration of EGCG was 10 % (w/v), the emulsifying activity index and emulsion stability index of conjugate reached the maximum value (36.61 m2/g and 255.61 min, respectively), and the conjugate had the best emulsion stability. However, an EGCG concentration above 10 % (w/v) negatively affected the emulsion stability, with increasing particle size due to protein aggregation. Summarily, the modification of EGCG improved the emulsion stability of conjugate by regulating the spatial structure of RBP-EGCG-SPI conjugate. The work provided an important guide to further improve the emulsion stability of RBP.
Collapse
Affiliation(s)
- Xialing Wei
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Helin Li
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Yu Liu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Qinlu Lin
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China
| | - Xiaojuan Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| | - Wei Wu
- Faculty of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, China.
| |
Collapse
|
6
|
Zhang F, Wang P, Huang M, Xu X. Modulating the properties of myofibrillar proteins-stabilized high internal phase emulsions using chitosan for enhanced 3D-printed foods. Carbohydr Polym 2024; 324:121540. [PMID: 37985113 DOI: 10.1016/j.carbpol.2023.121540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
The 3D printability of myofibrillar proteins (MP)-based high internal phase emulsions (HIPEs) is a concern. This study investigated the influence of chitosan (CS) concentrations (0-1.5 wt%) on the physicochemical properties, microstructure, rheological properties, and stability of MP-based HIPEs. Results showed that the interaction between MP and CS efficiently modulated the formation of HIPEs by modifying interfacial tension and network structure. The addition of CS (≤ 0.9 wt%, especially at 0.6 wt%) acted as a spatial barrier, filling the network between droplets, which triggered electrostatic repulsion between CS and MP particles, enhancing MP's interfacial adsorption capacity. Consequently, droplet sizes decreased, emulsion stability increased, and HIPEs became more stable during freeze-thaw cycles, centrifugation, and heat treatment. The rheological analysis further demonstrated that the low energy storage modulus (G', 330.7 Pa) of MP-based HIPEs exhibited sagging and deformation during the self-supporting phase. However, adding CS (0.6 wt%) significantly increased the G' (1034 Pa) of MP-based HIPEs. Conversely, increasing viscosity and spatial resistance attributed to CS (> 0.9 wt%) noticeably caused larger droplet sizes, thereby diminishing the printability of MP-based HIPEs. These findings provide a promising strategy for developing high-performance and consumer-satisfaction 3D printing inks using MP-stabilized HIPEs.
Collapse
Affiliation(s)
- Feiyu Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, National Center of Meat Quality and Safety Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Peng Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, National Center of Meat Quality and Safety Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Mingyuan Huang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, National Center of Meat Quality and Safety Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, National Center of Meat Quality and Safety Control, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
7
|
Zhang H, Zhang W, Xu X, Zhao X. Aggregate Size Modulates the Oil/Water Interfacial Behavior of Myofibrillar Proteins: Toward the Thicker Interface Film and Disulfide Bond. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:17782-17797. [PMID: 38033267 DOI: 10.1021/acs.langmuir.3c02394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Myofibrillar protein (MP) aggregate models have been established to elucidate the correlation between their aggregate sizes and interfacial properties. The interfacial layer thickness was measured by the polystyrene latex method and quartz crystal microbalance with dissipation measurement. Interfacial conformations were then characterized in situ (front-surface fluorescence spectroscopy) and ex situ (reactive sulfhydryl group and secondary structure measurement following MP displacement). The viscoelasticity of the interfacial film and its resistance to surfactant-induced competitive displacement were reflected by the dilatational rheology and dynamic interfacial tension with the bulk phase exchange. Finally, we compared the findings of competitive displacement before/after adding a sulfhydryl-blocking agent, N-ethylmaleimide, to highlight the role of S-S linkage on interfacial film formation and stability. We substantiated that the aggregate size of the MP governed their interfacial properties. Small-sized aggregates exhibited more ordered secondary structures on the oil-water interface, which was conducive to the adsorption ratio of the protein and the adsorption dynamics. Although larger aggregates lowered the diffusion rate during interfacial film formation, they allowed the thicker and more viscoelastic interfacial film to be constructed afterward through more disulfide bond formation, resulting in greater resistance to surfactant-induced competitive displacement.
Collapse
Affiliation(s)
- Haozhen Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology; Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Weiyi Zhang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology; Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology; Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Xue Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, Ministry of Education; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology; Nanjing Agricultural University, Nanjing 210095, P. R. China
| |
Collapse
|
8
|
Tao Y, Wang P, Xu X, Chen J, Huang M, Zhang W. Effects of ultrasound treatment on the morphological characteristics, structures and emulsifying properties of genipin cross-linked myofibrillar protein. ULTRASONICS SONOCHEMISTRY 2023; 97:106467. [PMID: 37290150 PMCID: PMC10279922 DOI: 10.1016/j.ultsonch.2023.106467] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/20/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Genipin is a natural crosslinker that improves the functional properties of proteins by modifying its structures. This study aimed to investigate the effects of sonication on the emulsifying properties of different genipin concentration-induced myofibrillar protein (MP) cross-linking. The structural characteristics, solubility, emulsifying properties, and rheological properties of genipin-induced MP crosslinking without sonication (Native), sonication before crosslinking (UMP), and sonication after crosslinking (MPU) treatments were determined, and the interaction between genipin and MP were estimated by molecular docking. The results demonstrated that hydrogen bond might be the main forces for genipin binding to the MP, and 0.5 μM/mg genipin was a desirable concentration for protein cross-linking to improve MP emulsion stability. Ultrasound treatment before and after crosslinking were better than Native treatment to improve the emulsifying stability index (ESI) of MP. Among the three treatment groups at the 0.5 μM/mg genipin treatment, the MPU treatment group showed the smallest size, most uniform protein particle distribution, and the highest ESI (59.89%). Additionally, the highest α-helix (41.96%) in the MPU + G5 group may be conducive to the formation of a stable and multilayer oil-water interface. Furthermore, the free groups, solubility, and protein exposure extent of the MPU groups were higher than those of UMP and Native groups. Therefore, this work suggests that the treatment of cross-linking followed by ultrasound (MPU) could be a desirable approach for improving the emulsifying stability of MP.
Collapse
Affiliation(s)
- Ye Tao
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Peng Wang
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xinglian Xu
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| | - Jiahui Chen
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Mingyuan Huang
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Weiyi Zhang
- Key Laboratory of Meat Processing, Ministry of Agriculture, State Key Lab of Meat Quality Control and Cultured Meat Development, Ministry of Science and Technology, Jiangsu Collaborative Innovation Center of Meat Production and Processing, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| |
Collapse
|
9
|
Qiao X, Liu F, Kong Z, Yang Z, Dai L, Wang Y, Sun Q, McClements DJ, Xu X. Pickering emulsion gel stabilized by pea protein nanoparticle induced by heat-assisted pH-shifting for curcumin delivery. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2023.111504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
10
|
Shen Q, Dai H, Wen L, Zheng W, Li B, Dai J, Li B, Chen Y. Effects of pH-shifting treatments on the emulsifying properties of rice protein isolates: Quantitative analysis of interfacial protein layer. Food Res Int 2023; 164:112306. [PMID: 36737901 DOI: 10.1016/j.foodres.2022.112306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022]
Abstract
For the limitation of poor solubility and interfacial adsorption capacity of rice protein isolates (RPI), in this work the effects of pH-shifting treatments on the emulsifying properties of RPI were investigated. The results showed that the particle size of the emulsion stabilized by alkaline pH-shifting treated RPI was smaller than that stabilized by acid pH-shifting treated RPI. In addition, the RPI-10 stabilized emulsion showed a more uniform particle size distribution, which was explained by its high emulsifying activity and stability (EAI: 49.5 m2/g, ESI: 59.5 min). The interface rheology results showed that the alkaline pH-shifting treatment could promote the protein rearrangement and subsequently formed interface film with higher rate of protein penetration and rearrangement. The quantitative analysis of adsorbed proteins in the RPI-10 stabilized emulsion showed that glutelin-type isoforms as major proteins in RPI were increased at the oil-water interface for their balanced distribution of the hydrophilic and hydrophobic amino acid group. These quantitative and interfacial rheology analysis could improve deep understanding of the interfacial properties of pH-shifting treated RPI, and promote the development of application in grain protein stabilized emulsion.
Collapse
Affiliation(s)
- Qian Shen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongmin Dai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Luming Wen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Beixi Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Dai
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Bioengineering, Hubei University of Technology, Wuhan 430068, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yijie Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| |
Collapse
|
11
|
Castro-Criado D, Jiménez-Rosado M, Perez-Puyana V, Romero A. Soy Protein Isolate as Emulsifier of Nanoemulsified Beverages: Rheological and Physical Evaluation. Foods 2023; 12:foods12030507. [PMID: 36766036 PMCID: PMC9914127 DOI: 10.3390/foods12030507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
The production of biologically active molecules or the addition of new bioactive ingredients in foods, thereby producing functional foods, has been improved with nanoemulsion technology. In this sense, the aim of this work was to develop nanoemulsified beverages as potential candidates for the encapsulation of bioactive compounds, whose integrity and release across the intestinal tract are controlled by the structure and stability of the interfaces. To achieve this, firstly, a by-product rich-in protein has been evaluated as a potential candidate to act as an emulsifier (chemical content, amino acid composition, solubility, ζ-potential and surface tension were evaluated). Later, emulsions with different soy protein isolate concentrations (0.5, 1.0, 1.5 and 2.0 wt%), pH values (2, 4, 6 and 8) and homogenization pressures (100, 120 and 140 PSI) were prepared using a high-pressure homogenizer after a pre-emulsion formation. Physical (stability via Backscattering and drop size evolution) and rheological (including interfacial analysis) characterizations of emulsions were carried out to characterize their potential as delivery emulsion systems. According to the results obtained, the nanoemulsions showed the best stability when the protein concentration was 2.0 wt%, pH 2.0 and 120 PSI was applied as homogenization pressure.
Collapse
Affiliation(s)
- Daniel Castro-Criado
- Department of Chemical Engineering, Escuela Politécnica Superior, 41011 Sevilla, Spain
- Correspondence: (D.C.-C.); (A.R.)
| | | | - Víctor Perez-Puyana
- Department of Chemical Engineering, Facultad de Química, 41012 Sevilla, Spain
| | - Alberto Romero
- Department of Chemical Engineering, Facultad de Química, 41012 Sevilla, Spain
- Correspondence: (D.C.-C.); (A.R.)
| |
Collapse
|
12
|
Niu H, Wang W, Dou Z, Chen X, Chen X, Chen H, Fu X. Multiscale combined techniques for evaluating emulsion stability: A critical review. Adv Colloid Interface Sci 2023; 311:102813. [PMID: 36403408 DOI: 10.1016/j.cis.2022.102813] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Emulsions are multiscale and thermodynamically unstable systems which will undergo various unstable processes over time. The behavior of emulsifier molecules at the oil-water interface and the properties of the interfacial film are very important to the stability of the emulsion. In this paper, we mainly discussed the instability phenomena and mechanisms of emulsions, the effects of interfacial films on the long-term stability of emulsions and summarized a set of systematic multiscale combined methods for studying emulsion stability, including droplet size and distribution, zeta-potential, the continuous phase viscosity, adsorption mass and thickness of the interfacial film, interfacial dilatational rheology, interfacial shear rheology, particle tracking microrheology, visualization technologies of the interfacial film, molecular dynamics simulation and the quantitative evaluation methods of emulsion stability. This review provides the latest research progress and a set of systematic multiscale combined techniques and methods for researchers who are committed to the study of oil-water interface and emulsion stability. In addition, this review has important guiding significances for designing and customizing interfacial films with different properties, so as to obtain emulsion-based delivery systems with varying stability, oil digestibility and bioactive substance utilization.
Collapse
Affiliation(s)
- Hui Niu
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China; SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China
| | - Wenduo Wang
- School of Food Science and Technology, Guangdong Ocean University, Yangjiang 529500, Guangdong, PR China
| | - Zuman Dou
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Xianwei Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, PR China
| | - Haiming Chen
- Hainan University-HSF/LWL Collaborative Innovation Laboratory, School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China; Maritime Academy, Hainan Vocational University of Science and Technology, 18 Qiongshan Road, Haikou 571126, PR China.
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou, PR China.
| |
Collapse
|
13
|
Aslan Türker D, Göksel Saraç M, Doğan M. Determination of the best interaction of inulin with different proteins by using interfacial rheology: the relationship with the emulsion activity and stability in emulsion systems. INTERNATIONAL JOURNAL OF FOOD ENGINEERING 2022. [DOI: 10.1515/ijfe-2022-0212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
This study aimed to develop functional emulsions with dietary fibre/proteins and to examine the role of interfacial rheological properties on the emulsion stability. Emulsions with inulin and various animal/vegetable proteins were prepared, and their emulsifying and interfacial rheological properties were appraised for their possible applications in stabilizing oil-in-water emulsions. Interfacial measurements including the frequency, time and strain sweep test were determined depending on the protein differences. The results revealed that the adsorption behaviour of proteins at the two interfaces was quite different. The apparent viscosity (η
50) of the emulsions ranged between 0.006 and 0.037 Pa s. The highest interfacial viscosity (η
i) values at low shear rates were determined in the mixture of egg protein-inulin at the oil/water interface. In particular, the interfacial properties of egg protein were not similar to those of other proteins. This study indicated that interfacial rheological properties and emulsifying properties of the proteins were influenced by the presence of inulin which contributes to the existing body of knowledge on the preparation of the prebiotic emulsions with proteins.
Collapse
Affiliation(s)
- Duygu Aslan Türker
- Department of Food Engineering , Erciyes University, Engineering College , 38039 Kayseri Türkiye
| | - Meryem Göksel Saraç
- Food Technology Department , Cumhuriyet University, Yıldızeli Vocational College , 58500 Sivas , Türkiye
| | - Mahmut Doğan
- Department of Food Engineering , Erciyes University, Engineering College , 38039 Kayseri Türkiye
| |
Collapse
|
14
|
Wang B, Wang P, Xu X, Zhou G. Structural transformation of egg white protein particles modified by preheating combined with pH-shifting: Mechanism of enhancing heat stability. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Zhang W, Xu X, Zhao X, Zhou G. Insight into the oil polarity impact on interfacial properties of myofibrillar protein. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
16
|
Choe U, Chang L, Ohm JB, Chen B, Rao J. Structure modification, functionality and interfacial properties of kidney bean (Phaseolus vulgaris L.) protein concentrate as affected by post-extraction treatments. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
17
|
Effect of non-crosslinked polymer (ADDA) on acid-rock reactions: synthesis and thickening laws. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Confirmation and understanding the potential emulsifying characterization of persimmon pectin: From structural to diverse rheological aspects. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|