1
|
Wang Y, Ou X, Al-Maqtari QA, He HJ, Othman N. Evaluation of amylose content: Structural and functional properties, analytical techniques, and future prospects. Food Chem X 2024; 24:101830. [PMID: 39347500 PMCID: PMC11437959 DOI: 10.1016/j.fochx.2024.101830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Amylose content (AC) is critical in evaluating starch properties, significantly influencing the food industry and human nutrition. Although amylose is not completely linear, its unique structure makes it a key research focus across various scientific fields. Understanding amylose's structural and functional properties is essential for its applications in medical, nutritional, and industrial sectors. Accurate determination of AC, from simple qualitative assessments to precise quantitative measurements, is vital for effectively processing and using starch-rich products. The choice of AC determination method depends on the specific application and the required accuracy and detail. This review summarizes amylose's structural and functional characteristics and recent advancements in qualitative and quantitative AC determination techniques. It also provides insights into future trends and prospects for these technologies, emphasizing the need for more rapid, convenient, accurate, and customizable methods. In conclusion, advancements in amylose determination should enhance accuracy, speed, and ease of use to improve quality control and applications across various sectors while expanding our understanding of amylose and its functionalities.
Collapse
Affiliation(s)
- Yuling Wang
- School of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xingqi Ou
- School of Agriculture, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Qais Ali Al-Maqtari
- Micropollutant Research Centre (MPRC), Institute for Integrated Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Parit Raja, Batu Pahat, Johor, Malaysia
- Department of Food Science and Nutrition, Faculty of Agriculture, Food, and Environment, Sana'a University, Sana'a, Yemen
| | - Hong-Ju He
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
| | - Norzila Othman
- Micropollutant Research Centre (MPRC), Institute for Integrated Engineering, Universiti Tun Hussein Onn Malaysia (UTHM), 86400 Parit Raja, Batu Pahat, Johor, Malaysia
| |
Collapse
|
2
|
Yang L, Guo X, Qin Y, Ji N, Dai L, Sun Q. Different effects of pea protein on the properties and structures of starch gel at low and high solid concentrations. Int J Biol Macromol 2024; 269:132060. [PMID: 38719014 DOI: 10.1016/j.ijbiomac.2024.132060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/28/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
In the context of starch-protein composite gels, the influence of protein on gel formation significantly shapes the textural attributes of starch gels, leading to distinct outcomes. This study aimed to evaluate how different ratios of pea protein (PP) affect the properties and structures of starch-protein composite gels at low (10 wt%) and high (40 wt%) solid concentrations. The addition of PP had opposite effects on the two gels. Compared to the pure starch gel, the low-concentration composite gel (LCG) with 20 % PP experienced a 48.90 ± 0.33 % reduction in hardness, and the storage modulus (G') decreased from 14,100 Pa to 5250 Pa, indicating a softening effect of PP on LCG. Conversely, the hardness of the high-concentration composite gel (HCG) with 20 % PP exhibited a 62.19 ± 0.03 % increase in hardness, and G' increased from 12,100 Pa to 41,700 Pa, highlighting the enhancing effect of PP on HCG. SEM and fluorescence microscopy images showed that PP induced uneven network sizes in LCG, while HCG with a PP content of 20 %, PP, together with starch, formed a three-dimensional network. This study provides valuable insights and guidance for the design and production of protein-enriched starch gel products with different textural properties.
Collapse
Affiliation(s)
- Lu Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Xinru Guo
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Yang Qin
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, China
| | - Na Ji
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China.
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao 266109, China; Academy of Dongying Efficient Agricultural Technology and Industry on Saline and Alkaline Land in Collaboration with Qingdao Agricultural University, China.
| |
Collapse
|
3
|
Zhang Y, Wu F, Wang J, Xu M, Cao S, Hu Y, Luan G. Impacts of ethanol-plasticization and extrusion on development of zein network and structure of zein-starch dough. Food Chem 2024; 433:137351. [PMID: 37688829 DOI: 10.1016/j.foodchem.2023.137351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/29/2023] [Accepted: 08/28/2023] [Indexed: 09/11/2023]
Abstract
To improve the viscoelasticity of zein in gluten-free dough, ethanol-plasticization and extrusion modification were employed. The peak viscosity of UZS (unextruded zein-starch) flour and EZS (extruded zein-starch) flour with ethanol (10 %, v/v) increased from 1340.0 to 1996.5 mPa·s and 1336.3 to 2291.5 mPa·s, and the bound bromophenol blue increased from 7.1 μg to 10.6 μg and 5.3 μg to 5.9 μg, respectively. Ethanol-plasticization enhanced zein's hydrophobic interactions and promoted zein network development, thus improving dough compatibility. However, the dense structure of the extruded zein made ethanol inaccessible to the interior, and the structural improvement on extruded zein-starch dough was limited. A model was developed to explain the influences of extrusion and ethanol-plasticization on the behavior of zein in the dough. Extrusion reduces the fiber-forming ability of zein, while ethanol-plasticization facilitates extensive fibrous network formation. This study provides a sound basis for the development of zein in gluten-free foods.
Collapse
Affiliation(s)
- Yingying Zhang
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Fengyan Wu
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Jieru Wang
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Miaojie Xu
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Shan Cao
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China
| | - Yayun Hu
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, China
| | - Guangzhong Luan
- Engineering Research Center of Grain and Oil Functionalized Processing Universities of Shaanxi Province, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, China.
| |
Collapse
|
4
|
Kumari B, Sit N. Comprehensive review on single and dual modification of starch: Methods, properties and applications. Int J Biol Macromol 2023; 253:126952. [PMID: 37722643 DOI: 10.1016/j.ijbiomac.2023.126952] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Starch is a natural, renewable, affordable, and easily available polymer used as gelling agents, thickeners, binders, and potential raw materials in various food products. Due to these techno-functional properties of starch, food and non-food industries are showing interest in developing starch-based food products such as films, hydrogels, starch nanoparticles, and many more. However, the application of native starch is limited due to its shortcomings. To overcome these problems, modification of starch is necessary. Various single and dual modification processes are used to improve techno-functional, morphological, and microstructural properties, film-forming capacity, and resistant starch. This review paper provides a comprehensive and critical understanding of physical, chemical, enzymatic, and dual modifications (combination of any two single modifications), the effects of parameters on modification, and their applications. The sequence of modification plays a key role in the dual modification process. All single modification methods modify the physicochemical properties, crystallinity, and emulsion properties, but some shortcomings such as lower thermal, acidic, and shear stability limit their application in industries. Dual modification has been introduced to overcome these limitations and maximize the effectiveness of single modification.
Collapse
Affiliation(s)
- Bharati Kumari
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India
| | - Nandan Sit
- Department of Food Engineering and Technology, Tezpur University, Assam 784028, India.
| |
Collapse
|
5
|
Salimi M, Channab BE, El Idrissi A, Zahouily M, Motamedi E. A comprehensive review on starch: Structure, modification, and applications in slow/controlled-release fertilizers in agriculture. Carbohydr Polym 2023; 322:121326. [PMID: 37839830 DOI: 10.1016/j.carbpol.2023.121326] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
This comprehensive review thoroughly examines starch's structure, modifications, and applications in slow/controlled-release fertilizers (SRFs) for agricultural purposes. The review begins by exploring starch's unique structure and properties, providing insights into its molecular arrangement and physicochemical characteristics. Various methods of modifying starch, including physical, chemical, and enzymatic techniques, are discussed, highlighting their ability to impart desirable properties such as controlled release and improved stability. The review then focuses on the applications of starch in the development of SRFs. It emphasizes the role of starch-based hydrogels as effective nutrient carriers, enabling their sustained release to plants over extended periods. Additionally, incorporating starch-based hydrogel nano-composites are explored, highlighting their potential in optimizing nutrient release profiles and promoting plant growth. Furthermore, the review highlights the benefits of starch-based fertilizers in enhancing plant growth and crop yield while minimizing nutrient losses. It presents case studies and field trials demonstrating starch-based formulations' efficacy in promoting sustainable agricultural practices. Overall, this review consolidates current knowledge on starch, its modifications, and its applications in SRFs, providing valuable insights into the potential of starch-based formulations to improve nutrient management, boost crop productivity, and support sustainable agriculture.
Collapse
Affiliation(s)
- Mehri Salimi
- Soil Science Department, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Badr-Eddine Channab
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco
| | - Ayoub El Idrissi
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco
| | - Mohamed Zahouily
- Laboratory of Materials, Catalysis & Natural Resources Valorization, URAC 24, Faculty of Science and Technology, Hassan II University, Casablanca, B.P. 146, Morocco; Natural Resources Valorization Center, Moroccan Foundation for Advanced Science, Innovation and Research, Rabat, Morocco; Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Elaheh Motamedi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| |
Collapse
|
6
|
Chung JC, Lai LS. Effects of Continuous and Cycled Annealing on the Physicochemical Properties and Digestibility of Water Caltrop Starch. Foods 2023; 12:3551. [PMID: 37835205 PMCID: PMC10572123 DOI: 10.3390/foods12193551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The effects of treatment time of continuous annealing (ANN) and cycle numbers of cycled ANN on the structural, physicochemical, and digestive properties of water caltrop starch were studied under 70% moisture at 65 °C. It was found that continuous and cycled ANN have no significant effects on the morphology of starch granules. However, the relative crystallinity and content of resistant starch increased pronouncedly, possibly due to crystalline perfection, which also led to the rise in gelatinization temperature and the narrowed gelatinization temperature range of starch. The treatment time in continuous ANN generally showed a pronounced effect on the rheological properties of water caltrop starch. During pasting, the breakdown viscosity and setback viscosity of all treatment decreased, implying that ANN modified starch was less susceptible to the condition in heating and continuous shearing, and less likely to cause short-term retrogradation. In contrast, peak viscosity decreased with increasing treatment time of continuous ANN, indicating crystalline perfection restricted the swelling of starch granules and viscosity development during pasting process, which was consistent with the results of steady and dynamic rheological evaluation. All ANN-modified samples showed pseudoplastic behavior with weak gel viscoelastic characteristic. Under a total annealing time of 96 h, the pasting and rheological properties of water caltrop starch were essentially less affected by annealing cycle numbers. However, multistage ANN showed stronger resistance to enzyme hydrolysis.
Collapse
Affiliation(s)
| | - Lih-Shiuh Lai
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Road, Taichung 40227, Taiwan;
| |
Collapse
|
7
|
Wu DT, Li WX, Wan JJ, Hu YC, Gan RY, Zou L. A Comprehensive Review of Pea ( Pisum sativum L.): Chemical Composition, Processing, Health Benefits, and Food Applications. Foods 2023; 12:2527. [PMID: 37444265 DOI: 10.3390/foods12132527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Pisum sativum L., commonly referred to as dry, green, or field pea, is one of the most common legumes that is popular and economically important. Due to its richness in a variety of nutritional and bioactive ingredients, the consumption of pea has been suggested to be associated with a wide range of health benefits, and there has been increasing focus on its potential as a functional food. However, there have been limited literature reviews concerning the bioactive compounds, health-promoting effects, and potential applications of pea up to now. This review, therefore, summarizes the literature from the last ten years regarding the chemical composition, physicochemical properties, processing, health benefits, and potential applications of pea. Whole peas are rich in macronutrients, including proteins, starches, dietary fiber, and non-starch polysaccharides. In addition, polyphenols, especially flavonoids and phenolic acids, are important bioactive ingredients that are mainly distributed in the pea coats. Anti-nutritional factors, such as phytic acid, lectin, and trypsin inhibitors, may hinder nutrient absorption. Whole pea seeds can be processed by different techniques such as drying, milling, soaking, and cooking to improve their functional properties. In addition, physicochemical and functional properties of pea starches and pea proteins can be improved by chemical, physical, enzymatic, and combined modification methods. Owing to the multiple bioactive ingredients in peas, the pea and its products exhibit various health benefits, such as antioxidant, anti-inflammatory, antimicrobial, anti-renal fibrosis, and regulation of metabolic syndrome effects. Peas have been processed into various products such as pea beverages, germinated pea products, pea flour-incorporated products, pea-based meat alternatives, and encapsulation and packing materials. Furthermore, recommendations are also provided on how to better utilize peas to promote their development as a sustainable and functional grain. Pea and its components can be further developed into more valuable and nutritious products.
Collapse
Affiliation(s)
- Ding-Tao Wu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wen-Xing Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jia-Jia Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yi-Chen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
8
|
Yao T, Sui Z, Janaswamy S. Complexing curcumin and resveratrol in the starch crystalline network alters in vitro starch digestion: Towards developing healthy food materials. Food Chem 2023; 425:136471. [PMID: 37269637 DOI: 10.1016/j.foodchem.2023.136471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/15/2023] [Accepted: 05/25/2023] [Indexed: 06/05/2023]
Abstract
Starch is an abundant and common food ingredient capable of complexing with various bioactive compounds (BCs), including polyphenols. However, little information is available about using native starch network arrangement for the starch-BCs inclusion. Herein, two BCs, curcumin, and resveratrol, were undertaken to delineate the role of different starch crystalline types on their encapsulation efficiency. Four starches with different crystalline types, botanical sources, and amylose content were examined. The results suggest that B-type hexagonal packing is necessary to encapsulate curcumin and resveratrol successfully. The increase in XRD crystallinity while maintaining the FTIR band at 1048/1016 cm-1 suggests that BCs are likely entrapped inside the starch granule than attaching to the granule surface. A significant change in starch digestion is seen only for the B-starch complexes. Embedding BCs in the starch network and controlling starch digestion could be a cost-effective and valuable approach to designing and developing novel starch-based functional food ingredients.
Collapse
Affiliation(s)
- Tianming Yao
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907, USA.
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Srinivas Janaswamy
- Dairy and Food Science Department, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
9
|
Chen X, Wang C, He X, Qin Y, Dai L, Xiong L, Wang T, Shi R, Ji N, Sun Q. The physicochemical properties of a starch–sodium stearoyl lactylate complex formed via annealing treatment in ethanol solutions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Effect of annealing treatment on the physicochemical properties and enzymatic hydrolysis of different types of starch. Food Chem 2022; 403:134153. [DOI: 10.1016/j.foodchem.2022.134153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/07/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022]
|