1
|
Zhao W, Debnath D, Gautam I, Fernando LD, Wang T. Charting the solid-state NMR signals of polysaccharides: A database-driven roadmap. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:298-309. [PMID: 37724740 DOI: 10.1002/mrc.5397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/21/2023]
Abstract
Solid-state nuclear magnetic resonance (ssNMR) measurements of intact cell walls and cellular samples often generate spectra that are difficult to interpret due to the presence of many coexisting glycans and the structural polymorphism observed in native conditions. To overcome this analytical challenge, we present a statistical approach for analyzing carbohydrate signals using high-resolution ssNMR data indexed in a carbohydrate database. We generate simulated spectra to demonstrate the chemical shift dispersion and compare this with experimental data to facilitate the identification of important fungal and plant polysaccharides, such as chitin and glucans in fungi and cellulose, hemicellulose, and pectic polymers in plants. We also demonstrate that chemically distinct carbohydrates from different organisms may produce almost identical signals, highlighting the need for high-resolution spectra and validation of resonance assignments. Our study provides a means to differentiate the characteristic signals of major carbohydrates and allows us to summarize currently undetected polysaccharides in plants and fungi, which may inspire future investigations.
Collapse
Affiliation(s)
- Wancheng Zhao
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Debkumar Debnath
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Isha Gautam
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Liyanage D Fernando
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| | - Tuo Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Peidayesh H, Ondriš L, Saparová S, Kovaľaková M, Fričová O, Chodák I. Biodegradable Nanocomposites Based on Blends of Poly(Butylene Adipate-Co-Terephthalate) (PBAT) and Thermoplastic Starch Filled with Montmorillonite (MMT): Physico-Mechanical Properties. MATERIALS (BASEL, SWITZERLAND) 2024; 17:540. [PMID: 38591383 PMCID: PMC10856518 DOI: 10.3390/ma17030540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 04/10/2024]
Abstract
Poly(butylene adipate-co-terephthalate) (PBAT) is widely used for production of biodegradable films due to its high elongation, excellent flexibility, and good processability properties. An effective way to develop more accessible PBAT-based bioplastics for wide application in packaging is blending of PBAT with thermoplastic starch (TPS) since PBAT is costly with prices approximately double or even triple the prices of traditional plastics like polyethylene. This study is focused on investigating the influence of TPS/PBAT blend ratio and montmorillonite (MMT) content on the physical and mechanical properties and molecular mobility of TPS-MMT/PBAT nanocomposites. Obtained TPS-MMT/PBAT nanocomposites through the melt blending process were characterized using tensile testing, dynamic mechanical thermal analysis (DMTA), and X-ray diffraction (XRD), as well as solid-state 1H and 13C NMR spectroscopy. Mechanical properties demonstrated that the addition of TPS to PBAT leads to a substantial decrease in the tensile strength as well as in the elongation at break, while Young's modulus is rising substantially, while the effect of the MMT addition is almost negligible on the tensile stress of the blends. DMTA results confirmed the formation of TPS domains in the PBAT matrix. With increasing TPS content, mobility of starch-rich regions of TPS domains slightly increases. However, molecular mobility in glycerol-rich regions of TPS domains in the blends was slightly restricted. Moreover, the data obtained from 13C CP/MAS NMR spectra indicated that the presence of TPS in the sample decreases the mobility of the PBAT chains, mainly those located at the TPS/PBAT interfaces.
Collapse
Affiliation(s)
- Hamed Peidayesh
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia;
| | - Leoš Ondriš
- Department of Physics, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Park Komenského 2, 042 00 Košice, Slovakia (S.S.); (M.K.); (O.F.)
| | - Simona Saparová
- Department of Physics, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Park Komenského 2, 042 00 Košice, Slovakia (S.S.); (M.K.); (O.F.)
| | - Mária Kovaľaková
- Department of Physics, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Park Komenského 2, 042 00 Košice, Slovakia (S.S.); (M.K.); (O.F.)
| | - Oľga Fričová
- Department of Physics, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Park Komenského 2, 042 00 Košice, Slovakia (S.S.); (M.K.); (O.F.)
| | - Ivan Chodák
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia;
| |
Collapse
|
3
|
Saparová S, Ondriš L, Kovaľaková M, Fričová O, Peidayesh H, Baran A, Hutníková M, Chodák I. Effects of glycerol content on structure and molecular motion in thermoplastic starch-based nanocomposites during long storage. Int J Biol Macromol 2023; 253:126911. [PMID: 37716657 DOI: 10.1016/j.ijbiomac.2023.126911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/04/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Thermoplastic starch-based nanocomposites with varying glycerol content and montmorillonite as a nanofiller were studied using dynamic-mechanical analysis (DMA), X-ray diffraction (XRD) and nuclear magnetic resonance (NMR) during one-year storage. DMA results showed that starch-rich and glycerol-rich domains were present in the samples and during storage for up to one year the content of the amorphous phase decreased and molecular mobility changed. 13C NMR and XRD measurements confirmed that ordered structures were formed during storage and its content was larger for samples with higher glycerol content and increased with the storage time. The data obtained from deconvolutions of 1H broad line NMR spectra indicate increased overall molecular mobility in the samples up to four months of storage, while after nine months the trends were opposite. Lower free water content compared to the total water content in the samples determined according to deconvoluted 1H MAS (magic-angle spinning) NMR spectra indicated that a part of water molecules was immobilized in the ordered structures.
Collapse
Affiliation(s)
- Simona Saparová
- Department of Physics, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Park Komenského 2, 042 00 Košice, Slovakia
| | - Leoš Ondriš
- Department of Physics, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Park Komenského 2, 042 00 Košice, Slovakia.
| | - Mária Kovaľaková
- Department of Physics, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Park Komenského 2, 042 00 Košice, Slovakia
| | - Oľga Fričová
- Department of Physics, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Park Komenského 2, 042 00 Košice, Slovakia
| | - Hamed Peidayesh
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava 45, Slovakia
| | - Anton Baran
- Department of Physics, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Park Komenského 2, 042 00 Košice, Slovakia
| | - Mária Hutníková
- Department of Mathematics and Theoretical Informatics, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Boženy Němcovej 32, 042 00 Košice, Slovakia
| | - Ivan Chodák
- Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava 45, Slovakia
| |
Collapse
|
4
|
Liu F, Yang Q, Tang Q, Peng Q, Chen Y, Huo Y, Huang Q, Zuo Q, Gao N, Chen L. Adsorption of RhB dye on soy protein isolate-based double network spheres: Compromise between the removal efficiency and the mechanical strength. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.03.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
5
|
Feraru A, Tóth ZR, Mureșan-Pop M, Baia M, Gyulavári T, Páll E, Turcu RVF, Magyari K, Baia L. Anionic Polysaccharide Cryogels: Interaction and In Vitro Behavior of Alginate-Gum Arabic Composites. Polymers (Basel) 2023; 15:polym15081844. [PMID: 37111992 PMCID: PMC10146865 DOI: 10.3390/polym15081844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/31/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
In the present study, polysaccharide-based cryogels demonstrate their potential to mimic a synthetic extracellular matrix. Alginate-based cryogel composites with different gum arabic ratios were synthesized by an external ionic cross-linking protocol, and the interaction between the anionic polysaccharides was investigated. The structural features provided by FT-IR, Raman, and MAS NMR spectra analysis indicated that a chelation mechanism is the main process linking the two biopolymers. In addition, SEM investigations revealed a porous, interconnected, and well-defined structure suitable as a scaffold in tissue engineering. The in vitro tests confirmed the bioactive character of the cryogels through the development of the apatite layer on the surface of the samples after immersion in simulated body fluid, identifying the formation of a stable phase of calcium phosphate and a small amount of calcium oxalate. Cytotoxicity tests performed on fibroblast cells demonstrated the non-toxic effect of alginate-gum arabic cryogel composites. In addition, an increase in flexibility was noted for samples with a high gum arabic content, which determines an appropriate environment to promote tissue regeneration. The newly obtained biomaterials that exhibit all these properties can be successfully involved in the regeneration of soft tissues, wound management, or controlled drug release systems.
Collapse
Affiliation(s)
- Alexandra Feraru
- Doctoral School of Physics, Babes-Bolyai University, M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania
| | - Zsejke-Réka Tóth
- Doctoral School of Physics, Babes-Bolyai University, M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania
| | - Marieta Mureșan-Pop
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania
| | - Monica Baia
- Faculty of Physics, Babes-Bolyai University, M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babes-Bolyai University, Fântânele 30, 400294 Cluj-Napoca, Romania
| | - Tamás Gyulavári
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich B. Sqr. 1, 6720 Szeged, Hungary
| | - Emőke Páll
- Faculty of Veterinary Medicine, University of Agricultural Science and Veterinary Medicine, Manastur 3-5, 400372 Cluj-Napoca, Romania
| | - Romulus V F Turcu
- Faculty of Physics, Babes-Bolyai University, M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donath 67-103, 400293 Cluj-Napoca, Romania
| | - Klára Magyari
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania
| | - Lucian Baia
- Nanostructured Materials and Bio-Nano-Interfaces Center, Interdisciplinary Research Institute on Bio-Nano-Sciences, Babes-Bolyai University, T. Laurian 42, 400271 Cluj-Napoca, Romania
- Faculty of Physics, Babes-Bolyai University, M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania
- Institute for Research-Development-Innovation in Applied Natural Sciences, Babes-Bolyai University, Fântânele 30, 400294 Cluj-Napoca, Romania
| |
Collapse
|
6
|
Highly stretchable and conductive hybrid gel polymer electrolytes enabled by a dual cross-linking approach. Macromol Res 2023. [DOI: 10.1007/s13233-023-00120-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
7
|
Alassmy YA, Abduljawad MM, Al‐shamrani KM, Alnafisah MS, El Nokab MEH, Pour ZA, Gomes DR, Yolcu S, Sebakhy KO. A green/sustainable organocatalytic pathway for the preparation of esterified supercritical
CO
2
‐dried potato starch products. J Appl Polym Sci 2023. [DOI: 10.1002/app.53585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yasser A. Alassmy
- National Center for Chemical Technologies King Abdulaziz City for Science and Technology (KACST) Riyadh Saudi Arabia
| | - Marwan M. Abduljawad
- National Center for Chemical Technologies King Abdulaziz City for Science and Technology (KACST) Riyadh Saudi Arabia
| | - Khalid M. Al‐shamrani
- National Center for Chemical Technologies King Abdulaziz City for Science and Technology (KACST) Riyadh Saudi Arabia
| | - Mohammed S. Alnafisah
- National Center for Chemical Technologies King Abdulaziz City for Science and Technology (KACST) Riyadh Saudi Arabia
| | | | - Zahra Asgar Pour
- Engineering and Technology Institute Groningen (ENTEG) University of Groningen Groningen The Netherlands
| | - Diego R. Gomes
- Engineering and Technology Institute Groningen (ENTEG) University of Groningen Groningen The Netherlands
| | - Selin Yolcu
- Engineering and Technology Institute Groningen (ENTEG) University of Groningen Groningen The Netherlands
| | - Khaled O. Sebakhy
- Engineering and Technology Institute Groningen (ENTEG) University of Groningen Groningen The Netherlands
| |
Collapse
|
8
|
Matlahov I, Boatz JC, C.A. van der Wel P. Selective observation of semi-rigid non-core residues in dynamically complex mutant huntingtin protein fibrils. J Struct Biol X 2022; 6:100077. [PMID: 36419510 PMCID: PMC9677204 DOI: 10.1016/j.yjsbx.2022.100077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/20/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Mutant huntingtin exon 1 fibrils feature a broad range of molecular dynamics. Molecular motion is coupled to water dynamics outside the fiber core. Dynamics-based spectral editing ssNMR reveals mobile non-core residues. Intermediate-motion selection via dipolar dephasing of rigid sites. Semi-mobile glutamines outside the fiber core observed and identified.
Many amyloid-forming proteins, which are normally intrinsically disordered, undergo a disorder-to-order transition to form fibrils with a rigid β-sheet core flanked by disordered domains. Solid-state NMR (ssNMR) and cryogenic electron microscopy (cryoEM) excel at resolving the rigid structures within amyloid cores but studying the dynamically disordered domains remains challenging. This challenge is exemplified by mutant huntingtin exon 1 (HttEx1), which self-assembles into pathogenic neuronal inclusions in Huntington disease (HD). The mutant protein’s expanded polyglutamine (polyQ) segment forms a fibril core that is rigid and sequestered from the solvent. Beyond the core, solvent-exposed surface residues mediate biological interactions and other properties of fibril polymorphs. Here we deploy magic angle spinning ssNMR experiments to probe for semi-rigid residues proximal to the fibril core and examine how solvent dynamics impact the fibrils’ segmental dynamics. Dynamic spectral editing (DYSE) 2D ssNMR based on a combination of cross-polarization (CP) ssNMR with selective dipolar dephasing reveals the weak signals of solvent-mobilized glutamine residues, while suppressing the normally strong background of rigid core signals. This type of ‘intermediate motion selection’ (IMS) experiment based on cross-polarization (CP) ssNMR, is complementary to INEPT- and CP-based measurements that highlight highly flexible or highly rigid protein segments, respectively. Integration of the IMS-DYSE element in standard CP-based ssNMR experiments permits the observation of semi-rigid residues in a variety of contexts, including in membrane proteins and protein complexes. We discuss the relevance of semi-rigid solvent-facing residues outside the fibril core to the latter’s detection with specific dyes and positron emission tomography tracers.
Collapse
|
9
|
Pandit A. Structural dynamics of light harvesting proteins, photosynthetic membranes and cells observed with spectral editing solid-state NMR. J Chem Phys 2022; 157:025101. [DOI: 10.1063/5.0094446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photosynthetic light-harvesting complexes have a remarkable capacity to perform robust photo physics at ambient temperatures and in fluctuating environments. Protein conformational dynamics and membrane mobility are processes that contribute to the light-harvesting efficiencies and control photoprotective responses. This short review describes the application of Magic Angle Spinning (MAS) NMR spectroscopy for characterizing the structural dynamics of pigment, protein and thylakoid membrane components related to light harvesting and photoprotection. I will discuss the use of dynamics-based spectral editing solid-state NMR for distinguishing rigid and mobile components and assessing protein, pigment and lipid dynamics on sub-nanosecond to millisecond timescales. Dynamic spectral editing NMR has been applied to investigate Light-Harvesting Complex II (LHCII) protein conformational dynamics inside lipid bilayers and in native membranes. Furthermore, we used the NMR approach to assess thylakoid membrane dynamics. Finally, it is shown that dynamics-based spectral editing NMR, for reducing spectral complexity, by filtering motion-dependent signals, enabled us to follow processes in live photosynthetic cells.
Collapse
|
10
|
Solid State NMR a Powerful Technique for Investigating Sustainable/Renewable Cellulose-Based Materials. Polymers (Basel) 2022; 14:polym14051049. [PMID: 35267872 PMCID: PMC8914817 DOI: 10.3390/polym14051049] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/24/2022] [Accepted: 03/02/2022] [Indexed: 01/27/2023] Open
Abstract
Solid state nuclear magnetic resonance (ssNMR) is a powerful and attractive characterization method for obtaining insights into the chemical structure and dynamics of a wide range of materials. Current interest in cellulose-based materials, as sustainable and renewable natural polymer products, requires deep investigation and analysis of the chemical structure, molecular packing, end chain motion, functional modification, and solvent–matrix interactions, which strongly dictate the final product properties and tailor their end applications. In comparison to other spectroscopic techniques, on an atomic level, ssNMR is considered more advanced, especially in the structural analysis of cellulose-based materials; however, due to a dearth in the availability of a broad range of pulse sequences, and time consuming experiments, its capabilities are underestimated. This critical review article presents the comprehensive and up-to-date work done using ssNMR, including the most advanced NMR strategies used to overcome and resolve the structural difficulties present in different types of cellulose-based materials.
Collapse
|