1
|
Chen Y, Huang J, Chen J, Zhao Y, Deng S, Yang H. Gelatinous quality and quantitative proteomic analyses of snakehead (Channa argus) surimi treated by atmospheric cold plasma. Food Chem 2024; 459:140412. [PMID: 39024885 DOI: 10.1016/j.foodchem.2024.140412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/16/2024] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
In this study, the comprehensive quality characteristics and proteome changes of snakehead (Channa argus) surimi gel under different atmospheric cold plasma (ACP) treatment times were systematically analyzed and compared. The results showed that the ubiquitin-associated proteins and heat shock proteins were activated after ACP treatment for 90 s (ACP90), thus inducing rearrangement of surimi structural proteins. Meanwhile, the increased hydrophobic interactions and disulfide bonds might strengthen the interactions among the myofibrillar protein, keratin, and type-I collagen, which led to the formation of a dense gel network. Moreover, the high nodality between actin and myosin promoted the regulation of muscle contraction by changing the spatial obstruction of their binding sites. These beneficial effects obviously contributed to the superior water-holding capacity (76.13%), gel strength (285.6 g·cm) and viscoelasticity of snakehead surimi in the ACP90 group. These results would provide some useful information for the in-depth and efficient processing of surimi products.
Collapse
Affiliation(s)
- Yingyun Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jiabao Huang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Jing Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan, 316022, China.
| | - Yadong Zhao
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Shanggui Deng
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan, 316022, China
| | - Hongli Yang
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, 316022, China
| |
Collapse
|
2
|
Yamamoto M, Ogura H, Kuda T, Xia Y, Nakamura A, Takahashi H, Inoue J, Takayanagi S. Detection of typical indigenous gut bacteria related to kanpyo Lagenaria siceraria var. hispida powder in murine caecum and human faecal cultures. 3 Biotech 2024; 14:118. [PMID: 38524237 PMCID: PMC10959864 DOI: 10.1007/s13205-024-03960-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 02/16/2024] [Indexed: 03/26/2024] Open
Abstract
Kanpyo (KP) is an edible dried product produced by peeling the fruit of the gourd Lagenaria siceraria var. hispida; it is used in the traditional Japanese cuisine. The health functionality of KP due to its rich dietary fibre is expected to include a possible combined effect of KP-responsive indigenous gut bacteria (KP-RIB). However, its effect on the gut microbiota is unclear. To determine the effects of the KP on the gut microbiota and their host, Institute of Cancer Research mice were fed a high-sucrose diet containing no fibre (NF) or 5% (w/w) KP for 14 days, and their caecal microbiota was analysed by 16S rRNA (V4) amplicon sequencing. Higher faecal frequency and weight and lower spleen weight and spleen tumour necrosis factor-α levels were observed in KP-fed mice than in NF-fed mice (p < 0.05). KP increased and decreased the abundance of short-chain fatty acid producer Lachnospiraceae and obesity-inflammation related Allobaculum species, respectively. In the case of human faecal cultures, stool samples from five healthy volunteers were inoculated and incubated at 37 °C for 24 h anaerobically; 3.2% (w/v) KP suppressed putrefactive compounds (indole, phenol, and ammonia). KP increased butyrate-producer Faecalibacterium, acetate/lactate-producer Bifidobacterium, and Lachnospira. Furthermore, KP cultures showed high antioxidant and RAW264.7 macrophage cell activation capacities. These results suggest that KP-RIB and KP intake may synergistically affect host health. However, further studies are required to clarify the synergistic effects of KP and KP-RIB.
Collapse
Affiliation(s)
- Mahiro Yamamoto
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477 Japan
| | - Hikaru Ogura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477 Japan
| | - Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477 Japan
| | - Yumeng Xia
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477 Japan
| | - Ayaka Nakamura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477 Japan
| | - Hajime Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-Ku, Tokyo, 108-8477 Japan
| | - Junji Inoue
- AHJIKAN Co., Ltd., 7-3-9, Shoko Center, Nishiku, Hiroshima-City, Hiroshima, 733-8677 Japan
| | - Shu Takayanagi
- AHJIKAN Co., Ltd., 7-3-9, Shoko Center, Nishiku, Hiroshima-City, Hiroshima, 733-8677 Japan
| |
Collapse
|
3
|
Xia Y, Lee G, Takei N, Takahashi H, Kuda T. Detection of typical indigenous gut bacteria related to turmeric (Curcuma longa) powder in mouse caecum and human faecal cultures. Mol Biol Rep 2023; 50:2963-2974. [PMID: 36648695 DOI: 10.1007/s11033-022-08237-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 12/22/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Turmeric (Curcuma longa; TM) is widely used as a spice and possesses anti-inflammatory, antioxidant, and antibacterial properties. The relationship between TM functions and gut microbiota is still unclear. METHODS AND RESULTS To investigate the effect of TM on gut microbiota and to identify indigenous gut bacteria that are responsive to TM, we fed Institute of Cancer Research mice a diet containing either no fibre (NF, n = 6) or 5% (w/w) TM (n = 6) for 14 days. Moreover, we obtained human stool samples from four healthy volunteers and incubated the samples without (control) or with 2% (w/v) TM at 37 °C for 24 h. Subsequently, microbiota analysis in murine caecal samples and human faecal cultures was performed using 16S rRNA (V4) amplicon sequencing. Higher faecal weights (p < 0.01) and lower plasma triacylglycerol levels (p < 0.05) were measured in the TM-fed mice than in the NF-fed mice. Furthermore, TM feeding increased the abundance of butyrate-producing and other short-chain fatty acid (SCFA)-producing bacteria in mice as well as in human faecal cultures, and Roseburia bacteria were detected as TM-responsive indigenous gut bacteria (TM-RIB) both in mice and in human faecal cultures. Lastly, in the case of human faecal cultures, SCFA contents and antioxidant properties were higher in TM cultures than in control cultures (p < 0.05). CONCLUSION TM appears to hold the potential to positively affect the host by altering the gut microbiota. Further studies are required to clarify the synergistic effects of TM and TM-RIB.
Collapse
Affiliation(s)
- Yumeng Xia
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan.
| | - Gayang Lee
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Natsumi Takei
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Hajime Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| | - Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, Japan
| |
Collapse
|
4
|
Takamiya D, Takahashi H, Nakamura A, Xia Y, Kuda T. Effect of Lactiplantibacillus plantarum fermentation on the in-vitro antioxidant and angiotensin I-converting enzyme-inhibitory properties of turmeric, coriander, cumin, and red chili pepper suspensions. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
5
|
Detection of indigenous gut bacteria related to red chilli pepper (Capsicum annuum) in murine caecum and human faecal cultures. Mol Biol Rep 2022; 49:10239-10250. [PMID: 36068389 DOI: 10.1007/s11033-022-07875-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/15/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Red chilli pepper (Capsicum annuum; RP) is a popular spice containing the active compound capsaicin. Indigenous gut bacteria and metabolism can affect host health. The functions of capsaicin, including the regulation of metabolic health and anti-oxidant properties, may be correlated with the gut microbiota. METHODS To identify indigenous gut bacteria that are responsive to RP, Institute of Cancer Research mice fed a diet with no fibre or with 5% (w/w) RP for 14 days. Additionally, human stool samples collected from four healthy volunteers were incubated without (control) or with 2% (w/v) RP at 37 °C for 24 h. Microbiota in murine caecal samples and human faecal cultures were analysed using 16S rRNA (V4) amplicon sequencing. RESULTS Compared with the microbiota in mice fed no-fibre diets, Lachnospiraceae spp.-, Muribaculaceae spp.-, and Phacaeicola vulgatus-like bacteria were defined as murine RP-responsive indigenous gut bacteria (RP-RIB). In the human faecal cultures, acetate and propionate levels were higher in RP cultures than in the control cultures. Subdoligranulum spp.-, Blautia spp.-, Faecalibacterium prausnitzii-, P. vulgatus-, and Prevotella copri-like bacteria were defined as human RP-RIB. Compared with control culture Fe-reducing power was increased in the culture with RP. CONCLUSION RP increases the amount of short-chain fatty acid-producing bacteria and beneficial gut bacteria in mouse and human faecal cultures. Overall, RP could have a positive effect on the host by altering the gut microbiota.
Collapse
|
6
|
Yamamoto M, Handa N, Nakamura A, Takahashi H, Kuda T. In vitro antioxidant, anti-glycation, and bile acid-lowering capacity of peanut milk fermented with Lactiplantibacillus plantarum Kinko-SU4. Curr Res Food Sci 2022; 5:992-997. [PMID: 35734141 PMCID: PMC9207605 DOI: 10.1016/j.crfs.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/21/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022] Open
Abstract
Plant-based milk-like products from soybeans and other legumes and nuts have been explored worldwide, owing to their nutritional and functional characteristics. This study was conducted to develop new functional food materials from peanut (Arachis hypogaea) milk (PM) with desirable health functions to mitigate lifestyle and age-related diseases. The antioxidant, anti-glycation and bile acid-lowering properties of PM fermented with lactic acid bacteria Lactiplantibacillus plantarum Kinko-SU4 (FPM) were determined in vitro. L. plantarum Kinko-SU4 lowered the pH level from 6.4 to 4.3, 3.9, and 3.7 at 10, 24, and 48 h, respectively. The lactic acid concentration was 4.4 mg/mL after 48 h of incubation. The starter degraded the dissolved proteins in PM, including Ara h 1, one of the peanut allergens. Although the total phenolic content was 36% lower in FPM than in unfermented PM, O2 - radical-scavenging capacity was high in FPM. Anti-glycation in a bovine serum albumin-fructose model and the bile acid-lowering capacities of PM were distinctly increased following fermentation. The result of this study infers that PM fermented with L. plantarum Kinko-SU4 can be considered a desirable food material to prevent and ameliorate chronic lifestyle diseases, particularly in the elderly.
Collapse
Affiliation(s)
- Mahiro Yamamoto
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Natsumi Handa
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Ayaka Nakamura
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Hajime Takahashi
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| | - Takashi Kuda
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo, 108-8477, Japan
| |
Collapse
|