1
|
Maghaydah S, Alrosan M, Alu'datt MH, Razzak Mahmood AA, Gammoh S, Bani-Melhem K, Al Qudsi FR, Tan TC, Almajwal AM, Rashed Alshammari A. Improving the structure of lentil proteins during fermentation and their association with nutritional values and solubility. Int J Food Sci Nutr 2025:1-13. [PMID: 39972541 DOI: 10.1080/09637486.2025.2465763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 02/21/2025]
Abstract
Lentil proteins (LPs) may encounter challenges in their food industry applications due to certain limitations in their functional properties. This study focused on enhancing the quality of LPs through physical modifications and investigating the effects of a 24-hr fermentation process with Lactiplantibacillus plantarum. The protein structures of LPs were analysed using several techniques, including ultraviolet spectra, fluorescence spectra, and FT-IR spectra, respectively, resulting in the protein structure of LPs substantial modifications (p < 0.05) during the fermentation procedure. protein surface properties of fermented LPs, including surface charge and surface hydrophobicity, changed significantly (p < 0.05) from -23.03 to -32.70 mV and 860.30 to 600.6 a.u., respectively. Using Lactobacillus by fermentation processes can offer several benefits, particularly in enhancing the digestibility, protein structure, and nutritional values of LPs.
Collapse
Affiliation(s)
- Sofyan Maghaydah
- Department of Human Nutrition and Dietetics, College of Health Sciences, Abu Dhabi University, Zayed City, Abu Dhabi, United Arab Emirates
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Alrosan
- QU Health, College of Health Sciences, Qatar University, Doha, Qatar
- Department of Food Science and Nutrition, Jerash University, Jerash, Jordan
| | - Muhammad H Alu'datt
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
- Department of Food Science & Nutrition, College of Life Sciences, Kuwait University, Safat, Kuwait
| | - Ammar A Razzak Mahmood
- Department of Pharmaceutical Chemistry, College of Pharmacy-University of Baghdad, Baghdad, Bab-Al-Mouadam, Iraq
| | - Sana Gammoh
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
| | | | - Farah R Al Qudsi
- Department of Food Science, University of Guelph, Guelph, Canada
| | - Thuan-Chew Tan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Ali Madi Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Rashed Alshammari
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Karabulut G, Kapoor R, Feng H. Soluble hemp protein-xylose conjugates fabricated by high-pressure homogenization and pH-shifting treatments. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9640-9651. [PMID: 39105678 DOI: 10.1002/jsfa.13788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND The process of Maillard conjugation occurs with plant proteins and sugars and can be influenced by several factors, such as processing time, pH, and shear force. By utilizing cavitation processes such as high-pressure homogenization (HPH) and pH-shifting, it is possible to regulate the degree of grafting, functional characteristics, and structural changes in the formation of conjugates. The present study aimed to improve the hemp protein concentrate (HPC) through two different conjugation techniques: HPH and pH-shifting-assisted processes. RESULTS The best conjugation conditions for the conventional method were identified as a 1:2 HPC to xylose ratio, a pH of 10, and 3 h of treatment at 70 °C. The use of HPH and pH 12-shifting methods resulted in a remarkable 2.5-fold increase in grafting degree, requiring less processing time. Fourier transform infrared spectra confirmed the formation of conjugates. Conjugates produced through HPH with pH 12-shifting (MPHX) transformed into soluble glycoproteins with a particle size of 74 nm. MPHX solubility increased by 5.7-fold than HPC, reaching 85.7%, with a more negatively charged surface at -32.4 mV. Microimages showed cracked and sharp forms for conjugated proteins compared to untreated HPC. Additionally, MPHX conjugates demonstrated superior properties in emulsion stability, foaming capacity, and antioxidant activity compared to HPC and classical conjugates. CONCLUSION The use of HPH and pH-shifting-assisted Maillard conjugation was highly effective in enhancing the functional attributes of hemp protein conjugates. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Gulsah Karabulut
- Department of Food Engineering, Faculty of Engineering, Sakarya University, Sakarya, Turkey
| | - Ragya Kapoor
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Hao Feng
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Family and Consumer Sciences, North Carolina A&T State University, Greensboro, North Carolina, USA
| |
Collapse
|
3
|
Ren Q, Keijzer P, Wichers HJ, Hettinga KA. Glycation of goat milk with different casein-to-whey protein ratios and its effects on simulated infant digestion. Food Chem 2024; 450:139346. [PMID: 38621311 DOI: 10.1016/j.foodchem.2024.139346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/03/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
This research compared the effects of dry heating on the digestion of goat milk proteins with different casein-to-whey ratios (40% casein, C40 and 80% casein, C80). The glycation markers of heated samples were determined by LC-MS. Heating at 60 °C for 8 h induced early glycation while heating at 60 °C for 72 h induced advanced glycation. Unheated C80 samples showed a higher digestibility than unheated C40 samples, which may be due to their higher protein solubility. After dry heating for 72 h, no significant difference in digestibility was observed between C80 and C40 samples. Heating for 72 h decreased the digestibility of C40 samples compared to unheated samples, probably due to glycation, while protein aggregation was the main reason for the reduced digestibility of heated C80 samples. Overall, this study showed that dry heating for 72 h induced a lower digestibility of C80 and C40 samples, although with different underlying mechanisms.
Collapse
Affiliation(s)
- Qing Ren
- Food Quality & Design Group, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Harry J Wichers
- Wageningen Food & Biobased Research, Wageningen University & Research, Wageningen, the Netherlands; Laboratory of Food Chemistry, Wageningen University and Research, Wageningen, the Netherlands
| | - Kasper A Hettinga
- Food Quality & Design Group, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
4
|
Liu J, Zhu X, Shi W. Enhancement mechanism of glycation with l-arabinose and xylose on texture properties of silver carp mince gel. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4128-4135. [PMID: 38308538 DOI: 10.1002/jsfa.13294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/24/2023] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Glycation is a green processing technology. Based on our previous studies, glycation with l-arabinose and xylose was beneficial to enhance the texture properties of silver carp mince (SCM) gels. However, the possible enhancement mechanism remained unclear. Therefore, in this study, SCM gels with different types of reducing sugar (glucose, l-arabinose, and xylose) were prepared based on our previous study. The possible mechanism of texture enhancement of SCM gels was analyzed by investigating the changes in water distribution, protein structures, and microstructure in the gel system. RESULTS The glycation of l-arabinose and xylose enhanced the hardness, cohesiveness, chewiness, and resilience of SCM gels. Hardness increased from 1883.04 (control group) to 3624.54 (l-arabinose group) and 4348.18 (xylose group). Low-field nuclear magnetic resonance (LF-NMR) showed that glycation promoted the tight binding of immobilized water to proteins. Raman spectroscopic analysis showed that glycation increased the surface hydrophobicity and promoted the formation of disulfide bonds. Scanning electron microscopy (SEM) showed that glycation promoted the formation of uniform and dense three-dimensional network structure in SCM gels. CONCLUSION In summary, glycation enhanced the binding ability of immobilized water to proteins, improved the surface hydrophobicity, promoted the formation of disulfide bonds, and led to a more uniform and dense gel network structure of proteins, thus enhancing the texture properties of SCM gels. This research provided a theoretical basis for a better understanding of the mechanism of the effect of glycation on the quality of gel products and also provided technical support for the application of l-arabinose and xylose in new functional gel foods. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Junya Liu
- College of Life Science and Chemistry, Jiangsu Key Laboratory of Biofunctional Molecule, Jiangsu Second Normal University, Nanjing, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Xueshen Zhu
- College of Life Science and Chemistry, Jiangsu Key Laboratory of Biofunctional Molecule, Jiangsu Second Normal University, Nanjing, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
5
|
Kim YJ, Yong HI, Chun YG, Kim BK, Lee MH. Physicochemical characterization and environmental stability of a curcumin-loaded Pickering nanoemulsion using a pea protein isolate-dextran conjugate via the Maillard reaction. Food Chem 2024; 436:137639. [PMID: 37890346 DOI: 10.1016/j.foodchem.2023.137639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/17/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023]
Abstract
This study investigated pea protein isolate (PPI) and dextran (DX) conjugates produced via the Maillard reaction as Pickering stabilizers for various food applications. The results found that as heating time increased (0-5 h), the grafting degree heightened. The PPI-DX conjugate exhibited a rough porous surface in contrast to native PPI, accompanied by changes in molecular weight and secondary structure. Additionally, the aggregation of low-solubility PPI was partially inhibited due to the contribution of increased solubility and reduced surface hydrophobicity by glycation. Curcumin-loaded Pickering nanoemulsions stabilized with PPI-DX had smaller droplets and higher curcumin encapsulation (greater than80 %) than PPI-stabilized nanoemulsions. PPI-DX adsorbed on the interface showed improved physical stability compared to PPI alone, even after various pH conditions and three heat treatments. The nanoemulsion stabilized with PPI-DX demonstrated improved apparent viscosity and dispersion stability. These findings highlight the effectiveness of PPI-DX conjugates as stabilizers for developing stable and functional Pickering nanoemulsions.
Collapse
Affiliation(s)
- Yun Jeong Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hae In Yong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yong Gi Chun
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Bum-Keun Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Min Hyeock Lee
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
6
|
Al-Qaisi A, Alrosan M, Almajwal AM, Gammoh S, Alu'datt MH, Kubow S, Tan TC, Mahmood AAR, Qudsi FRA. Evaluation of structure, quality, physicochemical properties, and phenolics content of pea proteins: A novel strategy through the incorporation of fermentation. J Food Sci 2024; 89:1517-1530. [PMID: 38317408 DOI: 10.1111/1750-3841.16946] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/24/2023] [Accepted: 12/31/2023] [Indexed: 02/07/2024]
Abstract
The utilization of pea proteins (PPs) is limited due to their relatively low protein digestibility (∼81%) compared to animal-based proteins, such as whey. The present investigation involved the fermentation of PPs at a concentration of 1% (w/v) using 5% (w/v) water kefir for 60 h at 25°C to improve the functional properties of PPs. The results showed a significant (p < 0.05) increase in lactic acid and acetic acid production during fermentation. These findings suggest that PPs can be effectively fermented using water kefir as a starter culture for the increased protein digestibility of PPs. The PP conformation underwent modifications, including secondary and tertiary protein structure alterations. The total phenolic compounds increased throughout the fermentation, reaching around 695.32 ± 15 mg gallic acid equivalent/100 g after 24 h of fermentation. Furthermore, the fermentation process has culminated in significant (p < 0.05) changes in the surface charge and hydrophobic properties of the fermented PPs, from -38.1 to -45.73 and 362.7 to 550.2, respectively. Fermentation using water kefir is a promising technique for improving the digestibility, protein structure, and nutritional values of PPs.
Collapse
Affiliation(s)
- Ali Al-Qaisi
- Department of Agricultural Biotechnology, Faculty of Agricultural Sciences and Technology, Palestine Technical University-Kadoorie (PTUK), Tulkarm, Palestine
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad Alrosan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, USM, Penang, Malaysia
- Applied Science Research Centre, Applied Science Private University, Amman, Jordan
| | - Ali Madi Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Sana Gammoh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Muhammad H Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
- Department of Food Science & Nutrition, College of Life Sciences, Kuwait University, Safat, Kuwait
| | - Stan Kubow
- School of Human Nutrition, Macdonald Campus, McGill University, Montreal, Canada
| | - Thuan-Chew Tan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, USM, Penang, Malaysia
| | - Ammar A Razzak Mahmood
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Farah R Al Qudsi
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
7
|
Dai Y, Li H, Liu X, Wu Q, Ping Y, Chen Z, Zhao B. Effect of enzymolysis combined with Maillard reaction treatment on functional and structural properties of gluten protein. Int J Biol Macromol 2024; 257:128591. [PMID: 38052287 DOI: 10.1016/j.ijbiomac.2023.128591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
In this work, the modified gluten was prepared by enzymolysis combined with Maillard reaction (MEG), and its functional and structural properties were investigated. The result showed that the maximum foamability of MEG was 19.58 m2/g, the foam stability was increased by 1.8 times compared with gluten, and the solubility and degree of graft were increased to 44.4 % and 28.1 % at 100 °C, whereas the content of sulfhydryl group decreased to 0.81 μmol/g. The scavenging ability on ABTS+radical and DPPH radical of MEG was positively correlated with reaction temperature, and the maximum values were 86.57 % and 71.71 % at 140 °C, respectively. Furthermore, the fluorescence quenching effect of tryptophan and tyrosine residues was enhanced, while the fluorescence intensity decreased with the temperature increase. Scanning electron microscopy revealed that the surface of enzymatically hydrolyzed-gluten became smooth and the cross section became straightened, while MEG turned smaller and irregular approaching a circular structure. FT-IR spectroscopy showed that enzymatic hydrolysis promoted the occurrence of more carbonyl ammonia reactions and the formation of precursors of advanced glycosylation end products. These results provide a feasible method for improving the structure and functional properties of gluten protein.
Collapse
Affiliation(s)
- Ya Dai
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Hua Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China; Henan Province Wheat-flour Staple Food Engineering Technology Research Centre, Zhengzhou, China.
| | - Xinhui Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Qingfeng Wu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Yali Ping
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Zhenzhen Chen
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Beibei Zhao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| |
Collapse
|
8
|
Nooshkam M, Varidi M, Zareie Z, Alkobeisi F. Behavior of protein-polysaccharide conjugate-stabilized food emulsions under various destabilization conditions. Food Chem X 2023; 18:100725. [PMID: 37397219 PMCID: PMC10314162 DOI: 10.1016/j.fochx.2023.100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 07/04/2023] Open
Abstract
The sensitivity of protein-stabilized emulsions to flocculation, coalescence, and phase separation under destabilization conditions (i.e., heating, aging, pH, ionic strength, and freeze-thawing) may limit the widespread use of proteins as effective emulsifiers. Therefore, there is a great interest in modulating and improving the technological functionality of food proteins by conjugating them with polysaccharides, through the Maillard reaction. The present review article highlights the current approaches of protein-polysaccharide conjugate formation, their interfacial properties, and the behavior of protein-polysaccharide conjugate stabilized emulsions under various destabilization conditions, including long-term storage, heating and freeze-thawing treatments, acidic conditions, high ionic strength, and oxidation. Protein-polysaccharide conjugates are capable of forming a thick and cohesive macromolecular layer around oil droplets in food emulsions and stabilizing them against flocculation and coalescence under unfavorable conditions, through steric and electrostatic repulsion. The protein-polysaccharide conjugates could be therefore industrially used to design emulsion-based functional foods with high physicochemical stability.
Collapse
Affiliation(s)
- Majid Nooshkam
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Mehdi Varidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| | - Zahra Zareie
- Department of Food Science and Technology, Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Fatemeh Alkobeisi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad (FUM), Mashhad, Iran
| |
Collapse
|
9
|
Gantumur MA, Sukhbaatar N, Shi R, Hu J, Bilawal A, Qayum A, Tian B, Jiang Z, Hou J. Structural, functional, and physicochemical characterization of fermented whey protein concentrates recovered from various fermented-distilled whey. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108130] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Nanakali NM, Muhammad Al‐saadi J, Sulaiman Hadi C. Functional and physiochemical properties of the yoghurt modified by heat lactosylation and microbial transglutaminase cross-linking of milk proteins. Food Sci Nutr 2023; 11:722-732. [PMID: 36789078 PMCID: PMC9922141 DOI: 10.1002/fsn3.3108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/02/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022] Open
Abstract
This study aimed to recognize the effect of Maillard reaction (MR) on the functional properties of milk proteins and the physiochemical, textural, and sensory properties of yoghurt. Heating at 100°C for 2 h increased the carbohydrate ratio in caseins, whey proteins, and total milk proteins from 2.83%, 1.93%, and 1.8% to 4.15%, 3.58%, and 5.32%, respectively. Solubility of the lactosylated caseins, whey proteins, and total milk proteins is increased at low pH values compared to that of the control caseins, whey proteins, and total milk proteins. Lactosylation at 70 and 100°C increased the emulsion activity index (EAI) of caseins at all pH values, especially at pH below 6, and this increment was higher for casein samples treated at 100°C. Foam volume of whey proteins and total milk proteins also increased for samples lactosylated at 100°C compared to control samples. The combination of heating and microbial transglutaminase (MTGase) had a synergistic and enhancing effect on the pH values of yoghurt samples, especially in yoghurt samples produced by whole milk protein compared to control samples. Viscosity and hardness of yoghurt samples were enhanced by heat lactosylation, MTGase treatment, and also storage for 21 days at 7 ± 1°C.
Collapse
Affiliation(s)
- Narin Muhammadamin Nanakali
- Department of Food Technology, College of Agricultural Engineering SciencesSalahaddin University‐ErbilErbilIraq
| | | | - Chnar Sulaiman Hadi
- Department of Food Technology, College of Agricultural Engineering SciencesSalahaddin University‐ErbilErbilIraq
| |
Collapse
|
11
|
Keel K, Harte FM, Berbejillo J, López-Pedemonte T. Functionality of glycomacropeptide glycated with lactose and maltodextrin. J Dairy Sci 2022; 105:8664-8676. [PMID: 36175239 DOI: 10.3168/jds.2022-21959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/07/2022] [Indexed: 11/19/2022]
Abstract
The Maillard reaction (MR), under proper environmental conditions, has been used to improve protein functionality. In the present work, 2 high temperatures (50-80°C) and water activity (Aw; 0.45-0.67) were used to promote exogenous glycosylation of glycomacropeptide (GMP) while minimizing processing times (0, 8, 24, 48, and 96 h at 50°C; 0, 2, 4, 8, and 24 h at 80°C). Maltodextrin, a polysaccharide commonly used in the food industry as a functional ingredient, was used as a reducing sugar, and compared with lactose, a native milk sugar. The progression of MR was evaluated by tracking changes in molecular weight using SDS-PAGE, the formation of Amadori compounds, and browning. Aqueous glycosylated GMP solutions (5 to 20% wt/vol) were tested for solubility, rheological properties, and foam formation. As expected, MR progression was faster with Aw = 0.67 and 80°C. Glycosylated GMP powders showed no change in their solubility after MR. However, the apparent viscosity ( γ˙ = 30 s-1) of the 20% wt/vol suspensions exhibited a slight increase when GMP was glycosylated with maltodextrin for 24 h at 80°C, and a 2-log increase when GMP was glycosylated with lactose, with a high browning development in both cases. The foam expansion index of the resuspended glycosylated powders was increased by between 25 and 66% compared with the nonglycosylated powders. Better foam stability (approximately 2 h) and no browning development were observed for GMP glycosylated with maltodextrin for 2 h at Aw = 0.67 and 80°C. The results show that GMP has undergone further glycosylation by means of controlled MR, which improves viscosity and foaming index without negatively affecting solubility. These preliminary studies provide a basis for the future creation of a new ingredient with GMP and reducing sugars.
Collapse
Affiliation(s)
- Karen Keel
- Unidad de Ciencia y Tecnología de Lácteos, Universidad Tecnológica del Uruguay, La Paz, Colonia, Uruguay CP 70200.
| | - Federico M Harte
- Department of Food Science, The Pennsylvania State University, University Park 16802
| | - Julio Berbejillo
- Unidad de Ciencia y Tecnología de Lácteos, Universidad Tecnológica del Uruguay, La Paz, Colonia, Uruguay CP 70200
| | - Tomás López-Pedemonte
- Unidad de Ciencia y Tecnología de Lácteos, Universidad Tecnológica del Uruguay, La Paz, Colonia, Uruguay CP 70200
| |
Collapse
|
12
|
Fabrication of aerogel-templated oleogels from alginate-gelatin conjugates for in vitro digestion. Carbohydr Polym 2022; 291:119603. [DOI: 10.1016/j.carbpol.2022.119603] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/16/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022]
|
13
|
Yang W, Wang Q, Chen Y, Lei L, Lei X, Zhao J, Zhang Y, Ming J. Changes in the structural and physicochemical properties of wheat gliadin and maize amylopectin conjugates induced by dry-heating. J Food Sci 2022; 87:3459-3471. [PMID: 35838074 DOI: 10.1111/1750-3841.16252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022]
Abstract
The Maillard reaction (MR) has been known to modify proteins and optimize their physicochemical properties by conjugating with reducing sugars. The structure and physicochemical properties of wheat gliadin and maize amylopectin conjugates induced by MR were investigated under different gliadin-amylopectin ratios (2:1, 1:1, 1:2, 1:4, and 1:8). The formation of conjugates was indicated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, degree of conjugation, and browning development analyses. The Fourier transform infrared and fluorescence spectroscopy analyses suggested changes in the structures of conjugates and the microenvironment of amino acids. A remarkable decrease in the β-turn structure content and an increase in the free sulfhydryl group content were observed at a ratio of 1:8, leading to decreased allergenicity. The reaction process was commendably controlled at a ratio of 1:1 with a 59.7% degree of conjugation in this group, contributing to the amelioration of solubility and foaming properties. Meanwhile, improvements in the oil holding capacity, surface hydrophobicity, and emulsifying properties were observed at a ratio of 1:4. PRACTICAL APPLICATION: The study revealed that the conjugates produced by MR might have various degrees of improved functional properties and reduced allergenicity at different ratios of substrates. Our study might be helpful for conjugates to assist in improving the texture of products and its potential in expanding the industrial application of products with gliadin.
Collapse
Affiliation(s)
- Wenqing Yang
- College of Food Science, Southwest University, Chongqing, China
| | - Qiming Wang
- College of Food Science, Southwest University, Chongqing, China
| | - Yuanyuan Chen
- College of Food Science, Southwest University, Chongqing, China
| | - Lin Lei
- College of Food Science, Southwest University, Chongqing, China
| | - Xiaojuan Lei
- College of Food Science, Southwest University, Chongqing, China.,Research Center of Food Storage & Logistics, Southwest University, Chongqing, China
| | - Jichun Zhao
- College of Food Science, Southwest University, Chongqing, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing, China.,Research Center of Food Storage & Logistics, Southwest University, Chongqing, China
| |
Collapse
|
14
|
Pyrazine yield and functional properties of rice bran protein hydrolysate formed by the Maillard reaction at varying pH. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:890-897. [PMID: 35185198 PMCID: PMC8814217 DOI: 10.1007/s13197-021-05084-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/16/2021] [Accepted: 03/24/2021] [Indexed: 10/21/2022]
Abstract
Interest in plant-based protein sources has grown rapidly. Rice bran contains excellent quality protein, but it is still rare in the market, due to its poor functional properties and undesirable odors. Therefore, we studied the Maillard reaction at different pHs on the formation of pyrazines and improved functional properties of rice bran protein hydrolysate. Protein from rice bran was extracted and hydrolyzed, using alcalase, at 55 °C for 4 h. Fructose was added, and the pH of the hydrolysate was adjusted to pHs between 7.0 and 10.0, before spray drying. Five pyrazines were detected in the hydrolysate powder, with the highest yield at pH 9 ( p < 0.05). The highest odor active value came from 2-ethyl-3,5-dimethylpyrazine (26.26), which contributed coffee, nutty and caramel aromas, followed by 2,5-dimethylpyrazine (9.2) and 2-ethyl-5-methylpyrazine (5.0). Increased pH led to a darker color (L* = 58.5) and redder (a* = 11.7) and yellower (b* = 13.8) powder. Key functional properties-solubility, water and oil binding capacity and emulsion stability index and foaming capacity-were increased with pH ( p < 0.05). The optimum pH for pyrazine formation and improved properties of enzymatic rice bran protein hydrolysate was pH 9.0.
Collapse
|
15
|
Paul A, Gaiani C, Cvetkovska L, Paris C, Alexander M, Ray C, Francius G, EL-Kirat-Chatel S, Burgain J. Deciphering the impact of whey protein powder storage on protein state and powder stability. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
|
17
|
Bista A, McCarthy N, O'Donnell CP, O'Shea N. Key parameters and strategies to control milk concentrate viscosity in milk powder manufacture. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2021.105120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
18
|
Modification approaches of plant-based proteins to improve their techno-functionality and use in food products. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106789] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Wu J, Chen S, Wang T, Li H, Sedaghat Doost A, Van Damme EJ, De Meulenaer B, Van der Meeren P. Improved heat stability of recombined evaporated milk emulsions by wet heat pretreatment of skim milk powder dispersions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
20
|
Atomic force microscopy nanoscale analysis: Impact of storage conditions on surface properties of whey protein powders. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Zhang W, Chen Z, Yang R, Hua X, Zhao W, Guan S. Application of Caseinate Modified with Maillard Reaction for Improving Physicochemical Properties of High Load Flaxseed Oil Microcapsules. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wenbin Zhang
- State Key Laboratory of Food Science & Technology Jiangnan University Wuxi 214122 China
- School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Zhengjun Chen
- School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Ruijin Yang
- State Key Laboratory of Food Science & Technology Jiangnan University Wuxi 214122 China
- School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Xiao Hua
- State Key Laboratory of Food Science & Technology Jiangnan University Wuxi 214122 China
- School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Wei Zhao
- State Key Laboratory of Food Science & Technology Jiangnan University Wuxi 214122 China
- School of Food Science and Technology Jiangnan University Wuxi 214122 China
| | - Shuyi Guan
- School of Food Science and Technology Jiangnan University Wuxi 214122 China
| |
Collapse
|
22
|
Liu G, Li W, Qin X, Zhong Q. Flexible protein nanofibrils fabricated in aqueous ethanol: Physical characteristics and properties of forming emulsions of conjugated linolenic acid. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106573] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
23
|
Karbasi M, Askari G. Modification of whey protein microgel particles with mono- oligo- and polysaccharides through the Maillard reaction: Effects on structural and techno-functional properties. FOOD STRUCTURE 2021. [DOI: 10.1016/j.foostr.2021.100184] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Zhang Y, Dong L, Zhang J, Shi J, Wang Y, Wang S. Adverse Effects of Thermal Food Processing on the Structural, Nutritional, and Biological Properties of Proteins. Annu Rev Food Sci Technol 2021; 12:259-286. [PMID: 33770470 DOI: 10.1146/annurev-food-062320-012215] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thermal processing is one of the most important processing methods in the food industry. However, many studies have revealed that thermal processing can have detrimental effects on the nutritional and functional properties of foods because of the complex interactions among food components. Proteins are essential nutrients for humans, and changes in the structure and nutritional properties of proteins can substantially impact the biological effects of foods. This review focuses on the interactions among proteins, sugars, and lipids during thermal food processing and the effects of these interactions on the structure, nutritional value, and biological effects of proteins. In particular, the negative effects of modified proteins on human health and strategies for mitigating these detrimental effects from two perspectives, namely, reducing the formation of modified proteins during thermal processing and dietary intervention in vivo, are discussed.
Collapse
Affiliation(s)
- Yan Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Lu Dong
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Jinhui Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Jiaqi Shi
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Yaya Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China;
| |
Collapse
|
25
|
Wu J, Chen S, Sedaghat Doost A, A’yun Q, Van der Meeren P. Dry heat treatment of skim milk powder greatly improves the heat stability of recombined evaporated milk emulsions. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Famelart MH, Croguennec T, Sevrin T. Optimisation of microparticle formation by dry heating of whey proteins. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Glycinin-carbohydrate conjugates: Preparation, characterization, and application in processing of whole soybean curd. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
28
|
Conjugation of milk proteins and reducing sugars and its potential application in the improvement of the heat stability of (recombined) evaporated milk. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
29
|
Farjami T, Babaei J, Nau F, Dupont D, Madadlou A. Effects of thermal, non-thermal and emulsification processes on the gastrointestinal digestibility of egg white proteins. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.11.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Chen K, Yang Q, Hong H, Feng L, Liu J, Luo Y. Physicochemical and functional properties of Maillard reaction products derived from cod (Gadus morhua L.) skin collagen peptides and xylose. Food Chem 2020; 333:127489. [DOI: 10.1016/j.foodchem.2020.127489] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
|
31
|
Zhou Y, Teng F, Tian T, Sami R, Wu C, Zhu Y, Zheng L, Jiang L, Wang Z, Li Y. The impact of soy protein isolate-dextran conjugation on capsicum oleoresin (Capsicum annuum L.) nanoemulsions. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105818] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Song Y, Yang S, Li J. Effect of Maillard reaction conditions on the solubility and molecular properties of wheat gluten-maltose conjugates. Food Sci Nutr 2020; 8:5898-5906. [PMID: 33282241 PMCID: PMC7684599 DOI: 10.1002/fsn3.1869] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/27/2020] [Accepted: 08/16/2020] [Indexed: 01/01/2023] Open
Abstract
In this experiment, the conjugation reaction between gluten and maltose via Maillard reaction under dry-heated condition was studied. The process conditions for the preparation of protein-maltose conjugates with optimum solubility were optimized by using Box-Behnken model. The conjugation reaction and the structure changes of the protein-maltose conjugates were confirmed by infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The results showed that the process conditions for the preparation of protein-maltose conjugates with optimum solubility were as follows: temperature 50.72°C, time 1.92 days, and gluten/maltose (W/W) 267.36%. The infrared spectroscopy showed that the structure of the modified protein had a very obvious change, including the decrease in β-fold and β-turn and the increase in α-helix at a certain degree. But the conjugation reaction has little effect on the irregular coiled structure. The scanning electron microscopy showed that the microstructure of gluten is small grainy, but gluten-maltose conjugate looks sheet with bigger volume.
Collapse
Affiliation(s)
- Yongling Song
- Henan Key Laboratory of Cereal Resource Transformation and UtilizationSchool of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
| | - Shaoming Yang
- Henan Key Laboratory of Cereal Resource Transformation and UtilizationSchool of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
| | - Jianghe Li
- Henan Key Laboratory of Cereal Resource Transformation and UtilizationSchool of Food Science and TechnologyHenan University of TechnologyZhengzhouChina
| |
Collapse
|
33
|
Nooshkam M, Varidi M. Whey protein isolate-low acyl gellan gum Maillard-based conjugates with tailored technological functionality and antioxidant activity. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104783] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Vidotto DC, Tavares GM. Impact of Dry Heating in an Alkaline Environment on the Structure and Foaming Properties of Whey Proteins. FOOD BIOPROCESS TECH 2020. [DOI: 10.1007/s11947-020-02519-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
35
|
Zhao C, Yin H, Yan J, Qi B, Liu J. Structural and physicochemical properties of soya bean protein isolate/maltodextrin mixture and glycosylation conjugates. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Chengbin Zhao
- College of Food Science and Engineering National Engineering Laboratory for Wheat and Corn Deep Processing Jilin Agricultural University Changchun130118China
| | - Huanhuan Yin
- College of Food Science and Engineering National Engineering Laboratory for Wheat and Corn Deep Processing Jilin Agricultural University Changchun130118China
| | - Jiannan Yan
- College of Food Science and Engineering National Engineering Laboratory for Wheat and Corn Deep Processing Jilin Agricultural University Changchun130118China
| | - Baokun Qi
- College of Food Science Northeast Agricultural University Harbin 150030 China
| | - Jingsheng Liu
- College of Food Science and Engineering National Engineering Laboratory for Wheat and Corn Deep Processing Jilin Agricultural University Changchun130118China
| |
Collapse
|
36
|
Covalent conjugation of whey protein isolate hydrolysates and galactose through Maillard reaction to improve the functional properties and antioxidant activity. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2019.104584] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Effects of pH and different sugars on the structures and emulsification properties of whey protein isolate-sugar conjugates. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2019.100507] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Functional and biological properties of Maillard conjugates and their potential application in medical and food: A review. Food Res Int 2020; 131:109003. [PMID: 32247496 DOI: 10.1016/j.foodres.2020.109003] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/23/2019] [Accepted: 01/12/2020] [Indexed: 01/13/2023]
Abstract
Protein and peptides are usually sensitive to environmental stresses, such as pH changes, high temperature, ionic strength, and digestive enzymes amongst other, which limit their food and medicinal applications. Maillard reaction (also called Maillard conjugation or glycation) occurs naturally without the addition of chemical agents and has been vastly applied to boost protein/peptide/amino acid functionalities and biological properties. Protein/peptide-saccharide conjugates are currently used as emulsifiers, antioxidants, antimicrobials, gelling agents, and anti-browning compounds in food model systems and products. The conjugates also possess the excellent stabilizing ability as a potent delivery system to enhance the stability and bioaccessibility of many bioactive compounds. Carbonyl scavengers such as polyphenols are able to significantly inhibit the formation of advanced glycation end products without a significant effect on early Maillard reaction products (MRPs) and melanoidins, which are currently applied as functional ingredients. This review paper highlights the technological functionality and biological properties of glycoconjugates in food model systems and products. Recent applications of MRPs in medical sciences are also presented.
Collapse
|
39
|
Zenker HE, van Lieshout GAA, van Gool MP, Bragt MCE, Hettinga KA. Lysine blockage of milk proteins in infant formula impairs overall protein digestibility and peptide release. Food Funct 2020; 11:358-369. [DOI: 10.1039/c9fo02097g] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High levels of blocked lysine in infant formula lead to increasing average peptide length after in vitro digestion in infants.
Collapse
Affiliation(s)
- Hannah E. Zenker
- Food Quality & Design Group
- Wageningen University & Research Centre
- Wageningen
- the Netherlands
| | | | | | | | - Kasper A. Hettinga
- Food Quality & Design Group
- Wageningen University & Research Centre
- Wageningen
- the Netherlands
| |
Collapse
|
40
|
Ingrassia R, Palazolo GG, Wagner JR, Risso PH. Heat treatments of defatted soy flour: Impact on protein structure, aggregation, and cold-set gelation properties. FOOD STRUCTURE 2019. [DOI: 10.1016/j.foostr.2019.100130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
van Lieshout GAA, Lambers TT, Bragt MCE, Hettinga KA. How processing may affect milk protein digestion and overall physiological outcomes: A systematic review. Crit Rev Food Sci Nutr 2019; 60:2422-2445. [PMID: 31437019 DOI: 10.1080/10408398.2019.1646703] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dairy is one of the main sources for high quality protein in the human diet. Processing may, however, cause denaturation, aggregation, and chemical modifications of its amino acids, which may impact protein quality. This systematic review covers the effect of milk protein modifications as a result of heating, on protein digestion and its physiological impact. A total of 5363 records were retrieved through the Scopus database of which a total of 102 were included. Although the degree of modification highly depends on the exact processing conditions, heating of milk proteins can modify several amino acids. In vitro and animal studies demonstrate that glycation decreases protein digestibility, and hinders amino acid availability, especially for lysine. Other chemical modifications, including oxidation, racemization, dephosphorylation and cross-linking, are less well studied, but may also impact protein digestion, which may result in decreased amino acid bioavailability and functionality. On the other hand, protein denaturation does not affect overall digestibility, but can facilitate gastric hydrolysis, especially of β-lactoglobulin. Protein denaturation can also alter gastric emptying of the protein, consequently affecting digestive kinetics that can eventually result in different post-prandial plasma amino acid appearance. Apart from processing, the kinetics of protein digestion depend on the matrix in which the protein is heated. Altogether, protein modifications may be considered indicative for processing severity. Controlling dairy processing conditions can thus be a powerful way to preserve protein quality or to steer gastrointestinal digestion kinetics and subsequent release of amino acids. Related physiological consequences mainly point towards amino acid bioavailability and immunological consequences.
Collapse
Affiliation(s)
| | | | | | - Kasper A Hettinga
- Food Quality & Design Group, Wageningen University & Research Centre, Wageningen, the Netherlands
| |
Collapse
|
42
|
Schong E, Famelart MH. Influence of casein on the formation of whey protein microparticles obtained by dry heating at an alkaline pH. Food Res Int 2019; 122:96-104. [PMID: 31229134 DOI: 10.1016/j.foodres.2019.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/13/2019] [Accepted: 04/01/2019] [Indexed: 10/27/2022]
Abstract
Dry heating (DH) at 100 °C for 36 h of a whey protein isolate powder conditioned at pH 9.5 leads to the formation of stable, large and porous whey protein microparticles (PMs), resulting from the crosslinking of proteins inside the powder. These PMs could be used as high-viscosity food ingredients. Casein, present as a contaminant in whey protein powders, has been shown to become incorporated into the PMs. In this study, we investigated the effect of adding increasing amounts of sodium caseinate to whey protein powders on the formation of PMs during DH at 100 °C for 36 h. In addition, we studied PM formation during DH of a micellar casein-enriched milk protein powder (Casmic). The browning index of the dry-heated powders, and the size and water content of the microparticles were also characterized. We confirmed that sodium caseinate was incorporated into the PMs. The highest PM D[4,3] values (270 μm) were observed for powders with around 40% caseinate. Powders without added caseinate displayed D[4,3] values of 150 μm. The yield of conversion of proteins into PMs increased from 0.6 to 0.8 g/g with caseinate addition, whereas the amount of water entrapped in the PMs decreased from around 30 to 20 g/g. PMs were also formed by DH of the Casmic powder, but these particles were smaller, with sizes of around 80 μm. In conclusion, our study shows that the process of DH at pH 9.5 could be applied to all milk proteins to obtain PMs with functional properties that could be used in the food industry.
Collapse
Affiliation(s)
- Elise Schong
- STLO, UMR 1253, INRA, Agrocampus Ouest, 35000 Rennes, cedex, France
| | | |
Collapse
|
43
|
Emulsifying properties of conjugates formed between whey protein isolate and subcritical-water hydrolyzed pectin. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
44
|
Audebert A, Saint-Jalmes A, Beaufils S, Lechevalier V, Le Floch-Fouéré C, Cox S, Leconte N, Pezennec S. Interfacial properties, film dynamics and bulk rheology: A multi-scale approach to dairy protein foams. J Colloid Interface Sci 2019; 542:222-232. [DOI: 10.1016/j.jcis.2019.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 10/27/2022]
|
45
|
Cermeño M, Felix M, Connolly A, Brennan E, Coffey B, Ryan E, FitzGerald RJ. Role of carbohydrate conjugation on the emulsification and antioxidant properties of intact and hydrolysed whey protein concentrate. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.09.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
46
|
Influence of lactose on the formation of whey protein microparticles obtained by dry heating at alkaline pH. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Zhang Q, Li L, Lan Q, Li M, Wu D, Chen H, Liu Y, Lin D, Qin W, Zhang Z, Liu J, Yang W. Protein glycosylation: a promising way to modify the functional properties and extend the application in food system. Crit Rev Food Sci Nutr 2018; 59:2506-2533. [DOI: 10.1080/10408398.2018.1507995] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Qing Zhang
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, Sichuan, China
| | - Lin Li
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Qiuyu Lan
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Meili Li
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Dingtao Wu
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Derong Lin
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Zhiqing Zhang
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Jiang Liu
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, Sichuan, China
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenyu Yang
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture/Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, Sichuan, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
48
|
Wefers D, Bindereif B, Karbstein H, van der Schaaf U. Whey protein-pectin conjugates: Linking the improved emulsifying properties to molecular and physico-chemical characteristics. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.06.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
49
|
Wang Z, Zhang C, Zhang T, Ju X, He R. Effects of acylation and glycation treatments on physicochemical and gelation properties of rapeseed protein isolate. RSC Adv 2018; 8:40395-40406. [PMID: 35558250 PMCID: PMC9091480 DOI: 10.1039/c8ra07912a] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 11/20/2018] [Indexed: 11/30/2022] Open
Abstract
The aim of this study was to improve the gelation property of rapeseed protein isolates (RPI) by means of acylation and glycation. The results showed that acylation and glycation within RPI occurred at Lys, and Lys, Met, Ile, Leu and Pro, respectively. Acylation and glycation both increased the surface hydrophobicity (So) and molecular weight of RPI, and decreased the free sulfhydryl (SH) content of RPI, while acylation resulted in a lower change of So and SH. The conformational structure of modified RPIs was changed, and acylated RPI (acylation degree, 38 ± 0.2%) possessed the highest ordered structure content among the modified RPIs. The thermal stability of the protein was improved after either acylation or glycation treatments. Furthermore, native RPI with moderate modification (low degree of acylation, 38 ± 0.2%) showed an overall improvement in the gelation and gel properties as evidenced by the reduced least gelation concentration and surface roughness, increased water-holding capacity, and better textural properties.
Collapse
Affiliation(s)
- Zhigao Wang
- School of Food Science and Technology, Jiangnan University Wuxi 214122 People's Republic of China +86 25 8402 8788 +86 25 8402 8788
| | - Cheng Zhang
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics Nanjing 210003 People's Republic China +86 25 8402 8788 +86 25 8402 8788
| | - Tian Zhang
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie Dan Faculty of Pharmacy, University of Toronto 144 College Street Toronto Canada M5S 3M2
| | - Xingrong Ju
- School of Food Science and Technology, Jiangnan University Wuxi 214122 People's Republic of China +86 25 8402 8788 +86 25 8402 8788
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics Nanjing 210003 People's Republic China +86 25 8402 8788 +86 25 8402 8788
| | - Rong He
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics Nanjing 210003 People's Republic China +86 25 8402 8788 +86 25 8402 8788
| |
Collapse
|
50
|
Application of Glycation in Regulating the Heat-Induced Nanoparticles of Egg White Protein. NANOMATERIALS 2018; 8:nano8110943. [PMID: 30445790 PMCID: PMC6266673 DOI: 10.3390/nano8110943] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 12/18/2022]
Abstract
Due to the poor thermal stability of egg white protein (EWP), important challenges remain regarding preparation of nanoparticles for EWP above the denaturation temperature at neutral conditions. In this study, nanoparticles were fabricated from conjugates of EWP and isomalto-oligosaccharide (IMO) after heating at 90 °C for 30 min. Meanwhile, the effects of protein concentration, temperature, pH, ionic strength and degree of glycation (DG) on the formation of nanoparticles from IMO-EWP were investigated. To further reveal the formation mechanism of the nanoparticles, structures, thermal denaturation properties and surface properties were compared between EWP and IMO-EWP conjugates. Furthermore, the emulsifying activity index (EAI) and the emulsifying stability index (ESI) of nanoparticles were determined. The results indicated that glycation enhanced thermal stability and net surface charge of EWP due to changes in the EWP structure. The thermal aggregation of EWP was inhibited significantly by glycation, and enhanced with a higher degree of glycation. Meanwhile, the nanoparticles (<200 nm in size) were obtained at pH 3.0, 7.0 and 9.0 in the presence of NaCl. The increased thermal stability and surface net negative charge after glycation contributed to the inhibition. The EAI and ESI of nanoparticles were increased nearly 3-fold and 2-fold respectively, as compared to unheated EWP.
Collapse
|