1
|
Alwazeer D. Acidic electrolyzed water: Food additive or sanitizer? Food Chem X 2024; 24:101973. [PMID: 39634528 PMCID: PMC11615911 DOI: 10.1016/j.fochx.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Affiliation(s)
- Duried Alwazeer
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Iğdır University, 76000 Iğdır, Turkey
- Research Center for Redox Applications in Foods (RCRAF), Iğdır University, 76000 Iğdır, Turkey
- Innovative Food Technologies Development, Application, and Research Center, Iğdır University, 76000 Iğdır, Turkey
| |
Collapse
|
2
|
Screpanti L, Desmasures N, Schlusselhuber M. Exploring resource competition by protective lactic acid bacteria cultures to control Salmonella in food: an Achilles' heel to target? Crit Rev Food Sci Nutr 2024:1-15. [PMID: 39420579 DOI: 10.1080/10408398.2024.2416467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Salmonella is a pathogenic bacterium, being the second most commonly reported foodborne pathogen in Europe, due to the ability of its different serovars to contaminate a wide variety of foods, with differences among countries. Common chemical or physical control methods are not always effective, eco-sustainable and adapted to the diversity of Salmonella serovars. Thus, great attention is given to developing complementary or alternative control methods that can be tailor made for specific situations. One of these methods is biopreservation using lactic acid bacteria, with most studies on their antagonistic activity focused on the production of antimicrobials. Less attention has been given to competition by exploitation of nutrients. This review is thus set to investigate and highlight limiting resources that may be involved in the competitive exclusion of Salmonella in food matrices. To do this the needs for nutrients and microelements and the known homeostatic pathways of Salmonella and lactic acid bacteria are examined. Finally, milk, intended for the manufacture of fermented dairy foods, is pointed out as an example of food to investigate the bioavailable macronutrients, metals and vitamins that could be involved in competition between the different species and serovars, and could be exploited for targeted biopreservation.
Collapse
Affiliation(s)
- Ludovico Screpanti
- Université de Caen Normandie, Université de Rouen Normandie, ABTE UR4651, Caen, France
| | - Nathalie Desmasures
- Université de Caen Normandie, Université de Rouen Normandie, ABTE UR4651, Caen, France
| | - Margot Schlusselhuber
- Université de Caen Normandie, Université de Rouen Normandie, ABTE UR4651, Caen, France
| |
Collapse
|
3
|
Bariya AR, Rathod NB, Patel AS, Nayak JKB, Ranveer RC, Hashem A, Abd Allah EF, Ozogul F, Jambrak AR, Rocha JM. Recent developments in ultrasound approach for preservation of animal origin foods. ULTRASONICS SONOCHEMISTRY 2023; 101:106676. [PMID: 37939526 PMCID: PMC10656273 DOI: 10.1016/j.ultsonch.2023.106676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Ultrasound is a contemporary non-thermal technology that is currently being extensively evaluated for its potential to preserve highly perishable foods, while also contributing positively to the economy and environment. There has been a rise in the demand for food products that have undergone minimal processing or have been subjected to non-thermal techniques. Livestock-derived food products, such as meat, milk, eggs, and seafood, are widely recognized for their high nutritional value. These products are notably rich in proteins and quality fats, rendering them particularly vulnerable to oxidative and microbial spoilage. Ultrasound has exhibited significant antimicrobial properties, as well as the ability to deactivate enzymes and enhance mass transfer. The present review centers on the production and classification of ultrasound, as well as its recent implementation in the context of livestock-derived food products. The commercial applications, advantages, and limitations of the subject matter are also subject to scrutiny. The review indicated that ultrasound technology can be effectively utilized in food products derived from livestock, leading to favorable outcomes in terms of prolonging the shelf life of food while preserving its nutritional, functional, and sensory attributes. It is recommended that additional research be conducted to investigate the effects of ultrasound processing on nutrient bioavailability and extraction. The implementation of hurdle technology can effectively identify and mitigate the lower inactivation of certain microorganisms or vegetative cells.
Collapse
Affiliation(s)
- Akshay Rajendrabhai Bariya
- Department of Livestock Products Technology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, Gujarat, India.
| | - Nikheel Bhojraj Rathod
- Post Graduate Institute of Post-Harvest Technology & Management, Roha, Raigad, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Maharashtra State, India.
| | - Ajay Sureshbhai Patel
- Department of Livestock Products Technology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Junagadh, Gujarat, India
| | - Jitendra Kumar Bhogilal Nayak
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Anand, Gujarat, India
| | - Rahul Chudaman Ranveer
- Post Graduate Institute of Post-Harvest Technology & Management, Roha, Raigad, Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth, Maharashtra State, India.
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia.
| | - Elsayed Fathi Abd Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh 11451, Saudi Arabia.
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey; Biotechnology Research and Application Center, Cukurova University, 01330 Adana, Turkey.
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb, Croatia.
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| |
Collapse
|
4
|
Zhao X, Li L, Zhang Q, Li M, Hu M, Luo Y, Xu X, Chen Y, Liu Y. Characterization of the Clostridium perfringens phage endolysin cpp-lys and its application on lettuce. Int J Food Microbiol 2023; 405:110343. [PMID: 37523902 DOI: 10.1016/j.ijfoodmicro.2023.110343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
Clostridium perfringens is an important foodborne pathogen that can have severe consequences, including mortality and economic losses. In this study, the gene encoding cpp-lys, an endolysin from the C. perfringens phage cpp has been cloned and overexpressed. The encoded protein was characterized, and then its efficacy in controlling C. perfringens on lettuce was evaluated. The endolysin cpp-lys presented lytic activity against seven strains of C. perfringens that produce different types of toxins. It maintained stability across a wide range of temperatures (4 °C - 50 °C), and demonstrated tolerance to varying pH levels (4-9). Storage of endolysin cpp-lys under room-temperature conditions (16 °C-25 °C) and cold-temperature conditions (4 °C, -20 °C, and -80 °C) for 30 days did not affect its lytic activity. However, the lytic activity of cpp-lys decreased by 40 % and 18 % after storage for 30 d at 42 °C and 37 °C, respectively. The endolysin cpp-lys did not display cytotoxic activity against normal eukaryotic cells. The bacterial viability on lettuce was significantly lower in the group treated with endolysin cpp-lys than in the PBS group, and >4-log of C. perfringens J1 were removed within 15 min. Cpp-lys plus Zn2+ inhibited the activity of cpp-lys. The EDTA-treated cpp-lys significantly reduced the number of bacteria by up to 0.6-log CFU compared with the endolysin cpp-lys group. The findings of this study demonstrated that endolysin cpp-lys has potential applications in controlling C. perfringens in the food industry.
Collapse
Affiliation(s)
- Xiaonan Zhao
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Lulu Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Qing Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Mengxuan Li
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Ming Hu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Yanbo Luo
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Xiaohui Xu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China
| | - Yibao Chen
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China.
| | - Yuqing Liu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, PR China; Key Laboratory of Livestock and Poultry Multi-omics of MARA, PR China.
| |
Collapse
|
5
|
Mukhopadhyay S, Ukuku DO, Jin T, Olanya OM, Fan X. Evaluation of pulsed light treatment for inactivation of
Salmonella
in packaged cherry tomato and impact on background microbiota and quality. J Food Saf 2023. [DOI: 10.1111/jfs.13035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sudarsan Mukhopadhyay
- U.S. Department of Agriculture, Agricultural Research Service Food Safety and Intervention Technologies Research Unit, Eastern Regional Research Center Wyndmoor Pennsylvania USA
| | - Dike O. Ukuku
- U.S. Department of Agriculture, Agricultural Research Service Food Safety and Intervention Technologies Research Unit, Eastern Regional Research Center Wyndmoor Pennsylvania USA
| | - Tony Jin
- U.S. Department of Agriculture, Agricultural Research Service Food Safety and Intervention Technologies Research Unit, Eastern Regional Research Center Wyndmoor Pennsylvania USA
| | - Ocen M. Olanya
- U.S. Department of Agriculture, Agricultural Research Service Food Safety and Intervention Technologies Research Unit, Eastern Regional Research Center Wyndmoor Pennsylvania USA
| | - Xuetong Fan
- U.S. Department of Agriculture, Agricultural Research Service Food Safety and Intervention Technologies Research Unit, Eastern Regional Research Center Wyndmoor Pennsylvania USA
| |
Collapse
|
6
|
Yoon JH, Kim JY, Bae YM, Lee SY. Control of Salmonella enterica serovar Typhimurium and Listeria monocytogenes on lettuce and radish sprouts by combined treatments with thymol, acetic acid, and ultrasound. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Effect of the pH on the Antibacterial Potential and Cytotoxicity of Different Plasma-Activated Liquids. Int J Mol Sci 2022; 23:ijms232213893. [PMID: 36430372 PMCID: PMC9693261 DOI: 10.3390/ijms232213893] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, different plasma-activated liquids were evaluated for their antimicrobial effects against Escherichia coli, as well as for their cytotoxicity on mammalian cells. The PALs were prepared from distilled (DIS), deionized (DI), filtered (FIL), and tap (TAP) water. Additionally, 0.9% NaCl saline solution (SAL) was plasma-activated. These PALs were prepared using 5 L/min air gliding arc plasma jet for up to 60.0 min of exposure. Subsequently, the physicochemical properties, such as, the oxidation-reduction potential (ORP), the pH, the conductivity, and the total dissolved solids (TDS) were characterized by a water multiparameter. The PALs obtained showed a drastic decrease in the pH with increasing plasma exposure time, in contrast, the conductivity and TDS increased. In a general trend, the UV-vis analyses identified a higher production of the following reactive species of nitrogen and oxygen (RONS), HNO2, H2O2, NO3-, and NO2-. Except for the plasma-activated filtered water (PAW-FIL), where there was a change in the position of NO2- and NO3- at some pHs, The higher production of HNO2 and H2O2-reactive species was observed at a low pH. Finally, the standardized suspensions of Escherichia coli were exposed to PAL for up to 60.0 min. The plasma-activated deionized water (PAW-DI pH 2.5), plasma-activated distilled water (PAW-DIS pH 2.5 and 3), and plasma-activated tap water (PAW-TAP 3.5) showed the best antimicrobial effects at exposure times of 3.0, 10.0, and 30.0 min, respectively. The MTT analysis demonstrated low toxicity of all of the PAL samples. Our results indicate that the plasma activation of different liquids using the gliding arc system can generate specific physicochemical conditions that produce excellent antibacterial effects for E. coli with a safe application, thus bringing future contributions to creating new antimicrobial protocols.
Collapse
|
8
|
Kiprotich SS, Aldrich CG. A review of food additives to control the proliferation and transmission of pathogenic microorganisms with emphasis on applications to raw meat-based diets for companion animals. Front Vet Sci 2022; 9:1049731. [PMID: 36439354 PMCID: PMC9686358 DOI: 10.3389/fvets.2022.1049731] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/25/2022] [Indexed: 01/03/2025] Open
Abstract
Raw meat-based diets (RMBDs) or sometimes described as biologically appropriate raw food (BARFs) are gaining in popularity amongst dog and cat owners. These pet guardians prefer their animals to eat minimally processed and more "natural" foods instead of highly heat-processed diets manufactured with synthetic preservatives. The market for RMBDs for dogs and cats is estimated at $33 million in the United States. This figure is likely underestimated because some pet owners feed their animals raw diets prepared at home. Despite their increasing demand, RMBDs have been plagued with numerous recalls because of contamination from foodborne pathogens like Salmonella, E. coli, or Campylobacter. Existing literature regarding mitigation strategies in RMBD's for dogs/cats are very limited. Thus, a comprehensive search for published research was conducted regarding technologies used in meat and poultry processing and raw materials tangential to this trade (e.g., meats and poultry). In this review paper, we explored multiple non-thermal processes and GRAS approved food additives that can be used as potential antimicrobials alone or in combinations to assert multiple stressors that impede microbial growth, ultimately leading to pathogen inactivation through hurdle technology. This review focuses on use of high-pressure pasteurization, organic acidulants, essential oils, and bacteriophages as possible approaches to commercially pasteurize RMBDs effectively at a relatively low cost. A summary of the different ways these technologies have been used in the past to control foodborne pathogens in meat and poultry related products and how they can be applied successfully to impede growth of enteric pathogens in commercially produced raw diets for companion animals is provided.
Collapse
Affiliation(s)
| | - Charles G. Aldrich
- Department of Grain Science and Industry, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
9
|
Mengarda Buosi DT, de Moraes JO, Cheng Y, Cheng RA, Moraru CI, Carciofi BA. Effective pulsed light treatments for inactivating Salmonella enterica serotypes. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
10
|
Carrillo-Lopez LM, Cruz-Garibaldi BY, Huerta-Jimenez M, Garcia-Galicia IA, Alarcon-Rojo AD. The Physicochemical, Microbiological, and Structural Changes in Beef Are Dependent on the Ultrasound System, Time, and One-Side Exposition. Molecules 2022; 27:541. [PMID: 35056855 PMCID: PMC8780576 DOI: 10.3390/molecules27020541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 12/01/2022] Open
Abstract
The effect of high-intensity ultrasound (HIU) system (bath, 37 kHz and 90 W/cm2; or probe, 24 kHz and 400 W) and application time (25 or 50 min, one-side exposition) on the properties of bovine Longissimus lumborum after 7 d of storage at 4 °C was studied. The bath system significantly increased the lightness of the muscle, while other color parameters (a*, b*, hue, and chroma) were not different from the control. The water holding capacity and shear force decreased significantly (3.1-5% and 0.59-0.72 kgf, respectively) in sonicated meat independently of the system, favoring the tenderization of the muscle after storage. Microstructural changes observed in the HIU-exposed surface provided evidence of a higher area of interfibrillar spaces (1813 vs. 705 µm2 in the control), producing tenderization of the muscle, compared with the control. HIU significantly increased counts of total aerobic and coliform bacteria, especially after 50 min of ultrasonication. HIU also increased lactic acid bacterial counts in the bath system. Single-sided muscle exposition to ultrasound may produce sufficient significant changes in muscle properties, which could decrease long treatment times that would be needed for the exposition of both sides. HIU in bath systems increases tenderness by modifying meat ultrastructure, with no significant changes in physicochemical parameters. Nevertheless, microbiological quality may need to be considered during the process due to a slight increase in bacterial counts.
Collapse
Affiliation(s)
- Luis M. Carrillo-Lopez
- National Council of Science and Technology, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México 03940, Mexico;
| | - Bianka Y. Cruz-Garibaldi
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua 31453, Mexico; (B.Y.C.-G.); (A.D.A.-R.)
| | - Mariana Huerta-Jimenez
- National Council of Science and Technology, Av. Insurgentes Sur 1582, Col. Crédito Constructor, Del. Benito Juárez, Ciudad de México 03940, Mexico;
| | - Ivan A. Garcia-Galicia
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua 31453, Mexico; (B.Y.C.-G.); (A.D.A.-R.)
| | - Alma D. Alarcon-Rojo
- Faculty of Animal Science and Ecology, Autonomous University of Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua 31453, Mexico; (B.Y.C.-G.); (A.D.A.-R.)
| |
Collapse
|
11
|
Zhang Y, Huang HH, Duc HM, Masuda Y, Honjoh KI, Miyamoto T. Application of endolysin LysSTG2 as a potential biocontrol agent against planktonic and biofilm cells of Pseudomonas on various food and food contact surfaces. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108460] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
12
|
Paula Rossi A, Lahis Kalschne D, Paula Iglikowski Byler A, Lisandro de Moraes Flores E, Donizeti Leite O, Dos Santos D, Smanioto Barin J, Canan C. Effect of ultrasound and chlorine dioxide on Salmonella Typhimurium and Escherichia coli inactivation in poultry chiller tank water. ULTRASONICS SONOCHEMISTRY 2021; 80:105815. [PMID: 34736115 PMCID: PMC8571780 DOI: 10.1016/j.ultsonch.2021.105815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the application of ultrasound alone or combined with chlorine dioxide (ClO2) for Salmonella Typhimurium and Escherichia coli inactivation in poultry processing chiller tank water. A Full Factorial Design (FFD) 22 was conducted for each microorganism to evaluate the effect of ultrasound exposure time (x1: 1 to 9 min; fixed: 37 kHz; 330 W; 25 °C) using a bath, and ClO2 concentration (x2: 1 to 17 mg L-1) on microorganism count expressed in log CFU mL-1 in distilled water. Variable x2 had a negative effect on Salmonella Typhimurium (-5.09) and Escherichia coli (-2.00) count, improving the inactivation; while a x1 increase present no inactivation improvement, explaining the use of x1 lower level (1 min) and x2 higher level (17 mg L-1). The best condition for microorganism inactivation based on FFD was evaluated in chiller tank water (with organic matter) at 25, 16, and 4 °C; x1 was kept (1 min), however x2 was adjusted to obtain the same residual free chlorine (2.38 mg L-1) considering the ClO2 consumption by organic matter, achieving the value of 30 mg L-1. An inactivation of 49% and 31% were observed for Salmonella Typhimurium and Escherichia coli. When ultrasound was replaced by a simple agitation in the presence of ClO2, there was no inactivation for both microorganisms. Moreover, at poultry carcass pre-chilling (16 °C) and chilling (4 °C) conditions, the synergism of ultrasound combined with ClO2 was more pronounced, with microorganisms' reductions up to 100%.
Collapse
Affiliation(s)
- Ana Paula Rossi
- Departamento de Alimentos, Universidade Tecnológica Federal do Paraná, Av. Brasil, 4232, Parque Independência, 85884-000 Medianeira, Paraná, Brazil.
| | - Daneysa Lahis Kalschne
- Departamento de Alimentos, Universidade Tecnológica Federal do Paraná, Av. Brasil, 4232, Parque Independência, 85884-000 Medianeira, Paraná, Brazil.
| | - Ana Paula Iglikowski Byler
- Departamento de Alimentos, Universidade Tecnológica Federal do Paraná, Av. Brasil, 4232, Parque Independência, 85884-000 Medianeira, Paraná, Brazil.
| | - Eder Lisandro de Moraes Flores
- Departamento de Química, Universidade Tecnológica Federal do Paraná, Av. Brasil, 4232, Parque Independência, 85884-000 Medianeira, Paraná, Brazil.
| | - Oldair Donizeti Leite
- Departamento de Química, Universidade Tecnológica Federal do Paraná, Av. Brasil, 4232, Parque Independência, 85884-000 Medianeira, Paraná, Brazil.
| | - Daniel Dos Santos
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, 97105-900 Santa Maria, Rio Grande do Sul, Brazil.
| | - Juliano Smanioto Barin
- Departamento de Tecnologia e Ciência dos Alimentos, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Camobi, 97105-900 Santa Maria, Rio Grande do Sul, Brazil.
| | - Cristiane Canan
- Departamento de Alimentos, Universidade Tecnológica Federal do Paraná, Av. Brasil, 4232, Parque Independência, 85884-000 Medianeira, Paraná, Brazil.
| |
Collapse
|
13
|
Analysis of thermal processing of liquid eggs using a high frequency ohmic heating: Experimental and computer simulation approaches. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Kaavya R, Pandiselvam R, Abdullah S, Sruthi N, Jayanath Y, Ashokkumar C, Chandra Khanashyam A, Kothakota A, Ramesh S. Emerging non-thermal technologies for decontamination of Salmonella in food. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
Menelli GS, Fracalossi KL, Lepaus BM, De São José JFB. Effects of high-intensity ultrasonic bath on the quality of strawberry juice. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1918768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Kallyne Lopes Fracalossi
- Department of Integrated Health Education, Federal University of Espírito Santo, Vitória, Brazil
| | - Bárbara Morandi Lepaus
- Department of Integrated Health Education, Federal University of Espírito Santo, Vitória, Brazil
- Postgraduate Program in Nutrition and Health, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| | - Jackline Freitas Brilhante De São José
- Department of Integrated Health Education, Federal University of Espírito Santo, Vitória, Brazil
- Postgraduate Program in Nutrition and Health, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
16
|
Zhang J, Wang J, Zhao D, Hao J. Efficacy of the two-step disinfection with slightly acidic electrolyzed water for reduction of Listeria monocytogenes contamination on food raw materials. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Zhang Y, Huang HH, Duc HM, Masuda Y, Honjoh KI, Miyamoto T. Endolysin LysSTG2: Characterization and application to control Salmonella Typhimurium biofilm alone and in combination with slightly acidic hypochlorous water. Food Microbiol 2021; 98:103791. [PMID: 33875220 DOI: 10.1016/j.fm.2021.103791] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 01/12/2023]
Abstract
The gene encoding LysSTG2, an endolysin from Salmonella-lytic bacteriophage STG2, was cloned, overexpressed, and characterized. LysSTG2 consists of a single domain belonging to the Peptidase_M15 superfamily. LysSTG2 showed strong lytic activity against chloroform-treated S. Typhimurium cells after incubation at 4-50 °C for 30 min, at pH ranging from 7.0 to 11.0, and in the presence of NaCl from 0 to 300 mmol/L. It also showed lytic activity against all the 14 tested Gram-negative strains treated with chloroform, including Salmonella, E. coli, and Pseudomonas aeruginosa, but not against the Gram-positive bacteria tested. In addition, LysSTG2 (100 μg/mL) reduced the viability of S. Typhimurium NBRC 12529 planktonic cells by 1.2 log and that of the biofilm cells after 1-h treatment. Sequential treatment of slightly acidic hypochlorous water (SAHW) containing 40 mg/L available chlorine and LysSTG2 (100 μg/mL) was effective on S. Typhimurium NBRC 12529 biofilm cells, removing more than 99% of biofilm cells. These results demonstrate that LysSTG2 alone can effectively kill S. Typhimurium cells after permeabilization treatment and successfully control S. Typhimurium in biofilms in combination with SAHW, suggesting that the combined use of LysSTG2 and SAHW might be a novel and promising method for combating S. Typhimurium in food industries.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hung-Hsin Huang
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hoang Minh Duc
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Viet Nam
| | - Yoshimitsu Masuda
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ken-Ichi Honjoh
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Takahisa Miyamoto
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.
| |
Collapse
|
18
|
Abstract
Abstract
Purpose of Review
The market for minimally processed products is constantly growing due to consumer demand. Besides food safety and increased shelf life, nutritional value and sensory appearance also play a major role and have to be considered by the food processors. Therefore, the purpose of the review was to summarize recent knowledge about important alternative non-thermal physical technologies, including both those which are actually applied (e.g. high-pressure processing and irradiation) and those demonstrating a high potential for future application in raw meat decontamination (e.g. pulsed light UV-C and cold plasma treatment). The evaluation of the methods is carried out with respect to efficiency, preservation of food quality and consumer acceptance.
Recent Findings
It was evident that significantly higher bacterial reductions are achieved with gamma-ray, electron beam irradiation and high pressure, followed by pulsed light, UV-C and cold plasma, with ultrasound alone proving the least effective. As a limitation, it must be noted that sensory deviations may occur and that legal approvals may have to be applied for.
Summary
In summary, it can be concluded that physical methods have the potential to be used for decontamination of meat surfaces in addition to common hygiene measures. However, the aim of future research should be more focused on the combined use of different technologies to further increase the inactivation effects by keeping meat quality at the same time.
Collapse
|
19
|
Luan C, Zhang M, Fan K, Devahastin S. Effective pretreatment technologies for fresh foods aimed for use in central kitchen processing. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:347-363. [PMID: 32564354 DOI: 10.1002/jsfa.10602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 06/14/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
The central kitchen concept is a new trend in the food industry, where centralized preparation and processing of fresh foods and the distribution of finished or semi-finished products to catering chains or related units take place. Fresh foods processed by a central kitchen mainly include fruit and vegetables, meat, aquatic products, and edible fungi; these foods have high water activities and thermal sensitivities and must be processed with care. Appropriate pretreatments are generally required for these food materials; typical pretreatment processes include cleaning, enzyme inactivation, and disinfection, as well as packaging and coating. To improve the working efficiency of a central kitchen, novel efficient pretreatment technologies are needed. This article systematically reviews various high-efficiency pretreatment technologies for fresh foods. These include ultrasonic cleaning technologies, physical-field enzyme inactivation technologies, non-thermal disinfection technologies, and modified-atmosphere packagings and coatings. Mechanisms, applications, influencing factors, and advantages and disadvantages of these technologies, which can be used in a central kitchen, are outlined and discussed. Possible solutions to problems related to central-kitchen food processing are addressed, including low cleaning efficiency and automation feasibility, high nutrition loss, high energy consumption, and short shelf life of products. These should lead us to the next step of fresh food processing for a highly demanding modern society. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chunning Luan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, China
| | - Kai Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- Yechun Food Production and Distribution Co., Ltd, Yangzhou, China
| | - Sakamon Devahastin
- Advanced Food Processing Research Laboratory, Department of Food Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| |
Collapse
|
20
|
Hu A, Gao C, Lu Z, Lu F, Kong L, Bie X. Detection of Exiguobacterium spp. and E. acetylicum on fresh-cut leafy vegetables by a multiplex PCR assay. J Microbiol Methods 2020; 180:106100. [PMID: 33249127 DOI: 10.1016/j.mimet.2020.106100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022]
Abstract
AIMS To identify the main spoilage bacterium on fresh-cut leafy vegetables and establish a multiplex PCR assay. METHODS AND RESULTS Based on physiological-biochemical, molecular identification, and artificial contamination tests, the main bacterium to spoil fresh-cut leafy vegetables was identified as Exiguobacterium spp. and Exiguobacterium acetylicum. Comparative genomics showed that P401_RS0117025 and oxi_50,582,462 genes are specific to Exiguobacterium spp. and E. acetylicum. Based on this, three pairs of primer sets to EaG-291, EaS-2B, and Ea16S-12 genes were designed and used to develop a multiplex PCR assay, which exhibited 100% specificity among 16 Exiguobacterium and 10 non-Exiguobacterium strains. Finally, 84 fresh-cut leafy vegetable samples were analyzed by multiplex PCR assay and standard physiological-biochemical experiments, the results showed multiplex PCR assay reached a detection rate of 96%. CONCLUSIONS The main spoilage bacterium was identified as Exiguobacterium spp. and E. acetylicum on fresh-cut leafy vegetables based on the novel specific genes explored in this study. SIGNIFICANCE AND IMPACT OF STUDY A rapid, specific, and sensitive PCR assay was developed for the detection of Exiguobacterium spp. and E. acetylicum.
Collapse
Affiliation(s)
- Antuo Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Cancan Gao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Liangyu Kong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
21
|
Affiliation(s)
| | - Senay Simsek
- Department of Plant Sciences North Dakota State University Fargo ND USA
| |
Collapse
|
22
|
Piñon MI, Alarcon-Rojo AD, Renteria AL, Carrillo-Lopez LM. Microbiological properties of poultry breast meat treated with high-intensity ultrasound. ULTRASONICS 2020; 102:105680. [PMID: 29361330 DOI: 10.1016/j.ultras.2018.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/06/2017] [Accepted: 01/01/2018] [Indexed: 05/19/2023]
Abstract
Lactic acid, psychrophilic, and mesophilic bacteria, Escherichia coli, Salmonella spp. and Staphylococcus aureus were enumerated on chicken breasts after treatment with different high intensity ultrasound (frequency 40 kHz, intensity 9.6 W/cm-2) application times (0, 30, and 50 min) and packaging atmospheres (aerobic and vacuum) after a 7-day storage. The experiment was performed in commercial 7-week-old chicken breasts. Counts were performed prior to and immediately after ultrasonication, and on the 7th day of chill-storage. After sonication and storage, mesophiles, psychrophiles, LAB and S. aureus increased statistically. Psychrophiles decreased significantly under anaerobic packaging. There were no differences among ultrasonication times in terms of mesophiles, psychrophiles, LAB, E. coli and Salmonella spp. S. aureus numbers had a significant reduction after 50 min sonication. Under these experimental conditions, high-intensity ultrasound for 50 min is a control method of S. aureus and the anaerobic packaging reduces numbers of psychrophiles in chicken breast. The effect of ultrasound is only significant after the storage time.
Collapse
Affiliation(s)
- M I Piñon
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico
| | - A D Alarcon-Rojo
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico.
| | - A L Renteria
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Perif. Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico.
| | - L M Carrillo-Lopez
- Facultad de Zootecnia y Ecología, CONACYT-Universidad Autónoma de Chihuahua, Francisco R. Almada km 1, Chihuahua, Chih. 31453, Mexico.
| |
Collapse
|
23
|
Traore MB, Sun A, Gan Z, Senou H, Togo J, Fofana KH. Antimicrobial capacity of ultrasound and ozone for enhancing bacterial safety on inoculated shredded green cabbage (Brassica oleracea var. capitata). Can J Microbiol 2020; 66:125-137. [DOI: 10.1139/cjm-2019-0313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The high frequency and incidence of foodborne outbreaks related to fresh vegetables consumption is a major public health concern and an economic burden worldwide. This study evaluated the effect of individual and combined application of ultrasound (40 kHz, 100 W) and ozone on the inactivation of foodborne Escherichia coli and Salmonella, as well as their impact on cabbage color and vitamin C content. Plate count, scanning electron microscopy (SEM), and flow cytometry (FCM) following single or double staining with carboxyfluorescein diacetate and (or) propidium iodide were used to determine bacterial inactivation parameters, such as cell culturability, membrane integrity, intracellular enzyme activity, and injured and dead cells. The results of FCM and SEM showed that ultrasound treatment affected bacteria mainly by acting on the cell membrane and inactivating intracellular esterase, which resulted in bacterial death. Furthermore, when combined with ozone at 1.5 mg/L, the maximum reduction of bacterial populations was observed at 8 min with no damage on the surface of treated leaves. Therefore, fresh products sanitization using a combination of ultrasound and ozone has the potential to be an alternative for maintaining the color and vitamin C content of green cabbage.
Collapse
Affiliation(s)
- Mamadou Bado Traore
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, P.R. China
| | - Aidong Sun
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, P.R. China
| | - Zhilin Gan
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing 100083, P.R. China
| | - Hamidou Senou
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Jacques Togo
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, P.R. China
- University of Chinese Academy of Sciences, Shijingshan District, Beijing 100049, P.R. China
| | | |
Collapse
|
24
|
Effects of Ultrahigh Temperature Pasteurization on the Liquid Components and Functional Properties of Stored Liquid Whole Eggs. BIOMED RESEARCH INTERNATIONAL 2020. [DOI: 10.1155/2020/3465465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Ultrahigh temperature (UHT) pasteurization is often used to sterilize liquid whole eggs in egg processing enterprises in China. Although this treatment generates satisfactory sterilization effect, there are few studies on the processing characteristics and physical and chemical properties of the liquid whole eggs treated by UHT pasteurization. We compared the physical and chemical properties (i.e., foaming ability and stability, emulsification ability and stability, viscosity, thiol content, gel strength, and color) of unsterilized eggs and liquid whole eggs pasteurized with UHT over five weeks of storage. The emulsifying properties of sterilized liquid whole eggs were initially low and decreased further with the storage time. The emulsification stability index of UHT-pasteurized liquid whole eggs was higher than that of unsterilized eggs and increased by 21.9%, from 7.850 to 9.567. The foaming ability of UHT-pasteurized and unsterilized liquid whole eggs increased by 33.38% and 15.48%, respectively. The viscosity, gel strength, and soluble protein content were higher in UHT-pasteurized liquid whole eggs than those in unsterilized liquid whole eggs and increased further with storage time. Our results demonstrate that UHT pasteurization preserves and improves the processing characteristics and shelf life of liquid whole eggs.
Collapse
|
25
|
Bi X, Wang X, Chen Y, Chen L, Xing Y, Che Z. Effects of combination treatments of lysozyme and high power ultrasound on the Salmonella typhimurium inactivation and quality of liquid whole egg. ULTRASONICS SONOCHEMISTRY 2020; 60:104763. [PMID: 31539729 DOI: 10.1016/j.ultsonch.2019.104763] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 08/04/2019] [Accepted: 09/02/2019] [Indexed: 05/19/2023]
Abstract
An investigation was conducted into the utilization of treatments combining ultrasound and lysozyme (US + Lys) to deactivate Salmonella typhimurium (S. typhimurium) in the liquid whole egg (LWE). Furthermore, US + Lys and heat treatment (HT) with a similar microbial inactivation effect were comparatively evaluated by examining their impact on the quality attributes of LWE. The LWE was treated with US at 35-45 °C and 605-968 W/cm2 for 5-35 min, and with HT at 58-64 °C for 3-4 min. Lysozyme (Lys) alone achieved a minimal degree of inactivation in S. typhimurium, while it was enhanced with the application of US alone when the treatment temperature, time, and energy were increased. Furthermore, US and US + Lys caused a reduction of 3.31 and 4.26 log10 cycles in S. typhimurium, respectively at 968 W/cm2 and 35 °C for 20 min, indicating a synergistic relationship between US and Lys for the effective inactivation of S. typhimurium. Similarly, HT and HT + Lys achieved a reduction of 4.10 and 4.75 log10 cycles at 64 °C/3 min, respectively. The L* and b* values of the LWE following US and US + Lys application were significantly higher than untreated and heat-treated LWE, indicating that US treated LWE had a brighter and yellower appearance. The protein solubility (PS) slightly decreased after all treatments, while the pH increased. Furthermore, the foaming capacity (FC) and foam stability (FS) were decreased, revealing that LWE had a lower FC and unstable foam after all treatments. Therefore, US and US + Lys could increase the viscosity and gelation temperature (Tg) of LWE, indicating that LWE exhibited higher heat resistance after US treatment. These results indicated that US + Lys might be a promising pasteurization technology in the processing of LWE.
Collapse
Affiliation(s)
- Xiufang Bi
- Sichuan Key Laboratory of Food Bio-technology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China.
| | - Xiaoqiong Wang
- Sichuan Key Laboratory of Food Bio-technology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yan Chen
- Key Laboratory of Food Non-Thermal Processing, Engineering Technology Research Center of Food Non-Thermal Processing, Yibin Xihua University Research Institute, Yibin 644004, China
| | - Liyi Chen
- Sichuan Key Laboratory of Food Bio-technology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Yage Xing
- Sichuan Key Laboratory of Food Bio-technology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Zhenming Che
- Sichuan Key Laboratory of Food Bio-technology, School of Food and Bioengineering, Xihua University, Chengdu 610039, China
| |
Collapse
|
26
|
Current status of emerging food processing technologies in Latin America: Novel non-thermal processing. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.102233] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
27
|
Bevilacqua A, Campaniello D, Speranza B, Altieri C, Sinigaglia M, Corbo MR. Two Nonthermal Technologies for Food Safety and Quality-Ultrasound and High Pressure Homogenization: Effects on Microorganisms, Advances, and Possibilities: A Review. J Food Prot 2019; 82:2049-2064. [PMID: 31702965 DOI: 10.4315/0362-028x.jfp-19-059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Some nonthermal technologies have gained special interest as alternative approaches to thermal treatments. High pressure homogenization (HPH) and ultrasound (US) are two of the most promising approaches. They rely upon two different modes of action, although they share some mechanisms or ways of actions (mechanic burden against cells, cavitation and micronization, primary targets being the cell wall and the membrane, temperature and pressure playing important roles for their antimicrobial potential, and their effect on cells can be either positive or negative). HPH is generally used in milk and dairy products to break lipid micelles, whereas US is used for mixing and/or to obtain active compounds of food. HPH and US have been tested on pathogens and spoilers with different effects; thus, the main goal of this article is to describe how US and HPH act on biological systems, with a focus on antimicrobial activity, mode of action, positive effects, and equipment. The article is composed of three main parts: (i) an overview of US and HPH, with a focus on some results covered by other reviews (mode of action toward microorganisms and effect on enzymes) and some new data (positive effect and modulation of metabolism); (ii) a tentative approach for a comparative resistance of microorganisms; and (iii) future perspectives.
Collapse
Affiliation(s)
- Antonio Bevilacqua
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Daniela Campaniello
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Barbara Speranza
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Clelia Altieri
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Milena Sinigaglia
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| | - Maria Rosaria Corbo
- Department of the Science of Agriculture, Food and Environment, University of Foggia, Foggia, Italy
| |
Collapse
|
28
|
Tomat D, Soazo M, Verdini R, Casabonne C, Aquili V, Balagué C, Quiberoni A. Evaluation of an WPC edible film added with a cocktail of six lytic phages against foodborne pathogens such as enteropathogenic and Shigatoxigenic Escherichia coli. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108316] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
29
|
Cadena M, Kelman T, Marco ML, Pitesky M. Understanding Antimicrobial Resistance (AMR) Profiles of Salmonella Biofilm and Planktonic Bacteria Challenged with Disinfectants Commonly Used During Poultry Processing. Foods 2019; 8:E275. [PMID: 31336660 PMCID: PMC6678331 DOI: 10.3390/foods8070275] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 01/13/2023] Open
Abstract
Foodborne pathogens such as Salmonella that survive cleaning and disinfection during poultry processing are a public health concern because pathogens that survive disinfectants have greater potential to exhibit resistance to antibiotics and disinfectants after their initial disinfectant challenge. While the mechanisms conferring antimicrobial resistance (AMR) after exposure to disinfectants is complex, understanding the effects of disinfectants on Salmonella in both their planktonic and biofilm states is becoming increasingly important, as AMR and disinfectant tolerant bacteria are becoming more prevalent in the food chain. This review examines the modes of action of various types of disinfectants commonly used during poultry processing (quaternary ammonium, organic acids, chlorine, alkaline detergents) and the mechanisms that may confer tolerance to disinfectants and cross-protection to antibiotics. The goal of this review article is to characterize the AMR profiles of Salmonella in both their planktonic and biofilm state that have been challenged with hexadecylpyridinium chloride (HDP), peracetic acid (PAA), sodium hypochlorite (SHY) and trisodium phosphate (TSP) in order to understand the risk of these disinfectants inducing AMR in surviving bacteria that may enter the food chain.
Collapse
Affiliation(s)
- Myrna Cadena
- UC Davis School of Veterinary Medicine, Department of Population Health and Reproduction, Cooperative Extension, One Shields Ave, Davis, CA 95616, USA
| | - Todd Kelman
- UC Davis School of Veterinary Medicine, Department of Population Health and Reproduction, Cooperative Extension, One Shields Ave, Davis, CA 95616, USA
| | - Maria L Marco
- UC Davis, Department of Food Science and Technology, One Shields Ave, Davis, CA 95616, USA
| | - Maurice Pitesky
- UC Davis School of Veterinary Medicine, Department of Population Health and Reproduction, Cooperative Extension, One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
30
|
Alarcon-Rojo AD, Carrillo-Lopez LM, Reyes-Villagrana R, Huerta-Jiménez M, Garcia-Galicia IA. Ultrasound and meat quality: A review. ULTRASONICS SONOCHEMISTRY 2019; 55:369-382. [PMID: 31027999 DOI: 10.1016/j.ultsonch.2018.09.016] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 05/09/2023]
Abstract
High intensity ultrasound (HIU) offers an alternative to traditional methods of food preservation, and is regarded as a green and promising emerging technology. Ultrasound generates acoustic cavitation in a liquid medium, developing physical forces that are considered the main mechanism responsible for changes in exposed materials. In meat, ultrasound has been successfully used to improve processes such as mass transfer and marination, tenderization of meat and inactivation of microorganisms. It is also an alternative to traditional meat ageing methods for improving the quality properties of meat. Moreover, the combination of ultrasonic energy with a sanitizing agent can improve the effect of microbial reduction in foods. This review describes recent potential applications of ultrasound in meat systems, as well as physical and chemical effects of ultrasound treatment on the conservation and modification of processed meat foods. Finally, the ultrasound application parameters must be deep explored and established before the method can be scaled to industrial levels.
Collapse
Affiliation(s)
- Alma Delia Alarcon-Rojo
- Universidad Autónoma de Chihuahua, Periférico Fco. R. Almada km 1, Chihuahua, Chih C.P. 31453, Mexico.
| | - Luis Manuel Carrillo-Lopez
- Catedrático CONACYT-UACH, Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Fco. R. Almada km 1, Chihuahua, Chih C.P. 31453, Mexico.
| | - Raul Reyes-Villagrana
- Catedrático CONACYT-UACH, Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Fco. R. Almada km 1, Chihuahua, Chih C.P. 31453, Mexico.
| | - Mariana Huerta-Jiménez
- Catedrático CONACYT-UACH, Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Periférico Fco. R. Almada km 1, Chihuahua, Chih C.P. 31453, Mexico.
| | | |
Collapse
|
31
|
Vinnikova L, Synytsia O, Kyshenia A. THE PROBLEMS OF MEAT PRODUCTS THERMAL TREATMENT. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.15673/fst.v13i2.1386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The main problems of meat products thermal treatment have been considered and analysed in the paper. Analysis of the existing research papers suggests that the main attention is devoted to the influence of temperature value and time of processing on the physical, chemical, microbiological and organoleptic indicators of the product. The influence on the protein and fat components of raw meat has been described as well as the changes in the meat product structure under the influence of temperature have been pointed out. The important impact of thermal treatment on the changes in proteins at heating, including solubility and hydration of the proteins, has been examined. The paper analyses the microbiota screening before and after thermal treatment. Special attention was paid to the impact of temperature on microbiota as it is an important indicator of a meat product safety. Methods and purpose of thermal treatments as well as the advantages and drawbacks of each method were considered. Formation of tastiness properties of the product depending on the methods and thermal cycling was emphasized. Submitted is the analysis of the factors that influence the product mass losses under the impact of high temperature. The dependence conditions of a meat product quality on the thermal cycle were also analysed. Attention is paid to alternative methods of thermal heating as well as their influence on ready product quality and safety. Substantial contribution of Odesa National Academy of Food Technologies to solving problems of the conventional thermal treatment of meat products was shown, same as a possibility of bringing a product to cooking readiness without application of high temperature. The main content of the paper includes analysis of the methods and thermal treatment cycles existing in the world and proves importance of the temperature control and cooking time which influence safety, quality and yield of the product.
Collapse
|
32
|
Tomat D, Casabonne C, Aquili V, Balagué C, Quiberoni A. Evaluation of a novel cocktail of six lytic bacteriophages against Shiga toxin-producing Escherichia coli in broth, milk and meat. Food Microbiol 2018; 76:434-442. [DOI: 10.1016/j.fm.2018.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 07/03/2018] [Accepted: 07/16/2018] [Indexed: 01/13/2023]
|
33
|
Sarkinas A, Sakalauskiene K, Raisutis R, Zeime J, Salaseviciene A, Puidaite E, Mockus E, Cernauskas D. Inactivation of some pathogenic bacteria and phytoviruses by ultrasonic treatment. Microb Pathog 2018; 123:144-148. [DOI: 10.1016/j.micpath.2018.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 01/01/2023]
|
34
|
Djordjević J, Bošković M, Starčević M, Ivanović J, Karabasil N, Dimitrijević M, Lazić IB, Baltić MŽ. Survival of Salmonella spp. in minced meat packaged under vacuum and modified atmosphere. Braz J Microbiol 2018; 49:607-613. [PMID: 29449174 PMCID: PMC6066784 DOI: 10.1016/j.bjm.2017.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 09/18/2017] [Accepted: 09/23/2017] [Indexed: 11/20/2022] Open
Abstract
The effect of different modified atmosphere packaging regimes on the behavior of Salmonella spp. on minced meat was studied. Minced meat was experimentally contaminated with a Salmonella spp. cocktail (S. Enteritidis, S. Typhimurium, S. Infantis and S. Arizonae), packaged under vacuum or modified atmosphere with initial headspaces containing 20%O2/50%CO2/30%N2 and 20%O2/30%CO2/50%N2) and stored at 3±1°C for 12 days. Samples were analyzed for Salmonella spp., viable and lactic acid bacteria count every third day. Salmonella spp. counts decreased during storage in all packaging types, with reductions of about 1.5logCFU/g. A significant difference (p<0.01) was noted between Salmonella spp. counts in meat packaged in vacuum and modified atmospheres, although there was no significant difference in Salmonella spp. count between meat packaged in 50%CO2, and meat packaged in 30%CO2. At the end of the study, there were significant differences (p<0.01; p<0.05) in total viable and lactic acid bacterial counts between meat packaged in vacuum and modified atmosphere, and the lowest counts were noted in meat packaged in modified atmosphere with 50%CO2.
Collapse
Affiliation(s)
- Jasna Djordjević
- University of Belgrade, Faculty of Veterinary Medicine, Department of Food Hygiene and Technology of Animal Origin, Belgrade, Serbia.
| | - Marija Bošković
- University of Belgrade, Faculty of Veterinary Medicine, Department of Food Hygiene and Technology of Animal Origin, Belgrade, Serbia
| | - Marija Starčević
- University of Belgrade, Faculty of Veterinary Medicine, Department of Food Hygiene and Technology of Animal Origin, Belgrade, Serbia
| | - Jelena Ivanović
- University of Belgrade, Faculty of Veterinary Medicine, Department of Food Hygiene and Technology of Animal Origin, Belgrade, Serbia
| | - Nedjeljko Karabasil
- University of Belgrade, Faculty of Veterinary Medicine, Department of Food Hygiene and Technology of Animal Origin, Belgrade, Serbia
| | - Mirjana Dimitrijević
- University of Belgrade, Faculty of Veterinary Medicine, Department of Food Hygiene and Technology of Animal Origin, Belgrade, Serbia
| | | | - Milan Ž Baltić
- University of Belgrade, Faculty of Veterinary Medicine, Department of Food Hygiene and Technology of Animal Origin, Belgrade, Serbia
| |
Collapse
|
35
|
ur Rahman U, Sahar A, Ishaq A, Aadil RM, Zahoor T, Ahmad MH. Advanced meat preservation methods: A mini review. J Food Saf 2018. [DOI: 10.1111/jfs.12467] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Ubaid ur Rahman
- National Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences; University of Agriculture Faisalabad; Pakistan
| | - Amna Sahar
- National Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences; University of Agriculture Faisalabad; Pakistan
- Department of Food Engineering, Faculty of Agricultural Engineering and Technology; University of Agriculture Faisalabad; Faisalabad Pakistan
| | - Anum Ishaq
- National Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences; University of Agriculture Faisalabad; Pakistan
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences; University of Agriculture Faisalabad; Pakistan
| | - Tahir Zahoor
- National Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences; University of Agriculture Faisalabad; Pakistan
| | - Muhammad Haseeb Ahmad
- National Institute of Food Science and Technology, Faculty of Food, Nutrition and Home Sciences; University of Agriculture Faisalabad; Pakistan
| |
Collapse
|
36
|
Mukhopadhyay S, Ukuku DO. The role of emerging technologies to ensure the microbial safety of fresh produce, milk and eggs. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Development of non-pathogenic bacterial biofilms on the surface of stainless steel which are inhibitory to Salmonella enterica. Food Microbiol 2018; 69:136-142. [DOI: 10.1016/j.fm.2017.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/19/2017] [Accepted: 08/11/2017] [Indexed: 11/19/2022]
|
38
|
McLeod A, Hovde Liland K, Haugen J, Sørheim O, Myhrer KS, Holck AL. Chicken fillets subjected to UV-C and pulsed UV light: Reduction of pathogenic and spoilage bacteria, and changes in sensory quality. J Food Saf 2018; 38:e12421. [PMID: 30122794 PMCID: PMC6084340 DOI: 10.1111/jfs.12421] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/20/2017] [Accepted: 10/19/2017] [Indexed: 01/05/2023]
Abstract
We have compared the efficacy of continuous ultraviolet (UV-C) (254 nm) and pulsed UV light in reducing the viability of Salmonella Enteritidis, Listeria monocytogenes, Staphylococcus aureus, enterohemorrhagic Escherichia coli, Pseudomonas spp., Brochothrix thermospacta, Carnobacterium divergens, and extended-spectrum β-lactamase producing E. coli inoculated on chicken fillet surface. Fluences from 0.05 to 3.0 J/cm2 (10 mW/cm2, from 5 to 300 s) used for UV-C light resulted in average reductions from 1.1 to 2.8 log cfu/cm2. For pulsed UV light, fluences from 1.25 to 18.0 J/cm2 gave average reductions from 0.9 to 3.0 log cfu/cm2. A small change in the odor characterized as sunburnt and increased concentration of volatile compounds associated with burnt odor posed restrictions on the upper limit of UV treatment, however no sensory changes were observed after cooking the meat. Treatments under modified atmosphere conditions using a UV permeable top film gave similar or slightly lower bacterial reductions. PRACTICAL APPLICATIONS Ultraviolet (UV) light may be used for decontaminating the surface of food products and reduce viability of pathogenic and spoilage bacteria. Exposure of raw chicken fillet surface to various doses of continuous UV-C or pulsed UV light proposed in the present work represent alternatives for microbiological improvement of this product. Chicken fillets can be treated in intact packages covered with UV permeable top film, thus avoiding recontamination of the meat. UV-C light treatment is a low cost strategy with low maintenance, whereas pulsed UV light involves more elaborate equipment, but treatment times are short and less space is required. Both methods can be helpful for producers to manage the safety and quality of chicken fillets.
Collapse
Affiliation(s)
- Anette McLeod
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture ResearchÅsNorway
| | | | - John‐Erik Haugen
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture ResearchÅsNorway
| | - Oddvin Sørheim
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture ResearchÅsNorway
| | - Kristine S. Myhrer
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture ResearchÅsNorway
| | - Askild L. Holck
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture ResearchÅsNorway
| |
Collapse
|
39
|
Synergistic Effect of the Lactoperoxidase System and Cinnamon Essential Oil on Total Flora andSalmonellaGrowth Inhibition in Raw Milk. J FOOD QUALITY 2018. [DOI: 10.1155/2018/8547954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Despite its antibacterial and antipathogenic effects, the heat treatment of milk induces undesirable changes that can be noted in the overall properties of ultrahigh temperature (UHT) milk, such as changes in nutritional and organoleptic properties. Our goal is to find new nonthermal antibacterial technologies for the preservation of raw milk (RM). This study investigates the possible synergistic effect of using a combination of the lactoperoxidase system (LS) and 3 μg mL−1of cinnamon essential oil (cinnamon EO) to inactivate the total flora of milk andSalmonellaHadar (S. Hadar). The LS was activated with 30 mg L−1sodium percarbonate and 14 mg L−1of sodium thiocyanate. Using this approach, we obtained a synergistic effect with a complete inhibition of the activity of the total flora of the milk andS.Hadar after 12 hours at 25°C. In addition, the attainment of synergy was defined when the inhibitory effect of the two compounds together was greater than the effect observed by each compound added alone. Moreover, the monitoring of the synergistic effect at 4°C for 5 days showed complete inhibition of total flora for 3 days and forS. Hadar it was up to 5 days. To summarize, the current study clearly identified a new inhibitory combination that may be used in food-based applications.
Collapse
|
40
|
Ali A, Yeoh WK, Forney C, Siddiqui MW. Advances in postharvest technologies to extend the storage life of minimally processed fruits and vegetables. Crit Rev Food Sci Nutr 2017; 58:2632-2649. [PMID: 29072844 DOI: 10.1080/10408398.2017.1339180] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Minimally processed fresh produce is one of the fastest growing segments of the food industry due to consumer demand for fresh, healthy, and convenient foods. However, mechanical operations of cutting and peeling induce the liberation of cellular contents at the site of wounding that can promote the growth of pathogenic and spoilage microorganisms. In addition, rates of tissue senescence can be enhanced resulting in reduced storage life of fresh-cut fruits and vegetables. Chlorine has been widely adopted in the disinfection and washing procedures of fresh-cut produce due to its low cost and efficacy against a broad spectrum of microorganisms. Continuous replenishment of chlorine in high organic wash water can promote the formation of carcinogenic compounds such as trihalomethanes, which threaten human and environmental health. Alternative green and innovative chemical and physical postharvest treatments such as ozone, electrolyzed water, hydrogen peroxide, ultraviolet radiation, high pressure processing, and ultrasound can achieve similar reduction of microorganisms as chlorine without the production of harmful compounds or compromising the quality of fresh-cut produce.
Collapse
Affiliation(s)
- Asgar Ali
- a Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, The University of Nottingham Malaysia Campus , Semenyih , Selangor , Malaysia
| | - Wei Keat Yeoh
- a Centre of Excellence for Postharvest Biotechnology (CEPB), School of Biosciences, The University of Nottingham Malaysia Campus , Semenyih , Selangor , Malaysia
| | - Charles Forney
- b Agriculture and Agri-Food Canada, Kentville Research and Development Centre , 32 Main Street, Kentville , Nova Scotia , Canada
| | - Mohammed Wasim Siddiqui
- c Department of Food Science and Postharvest Technology , Bihar Agricultural University , Sabour, Bhagalpur , Bihar , India
| |
Collapse
|
41
|
Sienkiewicz JJ, Wesołowski A, Stankiewicz W, Kotowski R. The influence of ultrasonic treatment on the growth of the strains of Salmonella enterica subs. typhimurium. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2017; 54:2214-2223. [PMID: 28740277 PMCID: PMC5502010 DOI: 10.1007/s13197-017-2648-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
Abstract
This study proposes the destruction of pathogenic bacteria with the use of ultrasound waves because the more commonly used thermal processing methods often result in lowering the nutritional value of food. The study presents the impact of ultrasound of 20, 40 and 100 kHz frequencies and the power of 10.5 W/cm2 on the growth of the strain of Salmonella enterica subs. typhimurium. The tests were carried out both in chilled and non-chilled treatment mediums, with an average bacterial population >105 and >108 CFU/cm3. The total inactivation of Salmonella spp. was observed in the tests in the low-population non-chilled treatment medium after sonication at 20 and 40 kHz for 30 min, and in high bacterial population at 20 kHz for 30 min. A reduction in the average number of bacteria was reported in the low-population non-chilled medium after 15 min of sonication at 20, 40 and 100 kHz; after 15 min of sonication at 20 and 100 kHz of the material of high bacterial population; and in the low-population chilled treatment mediums after 15 and 30 min at 20 kHz. The samples with inactivated bacteria and those with reduced bacterial counts maintained the same levels when stored at 4 °C for 24 and 48 h. Bacteria inactivation obtained after sonication lasted for up to 48 h in storage at 21 °C. For the samples with reduced bacterial counts stored at 21 °C, a rise in the average number of bacteria was recorded.
Collapse
Affiliation(s)
- Jolanta Joanna Sienkiewicz
- Institute of Food Technology and Gastronomy, Lomza State University of Applied Sciences, Akademicka 14, 18-400 Łomża, Poland
| | - Andrzej Wesołowski
- Chair of Foundations of Safety, University of Warmia and Mazury in Olsztyn, Heweliusza 10, 10-724 Olsztyn, Poland
| | - Wanda Stankiewicz
- Military Institute of Hygiene and Epidemiology, Szaserów 128, 09-909 Warsaw, Poland
| | - Romuald Kotowski
- Polish-Japanese Academy of Information Technology, Koszykowa 86, 02-008 Warsaw, Poland
| |
Collapse
|
42
|
Wadamori Y, Gooneratne R, Hussain MA. Outbreaks and factors influencing microbiological contamination of fresh produce. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1396-1403. [PMID: 27807844 DOI: 10.1002/jsfa.8125] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
Fresh fruits and vegetables are nutritionally well-recognised as healthy components in diets. The microbiological foodborne outbreaks associated with the consumption of fresh produce have been increasing. Salmonella spp., Escherichia coli O157:H7, Staphylococcus aureus, Campylobacter spp. and Listeria monocytogenes are the most common pathogens that contaminate fresh produce. This review discusses recent foodborne outbreaks linked to fresh produce, factors that affect microbiological contamination and measures that could be adopted to reduce the foodborne illnesses. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yukiko Wadamori
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, 7647, New Zealand
| | - Ravi Gooneratne
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, 7647, New Zealand
| | - Malik A Hussain
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, 7647, New Zealand
| |
Collapse
|
43
|
Luiz DDB, Silva CDFE, Campelo SR, Santos VRVD, Lima LKFD, Chicrala PCMS, Iwashita MKP. Evaluation of the effectiveness of ozone as a sanitizer for fish experimentally contaminated with Salmonella sp. BRAZILIAN JOURNAL OF FOOD TECHNOLOGY 2017. [DOI: 10.1590/1981-6723.15016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Abstract Salmonellosis is a major public health problem related to food contamination and ensuing food poisoning. Brazilian resolution RDC nº 12/2001 of the Brazilian National Health Surveillance Agency (ANVISA) established the absence of Salmonella in 25 g of fish for consumption. However, the significant increase in the occurrence of fish contamination by Salmonella and other pathogenic bacteria shows that the currently applied strategies are not sufficient and that, in addition to the implementation of good health practices, the application of new sanitizer technologies in the fish industry is also necessary. In this context, the present study evaluated the effectiveness of ozone in an aqueous medium as a sanitizer for Salmonella contaminated fish. The experiment was carried out using a completely randomized design with eight treatments and five replicates, giving a total of 40 experimental units. Each sample consisted of three fishes, totalizing 120 fishes. The treatments consisted of different combinations of temperature and water-dissolved ozone (O3) concentrations (21 °C × 0.35 ppm; 20 °C × 0.45 ppm; 21 °C × 0.60 ppm; 20 °C × 0.80 ppm; 19 °C × 1.7 ppm; 6 × 5.1 ppm; 4 °C × 7.2 ppm; and 2 °C × 9.1 ppm). Colossoma macropomum (Tambaqui) samples were experimentally infected with Salmonella typhymurium (ATCC 14028) and immersed in water with the different treatments. After three minutes, the fish samples were collected and subjected to qualitative Salmonella analyses. The ozone tests were not efficient in eradicating Salmonella under the experimental conditions presented here, indicating the need for the identification of effective sanitizers in order to meet the determinations of Brazilian law.
Collapse
|
44
|
Utility of UV-C radiation as anti-Salmonella decontamination treatment for desiccated coconut flakes. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.06.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
45
|
de Almada CN, Almada CN, Martinez RC, Sant'Ana AS. Paraprobiotics: Evidences on their ability to modify biological responses, inactivation methods and perspectives on their application in foods. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.09.011] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
46
|
Millan-Sango D, Garroni E, Farrugia C, Van Impe J, Valdramidis V. Determination of the efficacy of ultrasound combined with essential oils on the decontamination of Salmonella inoculated lettuce leaves. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.05.039] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
47
|
Oueslati W, Rjeibi MR, Mhadhbi M, Jbeli M, Zrelli S, Ettriqui A. Prevalence, virulence and antibiotic susceptibility of Salmonella spp. strains, isolated from beef in Greater Tunis (Tunisia). Meat Sci 2016; 119:154-9. [DOI: 10.1016/j.meatsci.2016.04.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 03/29/2016] [Accepted: 04/29/2016] [Indexed: 11/28/2022]
|
48
|
|
49
|
Lim W, Harrison MA. Effectiveness of UV light as a means to reduce Salmonella contamination on tomatoes and food contact surfaces. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.01.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Goncuoglu M, Ormanci FSB, Uludag M, Cil GI. Prevalence and Antibiotic Resistance of Salmonella
SPP. and Salmonella
Typhimurium in Broiler Carcasses Wings and Liver. J Food Saf 2016. [DOI: 10.1111/jfs.12272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Muammer Goncuoglu
- Food Hygiene and Technology Department; Ankara University Faculty of Veterinary Medicine; Dışkapı Ankara Turkey
| | - F. Seda Bilir Ormanci
- Food Hygiene and Technology Department; Ankara University Faculty of Veterinary Medicine; Dışkapı Ankara Turkey
| | - Murat Uludag
- Food Hygiene and Technology Department; Ankara University Faculty of Veterinary Medicine; Dışkapı Ankara Turkey
| | - Guzin Iplikcioglu Cil
- Food Hygiene and Technology Department; Ankara University Faculty of Veterinary Medicine; Dışkapı Ankara Turkey
| |
Collapse
|