1
|
Costa-Ribeiro A, Lamas A, Garrido-Maestu A. Evaluating Commercial Loop-Mediated Isothermal Amplification Master Mixes for Enhanced Detection of Foodborne Pathogens. Foods 2024; 13:1635. [PMID: 38890864 PMCID: PMC11172173 DOI: 10.3390/foods13111635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Loop-mediated isothermal amplification, LAMP, is nowadays the most popular isothermal nucleic acid amplification technique, and as such, several commercial, ready-to-use master mixes have flourished. Unfortunately, independent studies to determine their performance are limited. The current study performed an independent evaluation of the existing ready-to-use commercial LAMP master mixes WarmStart® LAMP Kit, LavaLAMP™ DNA Master Mix, Saphir Bst Turbo GreenMaster, OptiGene Fast Master Mix ISO-004, and SynLAMP Mix. To reduce bias, three different genes, namely ttr (Salmonella spp.), rfbE (E. coli O157), and hly (Listeria monocytogenes), were targeted. The comparison was based on amplification speed, performance with decreasing DNA concentrations, and the effect of five typical LAMP reaction additives (betaine, DMSO, pullulan, TMAC, and GuHCl). Significant differences were observed among the different master mixes. OptiGene provided the fastest amplification and showed less detrimental effects associated with the supplements evaluated. Out of the chemicals tested, pullulan provided the best results in terms of amplification speed. It is noteworthy that the different additives impacted the master mixes differently. Overall, the current study provides insights into the performance of commercial LAMP master mixes, which can be of value for the scientific community to better select appropriate reagents when developing new methods.
Collapse
Affiliation(s)
- Ana Costa-Ribeiro
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal;
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
| | - Alexandre Lamas
- Food Hygiene, Inspection and Control Laboratory (Lhica), Department of Analytical Chemistry, Nutrition and Bromatology, Veterinary School, Campus Terra, University of Santiago de Compostela (USC), 27002 Lugo, Spain;
| | - Alejandro Garrido-Maestu
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal;
- Laboratory of Microbiology and Technology of Marine Products (MicroTEC), Instituto de Investigaciones Marinas (IIM), CSIC, Eduardo Cabello, 6, 36208 Vigo, Spain
| |
Collapse
|
2
|
O'Bryan CA, Ricke SC, Marcy JA. Public health impact of Salmonella spp. on raw poultry: Current concepts and future prospects in the United States. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
3
|
Molecular Methods for Pathogenic Bacteria Detection and Recent Advances in Wastewater Analysis. WATER 2021. [DOI: 10.3390/w13243551] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With increasing concerns about public health and the development of molecular techniques, new detection tools and the combination of existing approaches have increased the abilities of pathogenic bacteria monitoring by exploring new biomarkers, increasing the sensitivity and accuracy of detection, quantification, and analyzing various genes such as functional genes and antimicrobial resistance genes (ARG). Molecular methods are gradually emerging as the most popular detection approach for pathogens, in addition to the conventional culture-based plate enumeration methods. The analysis of pathogens in wastewater and the back-estimation of infections in the community, also known as wastewater-based epidemiology (WBE), is an emerging methodology and has a great potential to supplement current surveillance systems for the monitoring of infectious diseases and the early warning of outbreaks. However, as a complex matrix, wastewater largely challenges the analytical performance of molecular methods. This review synthesized the literature of typical pathogenic bacteria in wastewater, types of biomarkers, molecular methods for bacterial analysis, and their recent advances in wastewater analysis. The advantages and limitation of these molecular methods were evaluated, and their prospects in WBE were discussed to provide insight for future development.
Collapse
|
4
|
Whole genome sequencing and protein structure analyses of target genes for the detection of Salmonella. Sci Rep 2021; 11:20887. [PMID: 34686701 PMCID: PMC8536731 DOI: 10.1038/s41598-021-00224-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/07/2021] [Indexed: 12/04/2022] Open
Abstract
Rapid and sensitive detection of Salmonella is a critical step in routine food quality control, outbreak investigation, and food recalls. Although various genes have been the targets in the design of rapid molecular detection methods for Salmonella, there is limited information on the diversity of these target genes at the level of DNA sequence and the encoded protein structures. In this study, we investigated the diversity of ten target genes (invA, fimA, phoP, spvC, and agfA; ttrRSBCA operon including 5 genes) commonly used in the detection and identification of Salmonella. To this end, we performed whole genome sequencing of 143 isolates of Salmonella serotypes (Enteritidis, Typhimurium, and Heidelberg) obtained from poultry (eggs and chicken). Phylogenetic analysis showed that Salmonella ser. Typhimurium was more diverse than either Enteritidis or Heidelberg. Forty-five non-synonymous mutations were identified in the target genes from the 143 isolates, with the two most common mutations as T ↔ C (15 times) and A ↔ G (13 times). The gene spvC was primarily present in Salmonella ser. Enteritidis isolates and absent from Heidelberg isolates, whereas ttrR was more conserved (0 non-synonymous mutations) than ttrS, ttrB, ttrC, and ttrA (7, 2, 2, and 7 non-synonymous mutations, respectively). Notably, we found one non-synonymous mutation (fimA-Mut.6) across all Salmonella ser. Enteritidis and Salmonella ser. Heidelberg, C → T (496 nt postion), resulting in the change at AA 166 position, Glutamine (Q) → Stop condon (TAG), suggesting that the fimA gene has questionable sites as a target for detection. Using Phyre2 and SWISS-MODEL software, we predicted the structures of the proteins encoded by some of the target genes, illustrating the positions of these non-synonymous mutations that mainly located on the α-helix and β-sheet which are key elements for maintaining the conformation of proteins. These results will facilitate the development of sensitive molecular detection methods for Salmonella.
Collapse
|
5
|
Villamil C, Calderon MN, Arias MM, Leguizamon JE. Validation of Droplet Digital Polymerase Chain Reaction for Salmonella spp. Quantification. Front Microbiol 2020; 11:1512. [PMID: 32733415 PMCID: PMC7358645 DOI: 10.3389/fmicb.2020.01512] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 06/10/2020] [Indexed: 01/08/2023] Open
Abstract
Salmonellosis is a foodborne disease caused by Salmonella spp. Although cell culture is the gold standard for its identification, validated molecular methods are becoming an alternative, because of their rapidity, selectivity, and specificity. A simplex and duplex droplet digital polymerase chain reaction (ddPCR)-based method for the identification and quantification of Salmonella using ttr, invA, hilA, spaQ, and siiA gene sequences was validated. The method has high specificity, working interval between 8 and 8,000 cp/μL in ddPCR reaction, a limit of detection of 0.5 copies/μL, and precision ranging between 5 and 10% measured as a repeatability standard deviation. The relative standard measurement uncertainty was between 2 and 12%. This tool will improve food safety in national consumption products and will increase the competitiveness in agricultural product trade.
Collapse
Affiliation(s)
- Carolina Villamil
- Departamento de Química, Universidad Nacional de Colombia, Bogota, Colombia
| | | | - Maria Mercedes Arias
- Grupo de Metrología en Bioanálisis, Instituto Nacional de Metrología, Bogota, Colombia
| | | |
Collapse
|
6
|
Optimized sample treatment, combined with real-time PCR, for same-day detection of E. coli O157 in ground beef and leafy greens. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106790] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
7
|
Zhang J, Xu Y, Ling X, Zhou Y, Lin Z, Huang Z, Guan H, Xiao Y, Xu W, Kan B. Identification of diarrheagenic Escherichia coli by a new multiplex PCR assay and capillary electrophoresis. Mol Cell Probes 2019; 49:101477. [PMID: 31682897 DOI: 10.1016/j.mcp.2019.101477] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/12/2019] [Accepted: 10/30/2019] [Indexed: 01/18/2023]
Abstract
Diarrheagenic Escherichia coli (DEC) is a set of the most common pathogens causing diarrhea. DEC strains are classified into five pathotypes based on the possession of different virulence genes: enteropathogenic E. coli (EPEC), enterohemorrhagic E. coli (EHEC) or Shiga toxin-producing E. coli (STEC), enteroaggregative E. coli (EAEC), enterotoxigenic E. coli (ETEC), and enteroinvasive E. coli (EIEC). The development of an easy-to-use method to detect the specific virulence genes and distinguish the pathotypes is essential for the diagnosis and surveillance of DEC infections. In this study, a multiplex PCR assay (mPCR) specific to nine virulence genes and an internal control was designed for the identification of five DEC pathotypes. A temperature switch PCR (TSP) strategy was used in the PCR amplification. The PCR products were detected by capillary electrophoresis. The limit of detection (LOD) of the 10-plex reaction was 5 × 103 copies/reaction for stx2 and 5 × 102 copies/reaction for the other targets. The mPCR showed very high specificity, and inclusivity and exclusivity were both 100%. When the mPCR assay was used for the detection of 221 cryopreserved diarrhea specimens, DEC colonies were detected from 49 specimens, and the positive rate was 22.2%. The mPCR assay was sensitive and specific, and the amplified product could be analyzed easily. Thus, this method could be used effectively to identify the suspected colonies of DEC in the primary culture of the specimen.
Collapse
Affiliation(s)
- Jingyun Zhang
- State Key Laboratory for Infectious Disease Prevention and Control. National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China
| | - Yang Xu
- Shanghai Changning District Center for Disease Control and Prevention, 39 Yunwushan Road, Changning District, Shanghai, 200051, China
| | - Xia Ling
- Wuxi Center for Disease Control and Prevention, 499 Jincheng Road, Wuxi, Jiangsu, 214023, China
| | - Yongming Zhou
- Yunnan Center for Disease Control and Prevention, 158 Dongsi Street, Kunming City, Yunnan, 650022, China
| | - Zheng Lin
- Shanghai Changning District Center for Disease Control and Prevention, 39 Yunwushan Road, Changning District, Shanghai, 200051, China
| | - Zheng Huang
- Shanghai Changning District Center for Disease Control and Prevention, 39 Yunwushan Road, Changning District, Shanghai, 200051, China
| | - Hongxia Guan
- Wuxi Center for Disease Control and Prevention, 499 Jincheng Road, Wuxi, Jiangsu, 214023, China
| | - Yong Xiao
- Wuxi Center for Disease Control and Prevention, 499 Jincheng Road, Wuxi, Jiangsu, 214023, China
| | - Wen Xu
- Yunnan Center for Disease Control and Prevention, 158 Dongsi Street, Kunming City, Yunnan, 650022, China
| | - Biao Kan
- State Key Laboratory for Infectious Disease Prevention and Control. National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Changping District, Beijing, 102206, China; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, 310003, China.
| |
Collapse
|
8
|
Dai G, Li Z, Luo F, Ai S, Chen B, Wang Q. Electrochemical determination of Salmonella typhimurium by using aptamer-loaded gold nanoparticles and a composite prepared from a metal-organic framework (type UiO-67) and graphene. Mikrochim Acta 2019; 186:620. [PMID: 31410576 DOI: 10.1007/s00604-019-3724-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 07/31/2019] [Indexed: 11/30/2022]
Abstract
An aptamer based assay is described for the determination of Salmonella typhimurium (S.typhimurium). A metal-organic framework-graphene composite of type UiO-67/GR is used as the substrate, and an aptamer-gold nanoparticles-horseradish peroxidase (Apt-AuNP-HRP) conjugate the signal amplification probe. A phosphate-terminal and partially complementary DNA (cDNA) of the aptamer is covalently bound to UiO-67/GR via the chemical complexation between phosphate and Zr-OH groups of UiO-67, and then S. typhimurium and cDNA will compete for the binding sites. The binding of Apt-AuNP-HRP to S.typhimurium leads to the formation of strong conjugates. The unbound signal probes then attach to the surface of a glassy carbon electrode via hybridization with cDNA. This generates a large current response (best measured at a potential as low as -0.02 V vs. saturated calomel electrode) under the catalytic action of HRP on the H2O2-hydroquinone system. Under the optimal conditions, the differential pulse voltammetric signal decreases linearly in the 2 × 101 - 2 × 108 cfu·mL-1 S.typhimurium concentration range, with a lower detection limit of 5 cfu·mL-1 (based on S/N = 3). The method was successfully applied to the detection of S. typhimurium in spiked milk samples. Graphical abstract Schematic presentation of electrochemical determination of Salmonella typhimurium (S.typhimurium). A metal-organic framework (type UiO-67) and graphene (GR) composite were used as substrate, and gold nanoparticles carrying horseradish peroxidase (HRP) for signal amplification. HQ: hydroquinone; cDNA: complementary DNA of aptamer.
Collapse
Affiliation(s)
- Ge Dai
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Zhi Li
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Feifei Luo
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, People's Republic of China
| | - Bo Chen
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China.
| | - Qingjiang Wang
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
9
|
Quintela IA, de Los Reyes BG, Lin CS, Wu VCH. Simultaneous Colorimetric Detection of a Variety of Salmonella spp. in Food and Environmental Samples by Optical Biosensing Using Oligonucleotide-Gold Nanoparticles. Front Microbiol 2019; 10:1138. [PMID: 31214132 PMCID: PMC6554661 DOI: 10.3389/fmicb.2019.01138] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/06/2019] [Indexed: 01/17/2023] Open
Abstract
Optical biosensors for rapid detection of significant foodborne pathogens are steadily gaining popularity due to its simplicity and sensitivity. While nanomaterials such as gold nanoparticles (AuNPs) are commonly used as signal amplifiers for optical biosensors, AuNPs can also be utilized as a robust biosensing platform. Many reported optical biosensors were designed for individual pathogen detection in a single assay and have high detection limit (DL). Salmonella spp. is one of the major causative agents of foodborne sickness, hospitalization and deaths. Unfortunately, there are around 2,000 serotypes of Salmonella worldwide, and rapid and simultaneous detection of multiple strains in a single assay is lacking. In this study, a comprehensive and highly sensitive simultaneous colorimetric detection of nineteen (19) environmental and outbreak Salmonella spp. strains was achieved by a novel optical biosensing platform using oligonucleotide-functionalized AuNPs. A pair of newly designed single stranded oligonucleotides (30-mer) was displayed onto the surface of AuNPs (13 nm) as detection probes to hybridize with a conserved genomic region (192-bases) of ttrRSBCA found on a broad range of Salmonella spp. strains. The sandwich hybridization (30 min, 55°C) resulted in a structural formation of highly stable oligonucleotide/AuNPs-DNA complexes which remained undisturbed even after subjecting to an increased salt concentration (2 M, final), thus allowing a direct discrimination via color change of target (red color) from non-target (purplish-blue color) reaction mixtures by direct observation using the naked eye. In food matrices (blueberries and chicken meat), nineteen different Salmonella spp. strains were concentrated using immunomagnetic separation and then simultaneously detected in a 96-well microplate by oligonucleotide-functionalized AuNPs after DNA preparation. Successful oligonucleotide/AuNPs-DNA hybridization was confirmed by gel electrophoresis while AuNPs aggregation in non-target and control reaction mixtures was verified by both spectrophotometric analysis and TEM images. Results showed that the optical AuNP biosensing platform can simultaneously screen nineteen (19) viable Salmonella spp. strains tested with 100% specificity and a superior detection limit of <10 CFU/mL or g for both pure culture and complex matrices setups. The highly sensitive colorimetric detection system can significantly improve the screening and detection of viable Salmonella spp. strains present in complex food and environmental matrices, therefore reducing the risks of contamination and incidence of foodborne diseases.
Collapse
Affiliation(s)
- Irwin A Quintela
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Services, Western Regional Research Center, Albany, CA, United States.,School of Food and Agriculture, University of Maine, Orono, ME, United States
| | | | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Vivian C H Wu
- Produce Safety and Microbiology Research Unit, U.S. Department of Agriculture, Agricultural Research Services, Western Regional Research Center, Albany, CA, United States.,Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
10
|
Buehler AJ, Wiedmann M, Kassaify Z, Cheng RA. Evaluation of invA Diversity among Salmonella Species Suggests Why Some Commercially Available Rapid Detection Kits May Fail To Detect Multiple Salmonella Subspecies and Species. J Food Prot 2019; 82:710-717. [PMID: 30917039 DOI: 10.4315/0362-028x.jfp-18-525] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
HIGHLIGHTS Salmonella exhibits tremendous diversity, with 2,659 documented serovars. invA is a common gene target for detecting Salmonella spp. Detection methods should be validated with a sufficiently diverse strain set.
Collapse
Affiliation(s)
- Ariel J Buehler
- 1 Department of Food Science, Cornell University, Ithaca, New York 14853 (ORCID: https://orcid.org/0000-0002-5932-7011 [R.A.C.])
| | - Martin Wiedmann
- 1 Department of Food Science, Cornell University, Ithaca, New York 14853 (ORCID: https://orcid.org/0000-0002-5932-7011 [R.A.C.])
| | - Zeina Kassaify
- 2 Mars, Inc., 6885 Elm Street, McLean, Virginia 22101, USA
| | - Rachel A Cheng
- 1 Department of Food Science, Cornell University, Ithaca, New York 14853 (ORCID: https://orcid.org/0000-0002-5932-7011 [R.A.C.])
| |
Collapse
|
11
|
Zhou S, Yang D, Xu Q, Yang Z, Jin M, Yin J, Wang H, Zhou K, Wang L, Li J, Shen Z. Presence of bacteroidales as a predicator of human enteric viruses in Haihe River of Tianjin City, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8169-8181. [PMID: 30689108 DOI: 10.1007/s11356-019-04217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Traditional microbe indicators including total bacteria, total coliforms, fecal coliforms, Escherichia coli, enterococci, and F+ coliphage are all frequently used to characterize the microbial contamination state of water bodies for their correlation with pathogenic bacteria. However, these indicators have a poor relationship with viruses, which pose serious threat to economic and human health. Alternative indicators such as bacteroidales may be suitable complementary alternatives to traditional microbe indicators and are being increasingly reported. In the present study, water was analyzed for selected sites along Haihe River in Tianjin for traditional indicators, an alternative indicator (bacteroidales), pathogenic bacteria (Salmonella, Escherichia coli (E. coli) O157:H7, and Vibrio parahaemolyticus), viruses (enteric adenovirus, norovirus, enterovirus, poliovirus and rotavirus), and physicochemical parameters. Results indicated that traditional microbe indicators detected in this study showed good correlation with pathogenic bacteria, and the alternative indicator (bacteroidales) had a surprisingly good relationship with viral presence. We propose that bacteroidales might be a suitable complementary indicator for viral contamination in water bodies.
Collapse
Affiliation(s)
- Shuqing Zhou
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Dong Yang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Qunying Xu
- School of Public Health, Nanchang University, 330006, Jiangxi, China
| | - Zhongwei Yang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Min Jin
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Jing Yin
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Huaran Wang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Kun Zhou
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
- School of Public Health, Nanchang University, 330006, Jiangxi, China
| | - Lianqi Wang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China
| | - Junwen Li
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China.
| | - Zhiqiang Shen
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment and Food Safety, Tianjin, 300050, China.
| |
Collapse
|
12
|
Lopes ATS, Albuquerque GR, Maciel BM. Multiplex Real-Time Polymerase Chain Reaction for Simultaneous Quantification of Salmonella spp., Escherichia coli, and Staphylococcus aureus in Different Food Matrices: Advantages and Disadvantages. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6104015. [PMID: 30356394 PMCID: PMC6176325 DOI: 10.1155/2018/6104015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 09/06/2018] [Indexed: 12/24/2022]
Abstract
Quantitative real-time polymerase chain reactions (qPCRs) of the most prevalent bacteria causing foodborne diseases worldwide, such as Salmonella spp., Escherichia coli, and Staphylococcus aureus, can be an important tool for quantitative microbial risk assessment, which requires numerical data to determine the level of contamination at a specific stage of food production. However, most of qPCR assays described in the literature for these pathogens are qualitative; their objective is pathogen detection and not pathogen quantification. Thus, the aim of our work was to develop a qPCR for the simultaneous quantification of Salmonella spp., E. coli, and S. aureus and to propose its use in the analysis of foods, as a tool for microbiological quality monitoring. For this, a multiplex qPCR was standardized for the simultaneous quantification of specific fragments of target genes (ssf, phoA, and nuc) corresponding to each one of the mentioned bacteria. The limit of detection of the technique was 13, 10, and 12 gene copies for ssf, phoA, and nuc, respectively; standard curves showed R2 > 0.99, with efficiencies ranging from 99 to 110%, and inter- and intraexperiment reproducibility presented a low coefficient of variation in all trials. This methodology was applied in different food matrices (milk, ground beef, and oyster meat), and the results were compared with official microbiological culture methodology and with ready-to-use test. Advantages and disadvantages of each methodology used in this study are pointed out. We suggest that this multiplex qPCR can be used as a rapid screening technique for the analysis of food microbiological quality.
Collapse
Affiliation(s)
| | - George Rêgo Albuquerque
- Graduation Program in Animal Science, Santa Cruz State University, Ilhéus (BA), Brazil
- Department of Agricultural and Environmental Sciences, Santa Cruz State University, Ilhéus (BA), Brazil
| | - Bianca Mendes Maciel
- Graduation Program in Animal Science, Santa Cruz State University, Ilhéus (BA), Brazil
- Department of Biological Sciences, Santa Cruz State University, Ilhéus (BA), Brazil
| |
Collapse
|
13
|
Recombinase polymerase amplification combined with lateral flow dipstick for equipment-free detection of Salmonella in shellfish. Bioprocess Biosyst Eng 2018; 41:603-611. [PMID: 29349550 DOI: 10.1007/s00449-018-1895-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 01/11/2018] [Indexed: 12/20/2022]
Abstract
Salmonella is a major pathogen that causes acute foodborne outbreaks worldwide. Seafood, particularly shellfish, is a proven source of Salmonella spp. infection because many people prefer to eat it raw or lightly cooked. However, traditional identification methods are too time-consuming and complex to detect contamination of bacteria in the food chain in a timely manner, and few studies have aimed to identify Salmonella in shellfish early in the supply chain. We herein developed a method for rapid detection of Salmonella in shellfish based on the method of recombinase polymerase amplification (RPA) combined with lateral flow dipstick (LFD), which targets the invasion gene A (invA). The RPA-LFD was able to function at 30-45 °C, and at the temperature of 40 °C, it only took 8 min of amplification to reach the test threshold of amplicons. The established method had both a good specificity and a sensitivity of 100 fg DNA per reaction (20 µL). Regarding practical performance, RPA-LFD performed better than real-time PCR. Another advantage of RPA-LFD is that it was capable of being performed without expensive equipments. Thus, RPA-LFD has potential for further development as a detection kit for Salmonella in shellfish and other foods under field conditions.
Collapse
|
14
|
Garrido-Maestu A, Azinheiro S, Carvalho J, Abalde-Cela S, Carbó-Argibay E, Diéguez L, Piotrowski M, Kolen’ko YV, Prado M. Combination of Microfluidic Loop-Mediated Isothermal Amplification with Gold Nanoparticles for Rapid Detection of Salmonella spp. in Food Samples. Front Microbiol 2017; 8:2159. [PMID: 29209283 PMCID: PMC5701617 DOI: 10.3389/fmicb.2017.02159] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/20/2017] [Indexed: 11/16/2022] Open
Abstract
Foodborne diseases are an important cause of morbidity and mortality. According to the World Health Organization, there are 31 main global hazards, which caused in 2010 600 million foodborne illnesses and 420000 deaths. Among them, Salmonella spp. is one of the most important human pathogens, accounting for more than 90000 cases in Europe and even more in the United States per year. In the current study we report the development, and thorough evaluation in food samples, of a microfluidic system combining loop-mediated isothermal amplification with gold nanoparticles (AuNPs). This system is intended for low-cost, in situ, detection of different pathogens, as the proposed methodology can be extrapolated to different microorganisms. A very low limit of detection (10 cfu/25 g) was obtained. Furthermore, the evaluation of spiked food samples (chicken, turkey, egg products), completely matched the expected results, as denoted by the index kappa of concordance (value of 1.00). The results obtained for the relative sensitivity, specificity and accuracy were of 100% as well as the positive and negative predictive values.
Collapse
|
15
|
Garrido-Maestu A, Fuciños P, Azinheiro S, Carvalho J, Prado M. Systematic loop-mediated isothermal amplification assays for rapid detection and characterization of Salmonella spp., Enteritidis and Typhimurium in food samples. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Hu L, Ma L, Zheng S, He X, Wang H, Brown E, Hammack T, Zhang G. Evaluation of 3M Molecular Detection System and ANSR Pathogen Detection System for rapid detection of Salmonella from egg products. Poult Sci 2017; 96:1410-1418. [DOI: 10.3382/ps/pew399] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/13/2016] [Indexed: 01/22/2023] Open
|
17
|
Lee SC, Kim MS, Yoo KC, Ha NR, Moon JY, Lee SJ, Yoon MY. Sensitive fluorescent imaging of Salmonella enteritidis and Salmonella typhimurium using a polyvalent directed peptide polymer. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2240-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Henao-Herreño LX, López-Tamayo AM, Ramos-Bonilla JP, Haas CN, Husserl J. Risk of Illness with Salmonella due to Consumption of Raw Unwashed Vegetables Irrigated with Water from the Bogotá River. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2017; 37:733-743. [PMID: 27348408 DOI: 10.1111/risa.12656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 04/18/2016] [Accepted: 05/31/2016] [Indexed: 06/06/2023]
Abstract
The Bogotá River receives untreated wastewater from the city of Bogotá and many other towns. Downstream from Bogotá, water from the river is used for irrigation of crops. Concentrations of indicator organisms in the river are high, which is consistent with fecal contamination. To investigate the probability of illness due to exposure to enteric pathogens from the river, specifically Salmonella, we took water samples from the Bogotá River at six sampling locations in an area where untreated water from the river is used for irrigation of lettuce, broccoli, and cabbage. Salmonella concentrations were quantified by direct isolation and qPCR. Concentrations differed, depending on the quantification technique used, ranging between 107.7 and 109.9 number of copies of gene invA per L and 105.3 and 108.4 CFU/L, for qPCR and direct isolation, respectively. A quantitative microbial risk assessment model that estimates the daily risk of illness with Salmonella resulting from consuming raw unwashed vegetables irrigated with water from the Bogotá River was constructed using the Salmonella concentration data. The daily probability of illness from eating raw unwashed vegetables ranged between 0.62 and 0.85, 0.64 and 0.86, and 0.64 and 0.85 based on concentrations estimated by qPCR (0.47-0.85, 0.47-0.86, and 0.41-0.85 based on concentrations estimated by direct isolation) for lettuce, cabbage, and broccoli, respectively, which are all above the commonly propounded benchmark of 10-4 per year. Results obtained in this study highlight the necessity for appropriate wastewater treatment in the region, and emphasize the importance of postharvest practices, such as washing, disinfecting, and cooking.
Collapse
Affiliation(s)
- Laura X Henao-Herreño
- Department of Civil and Environmental Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Ana M López-Tamayo
- Department of Civil and Environmental Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Juan P Ramos-Bonilla
- Department of Civil and Environmental Engineering, Universidad de los Andes, Bogotá, Colombia
| | - Charles N Haas
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, USA
| | - Johana Husserl
- Department of Civil and Environmental Engineering, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
19
|
Bell RL, Jarvis KG, Ottesen AR, McFarland MA, Brown EW. Recent and emerging innovations in Salmonella detection: a food and environmental perspective. Microb Biotechnol 2016; 9:279-92. [PMID: 27041363 PMCID: PMC4835567 DOI: 10.1111/1751-7915.12359] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 02/22/2016] [Accepted: 03/03/2016] [Indexed: 01/08/2023] Open
Abstract
Salmonella is a diverse genus of Gram‐negative bacilli and a major foodborne pathogen responsible for more than a million illnesses annually in the United States alone. Rapid, reliable detection and identification of this pathogen in food and environmental sources is key to safeguarding the food supply. Traditional microbiological culture techniques have been the ‘gold standard’ for State and Federal regulators. Unfortunately, the time to result is too long to effectively monitor foodstuffs, especially those with very short shelf lives. Advances in traditional microbiology and molecular biology over the past 25 years have greatly improved the speed at which this pathogen is detected. Nonetheless, food and environmental samples possess a distinctive set of challenges for these newer, more rapid methodologies. Furthermore, more detailed identification and subtyping strategies still rely heavily on the availability of a pure isolate. However, major shifts in DNA sequencing technologies are meeting this challenge by advancing the detection, identification and subtyping of Salmonella towards a culture‐independent diagnostic framework. This review will focus on current approaches and state‐of‐the‐art next‐generation advances in the detection, identification and subtyping of Salmonella from food and environmental sources.
Collapse
Affiliation(s)
- Rebecca L Bell
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Karen G Jarvis
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Andrea R Ottesen
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Melinda A McFarland
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| | - Eric W Brown
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD, USA
| |
Collapse
|
20
|
Gokduman K, Avsaroglu MD, Cakiris A, Ustek D, Gurakan GC. Recombinant plasmid-based quantitative Real-Time PCR analysis of Salmonella enterica serotypes and its application to milk samples. J Microbiol Methods 2016; 122:50-8. [PMID: 26820062 DOI: 10.1016/j.mimet.2016.01.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/15/2016] [Accepted: 01/15/2016] [Indexed: 10/22/2022]
Abstract
The aim of the current study was to develop, a new, rapid, sensitive and quantitative Salmonella detection method using a Real-Time PCR technique based on an inexpensive, easy to produce, convenient and standardized recombinant plasmid positive control. To achieve this, two recombinant plasmids were constructed as reference molecules by cloning the two most commonly used Salmonella-specific target gene regions, invA and ttrRSBC. The more rapid detection enabled by the developed method (21 h) compared to the traditional culture method (90 h) allows the quantitative evaluation of Salmonella (quantification limits of 10(1)CFU/ml and 10(0)CFU/ml for the invA target and the ttrRSBC target, respectively), as illustrated using milk samples. Three advantages illustrated by the current study demonstrate the potential of the newly developed method to be used in routine analyses in the medical, veterinary, food and water/environmental sectors: I--The method provides fast analyses including the simultaneous detection and determination of correct pathogen counts; II--The method is applicable to challenging samples, such as milk; III--The method's positive controls (recombinant plasmids) are reproducible in large quantities without the need to construct new calibration curves.
Collapse
Affiliation(s)
- Kurtulus Gokduman
- Department of Biotechnology, Middle East Technical University, 06800 Ankara, Turkey.
| | - M Dilek Avsaroglu
- Department of Agricultural Biotechnology, Ahi Evran University, 40100 Kirsehir, Turkey
| | - Aris Cakiris
- Institute of Experimental Medical Research, Istanbul University, 34393 Istanbul, Turkey
| | - Duran Ustek
- Institute of Experimental Medical Research, Istanbul University, 34393 Istanbul, Turkey
| | - G Candan Gurakan
- Department of Biotechnology, Middle East Technical University, 06800 Ankara, Turkey; Department of Food Engineering, Middle East Technical University, 06800 Ankara, Turkey
| |
Collapse
|
21
|
Jia F, Duan N, Wu S, Dai R, Wang Z, Li X. Impedimetric Salmonella aptasensor using a glassy carbon electrode modified with an electrodeposited composite consisting of reduced graphene oxide and carbon nanotubes. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1649-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Bell RL, Zheng J, Burrows E, Allard S, Wang CY, Keys CE, Melka DC, Strain E, Luo Y, Allard MW, Rideout S, Brown EW. Ecological prevalence, genetic diversity, and epidemiological aspects of Salmonella isolated from tomato agricultural regions of the Virginia Eastern Shore. Front Microbiol 2015; 6:415. [PMID: 25999938 PMCID: PMC4423467 DOI: 10.3389/fmicb.2015.00415] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/20/2015] [Indexed: 11/13/2022] Open
Abstract
Virginia is the third largest producer of fresh-market tomatoes in the United States. Tomatoes grown along the eastern shore of Virginia are implicated almost yearly in Salmonella illnesses. Traceback implicates contamination occurring in the pre-harvest environment. To get a better understanding of the ecological niches of Salmonella in the tomato agricultural environment, a 2-year study was undertaken at a regional agricultural research farm in Virginia. Environmental samples, including tomato (fruit, blossoms, and leaves), irrigation water, surface water and sediment, were collected over the growing season. These samples were analyzed for the presence of Salmonella using modified FDA-BAM methods. Molecular assays were used to screen the samples. Over 1500 samples were tested. Seventy-five samples tested positive for Salmonella yielding over 230 isolates. The most commonly isolated serovars were S. Newport and S. Javiana with pulsed-field gel electrophoresis yielding 39 different patterns. Genetic diversity was further underscored among many other serotypes, which showed multiple PFGE subtypes. Whole genome sequencing (WGS) of several S. Newport isolates collected in 2010 compared to clinical isolates associated with tomato consumption showed very few single nucleotide differences between environmental isolates and clinical isolates suggesting a source link to Salmonella contaminated tomatoes. Nearly all isolates collected during two growing seasons of surveillance were obtained from surface water and sediment sources pointing to these sites as long-term reservoirs for persistent and endemic contamination of this environment.
Collapse
Affiliation(s)
- Rebecca L. Bell
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - Jie Zheng
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - Erik Burrows
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - Sarah Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - Charles Y. Wang
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - Christine E. Keys
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - David C. Melka
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - Errol Strain
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - Yan Luo
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - Marc W. Allard
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| | - Steven Rideout
- Eastern Shore Agricultural Research and Extension Center, Virginia TechPainter, VA, USA
| | - Eric W. Brown
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U.S. Food and Drug AdministrationCollege Park, MD, USA
| |
Collapse
|
23
|
Wang H, Gill VS, Cheng CM, Gonzalez-Escalona N, Irvin KA, Zheng J, Bell RL, Jacobson AP, Hammack TS. Evaluation and comparison of rapid methods for the detection of Salmonella in naturally contaminated pine nuts using different pre enrichment media. Food Microbiol 2015; 46:58-65. [DOI: 10.1016/j.fm.2014.06.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 06/18/2014] [Accepted: 06/20/2014] [Indexed: 11/30/2022]
|
24
|
Barbau-Piednoir E, Botteldoorn N, Mahillon J, Dierick K, Roosens NH. Fast and discriminative CoSYPS detection system of viable Salmonella spp. and Listeria spp. in carcass swab samples. Int J Food Microbiol 2014; 192:103-10. [PMID: 25440553 DOI: 10.1016/j.ijfoodmicro.2014.09.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 08/25/2014] [Accepted: 09/15/2014] [Indexed: 01/18/2023]
Abstract
In this study, the complete CoSYPS Path Food workflow including all steps, namely swab sample enrichment, SYBR®Green qPCR detection of Salmonella spp. and Listeria spp., isolation and confirmation of the detected strain, was validated on beef carcass swabs. To perform the validation, the results of the complete workflow were compared, according to the ISO 16140:2003, with the ISO reference methods for detection, isolation and confirmation of Listeria monocytogenes and Salmonella spp. The results showed that the relative level of detection and the limit of detection of the complete workflow and ISO reference methods are in a range from 2 to 16 CFU/swab for both bacteria. The relative specificity, sensitivity and accuracy identified during this validation were all 100% since the results obtained with the complete CoSYPS Path Food workflow and the ISO reference methods were identical (Cohen's kappa index=1.00). In addition the complete CoSYPS Path Food workflow is able to provide detection results (negative or presumptive positive) in half the time needed as for the ISO reference methods. These results demonstrate that the performance of the complete CoSYPS Path Food workflow is not only comparable to the ISO reference methods but also provides a faster response for the verification of beef carcasses before commercial distribution.
Collapse
Affiliation(s)
- Elodie Barbau-Piednoir
- Scientific Service Food-borne pathogens, Scientific Institute of Public Health, Brussels, Belgium; Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium; Platform Biotechnology and Molecular Biology, Scientific Institute of Public Health, Brussels, Belgium
| | - Nadine Botteldoorn
- Scientific Service Food-borne pathogens, Scientific Institute of Public Health, Brussels, Belgium.
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Katelijne Dierick
- Scientific Service Food-borne pathogens, Scientific Institute of Public Health, Brussels, Belgium
| | - Nancy H Roosens
- Platform Biotechnology and Molecular Biology, Scientific Institute of Public Health, Brussels, Belgium.
| |
Collapse
|
25
|
Prevalence and profile of Salmonella from samples along the production line in Chinese beef processing plants. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.09.066] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Zhang G, Thau E, Brown EW, Hammack TS. Comparison of a novel strategy for the detection and isolation of Salmonella in shell eggs with the Food and Drug Administration Bacteriological Analytical Manual method. Poult Sci 2014; 92:3266-74. [PMID: 24235238 DOI: 10.3382/ps.2013-03380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The current FDA Bacteriological Analytical Manual (BAM) method for the detection of Salmonella in eggs requires 2 wk to complete. The objective of this project was to improve the BAM method for the detection and isolation of Salmonella in whole shell eggs. A novel protocol, using 1,000 g of liquid eggs for direct preenrichment with 2 L of tryptic soy broth (TSB) followed by enrichment using Rappaport-Vassiliadis and Tetrathionate broths, was compared with the standard BAM method, which requires 96 h room temperature incubation of whole shell egg samples followed by preenrichment in TSB supplemented with FeSO4. Four Salmonella ser. Enteritidis (4 phage types) and one Salmonella ser. Heidelberg isolates were used in the study. Bulk inoculated pooled liquid eggs, weighing 52 or 56 kg (approximately 1,100 eggs) were used in each trial. Twenty 1,000-g test portions were withdrawn from the pooled eggs for both the alternative and the reference methods. Test portions were inoculated with Salmonella at 1 to 5 cfu/1,000 g eggs. Two replicates were performed for each isolate. In the 8 trials conducted with Salmonella ser. Enteritidis, the alternative method was significantly (P < 0.05) more productive than the reference method in 3 trials, and significantly (P < 0.05) less productive than the reference method in 1 trial. There were no significant (P < 0.05) differences between the 2 methods for the other 4 trials. For Salmonella ser. Heidelberg, combined data from 2 trials showed the alternative method was significantly (P < 0.05) more efficient than the BAM method. We have concluded that the alternative method, described herein, has the potential to replace the current BAM culture method for detection and isolation of Salmonella from shell eggs based on the following factors: 1) the alternative method is 4 d shorter than the reference method; 2) it uses regular TSB instead of the more complicated TSB supplemented with FeSO4; and 3) it was equivalent or superior to the reference method in 9 out of 10 trials for the detection of Salmonella in shell eggs.
Collapse
Affiliation(s)
- Guodong Zhang
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD 20740
| | | | | | | |
Collapse
|
27
|
Wang B, Huang X, Ma M, Shi Q, Cai Z. A simple quantum dot-based fluoroimmunoassay method for selective capturing and rapid detection of Salmonella Enteritidis on eggs. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.06.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|