1
|
Su Y, Meng L, Wang J, Zhao Y, Zheng N. Simultaneous Detection of Eight Dairy-Derived Components Using Double-Tube Multiplex qPCR Based TaqMan Probe. Foods 2024; 13:3213. [PMID: 39456275 PMCID: PMC11507643 DOI: 10.3390/foods13203213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The authentication of milk and dairy products has great significance for food fraud. The present investigation entailed the development of a novel method that amalgamates the double-tube approach with multiplex real-time polymerase chain reaction (PCR) technology, incorporating TaqMan probes, to facilitate the high-throughput screening and detection of animal-derived constituents within milk and dairy products. Eight dairy-derived animal-specific primers and probes were designed for the mitochondrial cytochrome b (Cytb) gene of eight dairy products, including cow, buffalo, yak, goat, sheep, horse, donkey, and camel. Through the developed double-tube detection assays, the above eight targets could be simultaneously identified with a detection limit of 0.00128-0.0064 ng/μL. The multiplex qPCR assay was effectively validated using simulated adulterated samples with different mixing ratios and demonstrated a detection limit of 0.1%. Upon analysis of 54 commercially available dairy products, a mislabeling rate of 33% was revealed. This method affords an efficacious means of detecting dairy product ingredients, thereby offering robust technical backing for market oversight and regulatory enforcement of milk and dairy products.
Collapse
Affiliation(s)
- Yingying Su
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing 100193, China; (Y.S.); (L.M.); (J.W.)
| | - Lu Meng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing 100193, China; (Y.S.); (L.M.); (J.W.)
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing 100193, China; (Y.S.); (L.M.); (J.W.)
| | - Yankun Zhao
- Institute of Quality Standards and Testing Technology for Agro-Products, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Haidian District, Beijing 100193, China; (Y.S.); (L.M.); (J.W.)
| |
Collapse
|
2
|
Abitayeva G, Abeev A. Development of a real-time PCR protocol for the detection of chicken DNA in meat products. Prep Biochem Biotechnol 2024; 54:1068-1078. [PMID: 38469867 DOI: 10.1080/10826068.2024.2317289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Food falsification is a pressing issue in today's food industry, with fraudulent substitution of costly ingredients with cheaper alternatives occurring globally. Consequently, developing straightforward and efficient diagnostic systems to detect such fraud is a top priority in scientific research. The aim of the work was to develop a test system and protocol for polymerase chain reaction (PCR) to detect in food products of animal origin the substitution of expensive meat raw materials for by-products of poultry processing. For this, real-time polymerase chain reaction (RT-PCR) was used, which allows determining the qualitative and quantitative substitution in raw and technologically prepared products. Other methods for detecting falsification - enzyme immunoassay (ELISA/ELISA) or express methods in the form of a lateral flow immunoassay are less informative. The extraction of nucleic acids for real-time polymerase chain reaction depends on the source matrix, with higher concentrations obtained from germ cells and parenchymal organs. Extraction from muscle and plant tissues is more challenging, but thorough grinding of these samples improves nucleic acid concentration by 1.5 times using DNA extraction kits. The selection of primers and fluorescent probes through GenBank and PCR Primer Design/DNASTAR software enables efficient amplification and identification of target chicken DNA fragments in various matrices.
Collapse
Affiliation(s)
- Gulyaim Abitayeva
- Laboratory of Biotechnology, LLP "Republican Collection of Microorganisms", Astana, Republic of Kazakhstan
| | - Arman Abeev
- LLP "ABIOTECH", Astana, Republic of Kazakhstan
| |
Collapse
|
3
|
Sultana S, Azlan A, Mohd Desa MN, Mahyudin NA, Anburaj A. A review of CRISPR-Cas and PCR-based methods for the detection of animal species in the food chain-current challenges and future prospects. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:213-227. [PMID: 38284970 DOI: 10.1080/19440049.2024.2304577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024]
Abstract
Regular testing and systematic investigation play a vital role to ensure product safety. Until now, the existing food authentication techniques have been based on proteins, lipids, and nucleic acid-based assays. Among various deoxyribonucleic acid (DNA)-based methods, the recently developed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) based bio-sensing is an innovative and fast-expanding technology. The CRISPR/Cas-9 is known as Clustered Regularly Interspaced Short Palindromic Repeats due to the flexibility and simplicity of the CRISPR/Cas9 site-specific editing tool has been applied in many biological research areas such as Gene therapy, cell line development, discovering mechanisms of disease, and drug discovery. Nowadays, the CRISPR-Cas system has also been introduced into food authentication via detecting DNA barcodes of poultry and livestock both in processed and unprocessed food samples. This review documents various DNA based approaches, in an accessible format. Future CRISPR technologies are forecast while challenges are outlined.
Collapse
Affiliation(s)
- Sharmin Sultana
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Malaysia
| | - Azrina Azlan
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Nutrition, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- Research Centre of Excellence for Nutrition and Non-Communicable Diseases, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Nor Ainy Mahyudin
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, Serdang, Malaysia
| | - Amaladoss Anburaj
- Centre for Aquaculture and Veterinary Science (CAVS), School of Applied Science, Temasek Polytechnic, Singapore, Singapore
| |
Collapse
|
4
|
Nuraeni U, Malau J, Astuti RT, Dewantoro A, Apriori D, Lusiana ED, Prasetya B. Droplet digital PCR versus real-time PCR for in-house validation of porcine detection and quantification protocol: An artificial recombinant plasmid approach. PLoS One 2023; 18:e0287712. [PMID: 37450440 PMCID: PMC10348585 DOI: 10.1371/journal.pone.0287712] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Authenticity and traceability are essential for modern food and medicine inspection, and reliable techniques are important for the trade of halal foods, which reach more than 20 percent of the world market. A sensitive and accurate porcine detection method is required to develop a conformity assessment system that includes laboratory testing for porcine-free certification. This study proposes a procedure that could be incorporated into the development of a standardized control and protocol for real-time PCR (qPCR) methods and their traceability using droplet digital PCR (ddPCR). The design used a recombinant pUC57 plasmid as an amplification target to carry the 97 bp fragment of the porcine ATCB gene. The absolute quantification and linearity assessment showed high precision with R2 values of 0.9971 and 0.9998 for qPCR and ddPCR, respectively. In general, both methods showed comparable results in terms of linearity and detection limit. However, both limit of detection assessments showed high sensitivity, although ddPCR showed a slightly higher sensitivity than that of qPCR, especially at low DNA concentrations. Multiple-sample and inter-participatory testing evaluations revealed a high sensitivity, broad applicability, and robustness of the qPCR method. Therefore, we conclude that based on a recombinant plasmid analysis with a low quantity (less than five copy number), the digital PCR method produced more reliable results. These results could provide scientific information for regulatory authorities, especially those in Indonesia, to consider the development and formulation of a well-established qPCR protocol for porcine detection using expected DNA concentrations.
Collapse
Affiliation(s)
- Umi Nuraeni
- Laboratory of National Measurement Standards of Biology, The National Standard Agency of Indonesia (BSN), South Tangerang, Banten, Indonesia
| | - Jekmal Malau
- Department of Pharmacy, Faculty of Health Science, Universitas Singaperbangsa Karawang, West Java, Indonesia
| | - Retno Tri Astuti
- Department of Fisheries Product Technology, Faculty of Fisheries and Marine Science, Universitas Brawijaya, East Java, Indonesia
| | - Auraga Dewantoro
- Research Center for Genetic Engineering, The National Research and Innovation Agency of Indonesia (BRIN), Bogor, Indonesia
| | - Dini Apriori
- Laboratory of National Measurement Standards of Biology, The National Standard Agency of Indonesia (BSN), South Tangerang, Banten, Indonesia
| | - Evellin Dewi Lusiana
- Department of Aquatic Resource Management, Faculty of Fisheries and Marine Science, Universitas Brawijaya, East Java, Indonesia
| | - Bambang Prasetya
- Research Center for Testing Technology and Standards, The National Research and Innovation Agency of Indonesia (BRIN), South Tangerang, Indonesia
| |
Collapse
|
5
|
Muflihah, Hardianto A, Kusumaningtyas P, Prabowo S, Hartati YW. DNA-based detection of pork content in food. Heliyon 2023; 9:e14418. [PMID: 36938408 PMCID: PMC10020109 DOI: 10.1016/j.heliyon.2023.e14418] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023] Open
Abstract
Determination of halal food is essential in ensuring the tranquillity of consumers, especially Muslims. Halal products mean they are free from prohibited ingredients according to Islamic law. One ingredient that is prohibited is food products containing pork and its derivatives. An accurate verification method with a fast result is necessary to meet this requirement for halal food. DNA quantification of pork is now believed to be able to make accurate and quick decisions, as DNA acts as a reservoir or biological characterization of all living things, including pigs, according to specific characteristics of molecular and connection settings. Various DNA-based methods developed include PCR, biosensor and CRISPR methods. This review discussed various DNA-based Keywords: biosensor, CRISPR, detection, DNA, pork, PCR methods, including PCR, biosensor and CRISPR, to detect pork content in food. Among these methods, CRISPR is considered the easiest, fastest and most accurate. Therefore, it is important to develop this method further in the future. In this article, we provide a short review on DNA-based methods for detection of pork content in food products.
Collapse
Affiliation(s)
- Muflihah
- Doctoral Program in Analytical Chemistry, FMIPA Universitas Padjadjaran, Bandung, 45363, Indonesia
- Chemistry Education Study Program, Faculty of Teacher Training and Education, Universitas Mulawarman Samarinda, 75119, Indonesia
| | - Ari Hardianto
- Doctoral Program in Analytical Chemistry, FMIPA Universitas Padjadjaran, Bandung, 45363, Indonesia
| | - Pintaka Kusumaningtyas
- Chemistry Education Study Program, Faculty of Teacher Training and Education, Universitas Mulawarman Samarinda, 75119, Indonesia
| | - Sulistyo Prabowo
- Halal Center, Universitas Mulawarman, Samarinda, 75119 Indonesia
| | - Yeni Wahyuni Hartati
- Doctoral Program in Analytical Chemistry, FMIPA Universitas Padjadjaran, Bandung, 45363, Indonesia
| |
Collapse
|
6
|
Zhou C, Wang J, Xiang J, Fu Q, Sun X, Liu L, Ai L, Wang J. Rapid detection of duck ingredient in adulterated foods by isothermal recombinase polymerase amplification assays. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 6:100162. [PMID: 36654874 PMCID: PMC9841362 DOI: 10.1016/j.fochms.2023.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/03/2023] [Accepted: 01/07/2023] [Indexed: 01/11/2023]
Abstract
Duck is often used in meat fraud as a substitute for more expensive meats. Rapid detection of duck ingredient in meat products is of great significance for combating meat fraud and safeguarding the interests of consumers. Therefore, we aim to develop duck-specific recombinase polymerase amplification (RPA)-based assays for the rapid detection of duck ingredient in animal-derived foods. Using Cytb gene as target, the real-time RPA and RPA combined with lateral flow strips (LFS RPA) were developed successfully for the rapid detection of ducks in 20 min at 39 °C and 40 °C, respectively. The assays did not show cross-reactions with 6 other livestock and poultry. The developed RPA assays could detect 10 pg duck genomic DNA per reaction and 0.1 % (w/w) duck ingredient in duck and mutton mixed powder within 30 min, including a rapid nucleic acid extraction. Furthermore, duck ingredient could be detected in 30 different actual foods including heat-processed meats and blood products. Therefore, duck-specific real-time RPA and LFS RPA assays were successfully developed with good specificity and sensitivity, which could enable rapid detection of duck ingredient in the field and provide technical support for combating the meat fraud.
Collapse
Affiliation(s)
- Cang Zhou
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, China,Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China,Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Jinfeng Wang
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China
| | - Jialin Xiang
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China
| | - Qi Fu
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China
| | - Xiaoxia Sun
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China
| | - Libing Liu
- Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China
| | - Lianfeng Ai
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, China,Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China,Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China
| | - Jianchang Wang
- School of Public Health, Hebei Medical University, Shijiazhuang 050017, China,Food Microbiology and Animal Quarantine Laboratory, Technology Center of Shijiazhuang Customs, Shijiazhuang 050051, China,Hebei Key Laboratory of Environment and Human Health, Shijiazhuang 050017, China,Corresponding author at: School of Public Health, Hebei Medical University, Shijiazhuang 050017, China.
| |
Collapse
|
7
|
Jafar S, Waheed F, Anjum KM, Shehzad W, Imran M. A Low-Cost Closed-Tube Method for Detection of Adulteration in Ground Meat. FOOD BIOTECHNOL 2023. [DOI: 10.1080/08905436.2022.2163250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Sana Jafar
- Molecular Diagnostics Laboratory, Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Fadia Waheed
- Molecular Diagnostics Laboratory, Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Khalid Mahmood Anjum
- Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Pakistan
| | - Wasim Shehzad
- Molecular Diagnostics Laboratory, Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Imran
- Molecular Diagnostics Laboratory, Institute of Biochemistry and Biotechnology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| |
Collapse
|
8
|
Species-Specific Deoxyribonucleic Acid (DNA) Identification of Bovine in Cultured Meat Serum for halal Status. Foods 2022. [PMCID: PMC9601557 DOI: 10.3390/foods11203235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Meat culturing technology goes beyond laboratory research and materialises in the market. Nonetheless, this technology has raised concerns among Muslim consumers worldwide due to its medium, especially foetal bovine serum (FBS), which originates from blood. Thus, the aim of this research was to determine the halal status of cultured meat by detecting species-specific DNA of bovine serum as one of the media used during meat production. Polymerase chain reaction (PCR) analysis was conducted by targeting mitochondrial cytochrome oxidase II (COII) gene sequences, producing a 165 bp amplicon. The sequences of the primers used were Bovine-F, 5′-CAT CAT AGC AAT TGC CAT AGT CC-3′ and Bovine-R, 5′-GTA CTA GTA GTA TTA GAG CTA GAA TTA G-3′. DNA extraction was conducted using a QIAGEN Blood and Tissue™ commercial kit. The presence study also included a literature review on the Istihalah (transformation) concept in order to determine the halal status of cultured meat. The results revealed that bovine DNA was detected in all samples tested using PCR analysis. Therefore, Istihalah tammah (perfect transformation) does not occur due to the ability of PCR analysis to detect bovine DNA in FBS and is prohibited according to Shariah law.
Collapse
|
9
|
Siswara HN, Erwanto Y, Suryanto E. Study of Meat Species Adulteration in Indonesian Commercial Beef Meatballs Related to Halal Law Implementation. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.882031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Meatballs are processed meat products that are susceptible to adulteration. Indonesia enforces a halal product guarantee regulation so that all products in circulation are free from non-halal ingredients. This study aimed to detect with the PCR method the contamination by pork and chicken of commercial beef meatballs. The samples of commercial meatballs were obtained from 36 meatball shops in Bojonegoro Regency, East Java, and Boyolali Regency, Central Java Province, Indonesia. Reference meatballs as a positive control were prepared in the laboratory. DNA isolation was performed on commercial sample meatballs, reference meatballs, and 13 species of fresh meat for specificity tests. DNA concentrations were measured using a spectrophotometer, and visualization of the isolation and PCR results was conducted using agarose gel electrophoresis and a UV transilluminator. DNA isolates were amplified by PCR using gene targets 1.711B bovine repeat for identifying bovine species, CR1 SINE repeat element for identifying chicken species, and mitochondrial gene subunit ND1 for identifying pork species. The results showed that there was contamination by chicken meat in meatballs labeled as beef meatballs in 30 of 36 samples in Bojonegoro Regency and 33 of 36 samples in Boyolali Regency. The results also showed that 22 samples of commercial beef meatballs in the Boyolali Regency contained pork. The implementation of the PCR method using the three specific primers proved the presence of meat contamination that did not match the label on the meatballs circulating in the Indonesian market. The contamination by pork if beef meatballs has violated the regulation on halal product guarantees.
Collapse
|
10
|
Cai Z, Zhong G, Liu Q, Yang X, Zhang X, Zhou S, Zeng X, Wu Z, Pan D. Molecular Authentication of Twelve Meat Species Through a Promising Two-Tube Hexaplex Polymerase Chain Reaction Technique. Front Nutr 2022; 9:813962. [PMID: 35399682 PMCID: PMC8989424 DOI: 10.3389/fnut.2022.813962] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/18/2022] [Indexed: 12/12/2022] Open
Abstract
Frequent meat frauds have aroused significant social attention. The aim of this study is to construct a two-tube hexaplex polymerase chain reaction (PCR) method offering accurate molecular authentication of twelve meat species in actual adulteration event. Deoxyribonucleic acid (DNA) sequencing demonstrates that designed primers can specifically amplify target species from genomic DNA mixture of six species in each tube reaction, which showed 100% accuracy of horse (148 bp), pigeon (218 bp), camel (283 bp), rabbit (370 bp), ostrich (536 bp), and beef (610 bp) as well as turkey (124 bp), dog (149 bp), chicken (196 bp), duck (277 bp), cat (380 bp), and goose (468 bp). A species-specific primer pair produced the target band in the presence of target genomic DNA but not non-target species. Through multiplex PCR assays with serial concentration of the DNA mixture of six species in each PCR reaction, the detection limit (LOD) of the two-tube hexaplex PCR assay reached up to 0.05–0.1 ng. Using genomic DNA isolated from both boiled and microwave-cooked meat as templates, PCR amplification generated expected PCR products. These findings demonstrate that the proposed method is specific, sensitive and reproducible, and is adequate for food inspection. Most importantly, this method was successfully applied to detect meat frauds in commercial meat products. Therefore, this method is of great importance with a good application foreground.
Collapse
Affiliation(s)
- Zhendong Cai
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Guowei Zhong
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qianqian Liu
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangzhou, China
- *Correspondence: Qianqian Liu,
| | - Xingqiao Yang
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Xiaoxia Zhang
- Ordos Agriculture and Animal Husbandry Technology Extension Centre, Ordos, China
| | - Song Zhou
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Xiaoqun Zeng
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Zhen Wu
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Daodong Pan
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Daodong Pan,
| |
Collapse
|
11
|
Performance improved fluorescence polarization for easy and accurate authentication of chicken adulteration. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Halal and Kosher gelatin: Applications as well as detection approaches with challenges and prospects. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Afifa khatun M, Hossain A, Hossain MS, Kamruzzaman Munshi M, Huque R. Detection of species adulteration in meat products and Mozzarella-type cheeses using duplex PCR of mitochondrial cyt b gene: A food safety concern in Bangladesh. FOOD CHEMISTRY: MOLECULAR SCIENCES 2021; 2:100017. [PMID: 35415622 PMCID: PMC8991966 DOI: 10.1016/j.fochms.2021.100017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 11/25/2022]
|
14
|
Uddin SMK, Hossain MAM, Chowdhury ZZ, Johan MRB. Short targeting multiplex PCR assay to detect and discriminate beef, buffalo, chicken, duck, goat, sheep and pork DNA in food products. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1273-1288. [PMID: 34077338 DOI: 10.1080/19440049.2021.1925748] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Food fraud is a global problem raising increased concerns during the past decades and food authenticity is now a burning issue. Beef, buffalo, chicken, duck, goat, sheep, and pork are heavily consumed meats bearing nutritional, economic and cultural/religious importance and are often found to be adulterated in raw and processed states. To authenticate these species, we developed and validated a highly specific multiplex (heptaplex) PCR assay targeting short length amplicons (73-263 bp) using seven pairs of species-specific primer sets targeting mitochondrial cytochrome b (cytb) and NADH dehydrogenase subunit 5 (ND5) genes. Specificity checking (in silico and in vitro) against 25 non-target species revealed no cross-species amplification. The developed multiplex assay was validated with various adulterated and heat-treated (boiled, microwaved and autoclaved) meatball products and were found to show high sensitivity and stability under all processing conditions. The assay was sensitive enough to detect 0.01-0.005 ng of DNA from raw meat and 0.5% (w/w) adulterated meat in mixed matrices. A market survey revealed mislabelling of 95% beef and 15% chicken products while pork products were found pure. Given some advantageous features including short sizes of amplicons, exceptional stability and superior sensitivity, the developed assay could be conveniently used for discriminatory detection of target species with a variety of raw meat as well as processed meat products undergoing extreme processing treatments.
Collapse
Affiliation(s)
- Syed Muhammad Kamal Uddin
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - M A Motalib Hossain
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Zaira Zaman Chowdhury
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rafie Bin Johan
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
15
|
Chen X, Fu M, Xu W, Huang M, Cui X, Cao M, Xiong X, Xiong X. One‐step triplex high‐resolution melting (HRM) analysis for rapid identification of Atlantic cod (
Gadus morhua
), Alaska pollock (
Gadus chalcogrammus
) and haddock (
Melanogrammus aeglefinus
). Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaoye Chen
- College of Food Science and Light Industry Nanjing Tech University Nanjing211800China
| | - Mingyang Fu
- College of Food Science and Light Industry Nanjing Tech University Nanjing211800China
| | - Wenjie Xu
- College of Food Science and Light Industry Nanjing Tech University Nanjing211800China
| | - Manhong Huang
- College of Food Science and Light Industry Nanjing Tech University Nanjing211800China
| | - Xiaowen Cui
- College of Food Science and Light Industry Nanjing Tech University Nanjing211800China
| | - Min Cao
- College of Food Science and Light Industry Nanjing Tech University Nanjing211800China
| | - Xiaohui Xiong
- College of Food Science and Light Industry Nanjing Tech University Nanjing211800China
| | - Xiong Xiong
- College of Food Science and Light Industry Nanjing Tech University Nanjing211800China
| |
Collapse
|
16
|
Sajali N, Wong SC, Abu Bakar S, Khairil Mokhtar NF, Manaf YN, Yuswan MH, Mohd Desa MN. Analytical approaches of meat authentication in food. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14797] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nurhayatie Sajali
- School of Engineering and Technology University College of Technology Sarawak Sibu Sarawak Malaysia
- Halal Products Research Institute Universiti Putra Malaysia Serdang Selangor Darul Ehsan Malaysia
| | - Sie Chuong Wong
- Department of Basic Science and Engineering Faculty of Agriculture and Food Sciences UPM Bintulu Sarawak Campus Bintulu Sarawak Malaysia
| | - Suhaili Abu Bakar
- Department of Biomedical Science Faculty of Medicine and Health Sciences Universiti Putra Malaysia Serdang Selangor Darul Ehsan Malaysia
| | - Nur Fadhilah Khairil Mokhtar
- Halal Products Research Institute Universiti Putra Malaysia Serdang Selangor Darul Ehsan Malaysia
- Konsortium Institut Halal IPT Malaysia (KIHIM), Ministry of Higher Education Malaysia, Federal Government Administrative Centre Putrajaya Malaysia
| | - Yanty Noorzianna Manaf
- Halal Products Research Institute Universiti Putra Malaysia Serdang Selangor Darul Ehsan Malaysia
- Konsortium Institut Halal IPT Malaysia (KIHIM), Ministry of Higher Education Malaysia, Federal Government Administrative Centre Putrajaya Malaysia
| | - Mohd Hafis Yuswan
- Halal Products Research Institute Universiti Putra Malaysia Serdang Selangor Darul Ehsan Malaysia
- Konsortium Institut Halal IPT Malaysia (KIHIM), Ministry of Higher Education Malaysia, Federal Government Administrative Centre Putrajaya Malaysia
| | - Mohd Nasir Mohd Desa
- Halal Products Research Institute Universiti Putra Malaysia Serdang Selangor Darul Ehsan Malaysia
- Department of Biomedical Science Faculty of Medicine and Health Sciences Universiti Putra Malaysia Serdang Selangor Darul Ehsan Malaysia
- Konsortium Institut Halal IPT Malaysia (KIHIM), Ministry of Higher Education Malaysia, Federal Government Administrative Centre Putrajaya Malaysia
| |
Collapse
|
17
|
Hossain MAM, Uddin SMK, Sultana S, Wahab YA, Sagadevan S, Johan MR, Ali ME. Authentication of Halal and Kosher meat and meat products: Analytical approaches, current progresses and future prospects. Crit Rev Food Sci Nutr 2020; 62:285-310. [DOI: 10.1080/10408398.2020.1814691] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- M. A. Motalib Hossain
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Syed Muhammad Kamal Uddin
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Sharmin Sultana
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Yasmin Abdul Wahab
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Suresh Sagadevan
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
| | - Md. Eaqub Ali
- Nanotechnology and Catalysis Research Centre (NANOCAT), University of Malaya, Kuala Lumpur, Malaysia
- Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Shi R, Huang M, Wang J, He C, Ying X, Xiong X, Xiong X. Molecular identification of dried squid products sold in China using DNA barcoding and SYBR green real time PCR. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1061-1074. [DOI: 10.1080/19440049.2020.1746411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Rongzhen Shi
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Manhong Huang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Jing Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Chuhan He
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xiaoguo Ying
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Department of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Xiaohui Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xiong Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
19
|
Song L, Hu Z, Wang Q, Jiang J, Cao Y, Wang D, Rui S, Li L, Cai X, Wu Y, Suo Y. Quantitative species determination based on real time PCR–Can the results be expressed as weight/weight equivalents? FOOD BIOTECHNOL 2020. [DOI: 10.1080/08905436.2020.1743305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Liping Song
- The Center for Supervision and Inspection of Food Quality and Safty of China, Beijing, China
| | - Zhikai Hu
- The Center for Supervision and Inspection of Food Quality and Safty of China, Beijing, China
| | - Qinglong Wang
- The Center for Supervision and Inspection of Food Quality and Safty of China, Beijing, China
| | - Jie Jiang
- Beijing 101 High School International Department, Beijing, China
| | - Yue Cao
- The Center for Supervision and Inspection of Food Quality and Safty of China, Beijing, China
| | - Dan Wang
- The Center for Supervision and Inspection of Food Quality and Safty of China, Beijing, China
| | - Sun Rui
- The Center for Supervision and Inspection of Food Quality and Safty of China, Beijing, China
| | - Long Li
- The Center for Supervision and Inspection of Food Quality and Safty of China, Beijing, China
| | - Xuefeng Cai
- The Center for Supervision and Inspection of Food Quality and Safty of China, Beijing, China
| | - Yantao Wu
- The Center for Supervision and Inspection of Food Quality and Safty of China, Beijing, China
| | - Yiping Suo
- The Center for Supervision and Inspection of Food Quality and Safty of China, Beijing, China
| |
Collapse
|
20
|
Xiong X, Yuan F, Huang M, Cao M, Xiong X. Development of a rapid method for codfish identification in processed fish products based on SYBR Green real‐time PCR. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Xiong Xiong
- College of Food Science and Light Industry Nanjing Tech University Nanjing 211800 China
| | - Fangying Yuan
- College of Food Science and Light Industry Nanjing Tech University Nanjing 211800 China
| | - Manhong Huang
- College of Food Science and Light Industry Nanjing Tech University Nanjing 211800 China
| | - Min Cao
- College of Food Science and Light Industry Nanjing Tech University Nanjing 211800 China
| | - Xiaohui Xiong
- College of Food Science and Light Industry Nanjing Tech University Nanjing 211800 China
| |
Collapse
|
21
|
Khairil Mokhtar NF, El Sheikha AF, Azmi NI, Mustafa S. Potential authentication of various meat-based products using simple and efficient DNA extraction method. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1687-1693. [PMID: 31803942 DOI: 10.1002/jsfa.10183] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The growth of halal food consumption worldwide has resulted in an increase in the request for halal authentication. DNA-based detection using powerful real-time polymerase chain reaction (PCR) technique has been shown to be highly specific and sensitive authentication tool. The efficient DNA extraction method in terms of quality and quantity is a backbone step to obtain successful real-time PCR assays. In this study, different DNA extraction methods using three lysis buffers were evaluated and developed to recommend a much more efficient method as well as achieve a successful detection using real-time PCR. RESULTS The lysis buffer 2 (LB2) has been shown to be the best lysis buffer for DNA extraction from both raw and processed meat samples comparing to other lysis buffers tested. Hence, the LB2 has been found to be ideal to detect meat and porcine DNAs by real-time PCR using pairs of porcine specific primers and universal primers which amplified at 119 bp fragment and 93 bp fragment, respectively. This assay allows detection as low as 0.0001 ng of DNA. Higher efficiency and sensitivity of real-time PCR via a simplified DNA extraction method using LB2 have been observed, as well as a reproducible and high correlation coefficient (R2 = 0.9979) based on the regression analysis of the standard curve have been obtained. CONCLUSION This study has established a fast, simple, inexpensive and efficient DNA extraction method that is feasible for raw and processed meat products. This extraction technique allows an accurate DNA detection by real-time PCR and can also be implemented to assist the halal authentication of various meat-based products available in the market. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nur Fadhilah Khairil Mokhtar
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Aly Farag El Sheikha
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang, 330045, China
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, 25 University Private Ottawa, ON K1N, 6N5, Canada
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang, 330045, China
- Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang, China
- Department of Food Science and Technology, Faculty of Agriculture, Minufiya University, 32511 Shibin El Kom, Minufiya Government, Egypt
| | - Nur Izzah Azmi
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Shuhaimi Mustafa
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
22
|
Shi R, Xiong X, Huang M, Xu W, Li Y, Cao M, Xiong X. High resolution melting (HRM) analysis of a 12S rRNA mini barcode as a novel approach for codfish species authentication in processed fish products. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03456-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
23
|
Nhari RR, Hanish I, Mokhtar NK, Hamid M, El Sheikha A. Authentication approach using enzyme-linked immunosorbent assay for detection of porcine substances. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2019. [DOI: 10.3920/qas2018.1415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- R.M.H. Raja Nhari
- Laboratory of Halal Science Research, Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - I. Hanish
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - N.F. Khairil Mokhtar
- Laboratory of Halal Science Research, Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - M. Hamid
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia
| | - A.F. El Sheikha
- Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
- Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, 1101 Zhimin Road, Nanchang 330045, China
- Department of Biology, McMaster University, 1280 Main St. West, Hamilton, Ontario, L8S 4K1, Canada
- Department of Food Science and Technology, Faculty of Agriculture, Minufiya University, 32511 Shibin El Kom, Minufiya Government, Egypt
| |
Collapse
|
24
|
|
25
|
Guan F, Jin Y, Zhao J, Ai J, Luo Y. A Novel Direct PCR Lysis Buffer Can Improve PCR from Meat Matrices. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-018-1342-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
26
|
Kang SSN, Lee HG, Kim H. Development and comparison of a porcine gelatin detection system targeting mitochondrial markers for Halal authentication. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.07.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Sajali N, Wong SC, Hanapi UK, Abu Bakar Jamaluddin S, Tasrip NA, Mohd Desa MN. The Challenges of DNA Extraction in Different Assorted Food Matrices: A Review. J Food Sci 2018; 83:2409-2414. [DOI: 10.1111/1750-3841.14338] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 07/16/2018] [Accepted: 08/03/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Nurhayatie Sajali
- School of Engineering and Technology; University College of Technology Sarawak; 868 Persiaran Brooke 96000 Sibu Sarawak Malaysia
- Halal Products Research Institute; Universiti Putra Malaysia; 43400 Serdang Selangor Darul Ehsan Malaysia
| | - Sie Chuong Wong
- Department of Basic Science and Engineering, Faculty of Agriculture and Food Sciences; Universiti Putra Malaysia Bintulu Sarawak Campus; P.O. Box 396, Nyabau Road 97008 Bintulu Sarawak Malaysia
| | - Ummi Kalthum Hanapi
- Halal Products Research Institute; Universiti Putra Malaysia; 43400 Serdang Selangor Darul Ehsan Malaysia
| | - Suhaili Abu Bakar Jamaluddin
- Department of Biomedical Science, Faculty of Medicine and Health Sciences; Universiti Putra Malaysia; 43400, Selangor Darul Ehsan Malaysia
| | - Nor Asmara Tasrip
- Halal Products Research Institute; Universiti Putra Malaysia; 43400 Serdang Selangor Darul Ehsan Malaysia
| | - Mohd Nasir Mohd Desa
- Halal Products Research Institute; Universiti Putra Malaysia; 43400 Serdang Selangor Darul Ehsan Malaysia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences; Universiti Putra Malaysia; 43400, Selangor Darul Ehsan Malaysia
| |
Collapse
|
28
|
Mohamad NA, Mustafa S, Khairil Mokhtar NF, El Sheikha AF. Molecular beacon-based real-time PCR method for detection of porcine DNA in gelatin and gelatin capsules. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4570-4577. [PMID: 29505123 DOI: 10.1002/jsfa.8985] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/23/2018] [Accepted: 02/24/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The pharmaceutical industry has boosted gelatin consumption worldwide. This is supported by the availability of cost-effective gelatin production from porcine by-products. However, cross-contamination of gelatin materials, where porcine gelatin was unintentionally included in the other animal sources of gelatin, has caused significant concerns about halal authenticity. The real-time polymerase chain reaction (PCR) has enabled a highly specific and sensitive animal species detection method in various food products. Hence, such a technique was employed in the present study to detect and quantify porcine DNA in gelatin using a molecular beacon probe, with differences in performance between mitochondrial (cytochrome b gene) and chromosomal DNA-(MPRE42 repetitive element) based porcine-specific PCR assays being compared. RESULTS A higher sensitivity was observed in chromosomal DNA (MPRE-PCR assay), where this assay allows the detection of gelatin DNA at amounts as as low as 1 pg, whereas mitochondrial DNA (CBH-PCR assay) can only detect at levels down to 10 pg of gelatin DNA. When an analysis with commercial gelatin and gelatin capsule samples was conducted, the same result was observed, with a significantly more sensitive detection being provided by the repetitive element of chromosomal DNA. CONCLUSION The present study has established highly sensitive DNA-based porcine detection systems derived from chromosomal DNA that are feasible for highly processed products such as gelatin and gelatin capsules containing a minute amount of DNA. This sensitive detection method can also be implemented to assist the halal authentication process of various food products available on the market. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nurhidayatul Asma Mohamad
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia (UPM), Putra Infoport, Selangor Darul Ehsan, Malaysia
| | - Shuhaimi Mustafa
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia (UPM), Putra Infoport, Selangor Darul Ehsan, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Selangor Darul Ehsan, Malaysia
| | - Nur Fadhilah Khairil Mokhtar
- Laboratory of Halal Science Research, Halal Products Research Institute, Universiti Putra Malaysia (UPM), Putra Infoport, Selangor Darul Ehsan, Malaysia
| | - Aly Farag El Sheikha
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Department of Food Science and Technology, Faculty of Agriculture, Minufiya University, Shibin El Kom, Minufiya Government, Egypt
| |
Collapse
|
29
|
Ahmad Nizar NN, Ali ME, Hossain MAM, Sultana S, Ahamad MNU. Double gene targeting PCR assay for the detection of Crocodylus porosus in commercial products. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:1038-1051. [PMID: 29447579 DOI: 10.1080/19440049.2018.1440644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The demand for crocodile meat is quickly growing because of its exotic and organoleptic appeal and also the low content of cholesterol and lipids. Moreover, crocodile oil and blood have been used in alternative medicines for treating asthma and several other ailments since ancient times. Furthermore, crocodile hides have great demand in leather industries. All of these have collectively contributed to the extensive hunting, illegal trading and consequent decline of crocodiles in most parts of the world. To keep space with the growing demands, some crocodile species such as Crocodylus porosus have been raised in farms and its commercial trades have been legalised. However, demand for wild crocodiles in foods and medicines has continued in high gear. Recently, several DNA-based methods have been proposed for crocodile detection, but those assays are based on single gene and longer-sized amplicon targets that break down during extensive processing. To address this gap, here we developed and validated a highly stable double gene targeted multiplex PCR assay for the identification of C. porosus materials in commercial products. The assay involved two short sites from C. porosus atp6 (77 bp) and cytb (127 bp) genes and a universal internal control (99 bp) for eukaryotes. The PCR primers were cross-tested against 18 species and validated under pure and mixed matrices under extensive boiling, autoclaving and microwave cooking conditions. Finally, it was used to identify five crocodile-based commercial products. The lower limits of detection for atp6 and cytb genes were 0.001 ng and 0.01 ng DNA, respectively, in pure meat and 1% under mixed matrices. Some inherent features, such as 77-127 bp amplicon sizes, exceptional stability and superior sensitivity, suggested the assay could be used for the identification of C. porosus in any forensic specimen.
Collapse
Affiliation(s)
- Nina Naquiah Ahmad Nizar
- a Nanotechnology and Catalysis Research Centre (NANOCAT) , University of Malaya , Kuala Lumpur , Malaysia
| | - Md Eaqub Ali
- a Nanotechnology and Catalysis Research Centre (NANOCAT) , University of Malaya , Kuala Lumpur , Malaysia.,b Centre for Research in Biotechnology for Agriculture (CEBAR) , University of Malaya , Kuala Lumpur , Malaysia.,c Institute of Halal Research (IHRUM) , University of Malaya , Kuala Lumpur , Malaysia
| | - M A Motalib Hossain
- a Nanotechnology and Catalysis Research Centre (NANOCAT) , University of Malaya , Kuala Lumpur , Malaysia
| | - Sharmin Sultana
- a Nanotechnology and Catalysis Research Centre (NANOCAT) , University of Malaya , Kuala Lumpur , Malaysia
| | | |
Collapse
|
30
|
El Sheikha AF, Mokhtar NFK, Amie C, Lamasudin DU, Isa NM, Mustafa S. Authentication technologies using DNA-based approaches for meats and halal meats determination. FOOD BIOTECHNOL 2017. [DOI: 10.1080/08905436.2017.1369886] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Aly Farag El Sheikha
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- Department of Food Science and Technology, Faculty of Agriculture, Minufiya University, Shibin El Kom, Egypt
| | - Nur Fadhilah Khairil Mokhtar
- Laboratory of Halal Products Research Institute, Halal Products Research Institute, Universiti Putra Malaysia (UPM), Selangor, Malaysia
| | - Ceesay Amie
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Selangor, Malaysia
| | - Dhilia Udie Lamasudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Selangor, Malaysia
| | - Nurulfiza Mat Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Selangor, Malaysia
| | - Shuhaimi Mustafa
- Laboratory of Halal Products Research Institute, Halal Products Research Institute, Universiti Putra Malaysia (UPM), Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), Selangor, Malaysia
| |
Collapse
|
31
|
Species Identification of Fox-, Mink-, Dog-, and Rabbit-Derived Ingredients by Multiplex PCR and Real-Time PCR Assay. Appl Biochem Biotechnol 2017; 185:1-12. [DOI: 10.1007/s12010-017-2621-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/02/2017] [Indexed: 11/27/2022]
|
32
|
OFFGEL electrophoresis and tandem mass spectrometry approach compared with DNA-based PCR method for authentication of meat species from raw and cooked ground meat mixtures containing cattle meat, water buffalo meat and sheep meat. Food Chem 2017; 233:311-320. [DOI: 10.1016/j.foodchem.2017.04.116] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 04/09/2017] [Accepted: 04/18/2017] [Indexed: 11/18/2022]
|
33
|
|
34
|
Hossain MM, Ali ME, Hamid SBA, Asing, Mustafa S, Desa MNM, Zaidul I. Targeting double genes in multiplex PCR for discriminating bovine, buffalo and porcine materials in food chain. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.08.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Mohamad NA, Mustafa S, El Sheikha AF, Khairil Mokhtar NF, Ismail A, Ali ME. Modification of gelatin-DNA interaction for optimised DNA extraction from gelatin and gelatin capsule. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2344-2351. [PMID: 26441285 DOI: 10.1002/jsfa.7482] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/06/2015] [Accepted: 09/27/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Poor quality and quantity of DNA extracted from gelatin and gelatin capsules often causes failure in the determination of animal species using PCR. Gelatin, which is mainly derived from porcine and bovine, has been a matter of concern among customers in order to fulfill religious obligation and safety precaution against several transmissible infectious diseases associated with bovine species. Thus, optimised DNA extraction from gelatin is very important for successful real-time PCR detection of gelatin species. In this work, the DNA extraction method was optimised in terms of lysis incubation period and inclusion of pre-treatment pH modification of samples. RESULTS The yield of DNA extracted from porcine gelatin was significantly increased when the pH of the samples was adjusted to pH 8.5 prior to DNA precipitation with isopropanol. The optimal pH for DNA precipitation from bovine gelatin solution was then determined at the original pH range of solution: pH 7.6 to 8. A DNA fragment of approximately 300 base pairs was available for PCR amplification. CONCLUSION DNA extracted from gelatin and commercially available capsules has been successfully utilised for species detection using real-time PCR assay. However, significant adulterations of porcine and bovine in pure gelatin and capsules have been detected, which require further analytical techniques for validation. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nurhidayatul Asma Mohamad
- Laboratory of Halal Products Research Institute, Halal Products Research Institute, Universiti Putra Malaysia (UPM), Putra Infoport, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Shuhaimi Mustafa
- Laboratory of Halal Products Research Institute, Halal Products Research Institute, Universiti Putra Malaysia (UPM), Putra Infoport, 43400 Serdang, Selangor Darul Ehsan, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia (UPM), 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Aly Farag El Sheikha
- McMaster University, Department of Biology, 1280 Main St. West, Hamilton, Ontario, L8S 4K1, Canada
- Minufiya University, Faculty of Agriculture, Department of Food Science and Technology, 32511 Shibin El Kom, Minufiya Government, Egypt
| | - Nur Fadhilah Khairil Mokhtar
- Laboratory of Halal Products Research Institute, Halal Products Research Institute, Universiti Putra Malaysia (UPM), Putra Infoport, 43400 Serdang, Selangor Darul Ehsan, Malaysia
| | - Amin Ismail
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Md Eaqub Ali
- Nanotechnology & Catalysis Research Centre, Deputy Vice Chancellor (Research & Innovation) Building, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
36
|
Kim M, Yoo I, Lee SY, Hong Y, Kim HY. Quantitative detection of pork in commercial meat products by TaqMan® real-time PCR assay targeting the mitochondrial D-loop region. Food Chem 2016; 210:102-6. [PMID: 27211626 DOI: 10.1016/j.foodchem.2016.04.084] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 04/01/2016] [Accepted: 04/17/2016] [Indexed: 11/26/2022]
Abstract
The TaqMan® real-time PCR assay using the mitochondrial D-loop region was developed for the quantitative detection of pork in processed meat products. The newly designed primers and probe specifically amplified pork without any cross-reactivity with non-target animal species. The limit of detection of the real-time PCR assay was 0.1pg of heat-treated pork meat and 0.1% (w/w) pork meat in beef and chicken meat mixtures. The quantitative real-time PCR assay was applied to analyze the pork meat content in 22 commercial processed meat products including jerkies, press hams, sausages, hamburger patties and steaks, grilled short rib patties, and nuggets. The developed real-time PCR method was able to detect pork meat in various types of processed meat products that declared the use of pork meat on their label. All processed meat products that declared no use of pork meat showed a negative result in the assay. The method developed in this study showed sensitivity and specificity in the quantification of pork meat in commercial processed meat products.
Collapse
Affiliation(s)
- Miju Kim
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Insuk Yoo
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Shin-Young Lee
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Yeun Hong
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 446-701, Republic of Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science & Biotechnology, Kyung Hee University, Yongin 446-701, Republic of Korea.
| |
Collapse
|
37
|
Razzak MA, Hamid SBA, Ali ME. A lab-on-a-chip-based multiplex platform to detect potential fraud of introducing pig, dog, cat, rat and monkey meat into the food chain. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2015; 32:1902-13. [DOI: 10.1080/19440049.2015.1087060] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
38
|
Ali ME, Razzak MA, Hamid SBA, Rahman MM, Amin MA, Rashid NRA, Asing. Multiplex PCR assay for the detection of five meat species forbidden in Islamic foods. Food Chem 2015; 177:214-24. [DOI: 10.1016/j.foodchem.2014.12.098] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 11/29/2022]
|
39
|
Hanapi UK, Desa MNM, Ismail A, Mustafa S. A higher sensitivity and efficiency of common primer multiplex PCR assay in identification of meat origin using NADH dehydrogenase subunit 4 gene. Journal of Food Science and Technology 2014; 52:4166-75. [PMID: 26139881 DOI: 10.1007/s13197-014-1459-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/14/2014] [Accepted: 06/27/2014] [Indexed: 11/26/2022]
Abstract
A Common Primer Multiplex PCR (CP-M-PCR) was developed to detect meat origin of four groups of animal (pig, ruminant, avian and rabbit). This method demonstrated higher sensitivity and efficiency than the conventional multiplex PCR. In this approach, a common forward primer was designed in the 5' end of a homologous region of mitochondrial NADH dehyrogenase subunit 4 (Nad 4) gene sequences of all the animal groups. Specific adapter reverse primers were designed by adding an adapter sequence at the 5' end. The same adapter sequence was used as the common adapter reverse primer. The primers generated specific fragments of 267, 370, 504, and 548 bp lengths for pig, ruminant, avian and rabbit meats, respectively. The use of adapter sequence at the 5' end of the common adapter reverse primers increased the efficiency of the amplification and the application of a common forward primer solved the complexity in multiplex PCR system. Bands of specific amplification can be detected in the PCR assays containing as low as 10(-6) μM of adapter reverse primer. This result indicated that the sensitivity was tremendously increased as compared to the conventional multiplex PCR (10(-3) μM). CP-M-PCR detection limit of the DNA samples was 0.1 ng for the four groups of meats. CP-M-PCR has greatly improved the sensitivity and efficiency of the PCR system for a more reliable and accurate outcome than conventional multiplex PCR system.
Collapse
Affiliation(s)
- Ummi Kalthum Hanapi
- Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Mohd Nasir Mohd Desa
- Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia ; Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Amin Ismail
- Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia ; Department of Nutrition and Dietetic, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Shuhaimi Mustafa
- Halal Products Research Institute, Putra Infoport, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia ; Department of Microbiology, Faculty of Biotechnology and Molecular Biology, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| |
Collapse
|
40
|
|
41
|
Ali ME, Razzak MA, Hamid SBA. Multiplex PCR in Species Authentication: Probability and Prospects—A Review. FOOD ANAL METHOD 2014. [DOI: 10.1007/s12161-014-9844-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|