1
|
Zhang Y, Wang X, Zeng Q, Deng Y, Xie P, Zhang C, Huang L. A new insight into synergistic effects between endogenous phenolic compounds additive and α-tocopherol for the stability of olive oil. Food Chem 2023; 427:136667. [PMID: 37364319 DOI: 10.1016/j.foodchem.2023.136667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/21/2023] [Accepted: 06/16/2023] [Indexed: 06/28/2023]
Abstract
Investigation of edible oil stability involves interactions between additive polyphenols and the inherent tocopherols. The work aimed to identify endogenous polyphenols to produce the synergistic effect with α-tocopherol in olive oil and to find the right action ratio. Caffeic acid and quercetin were selected from the 15 main endogenous phenolic compounds in olive oil. Quercetin had the strongest synergistic effect with α-tocopherol at 2:1 in the olive oil model. The rate of 2:1 also was the turning point of the change of synergism. Furthermore, the addition of quercetin and α-tocopherol at 2:1 to olive oil resulted in lower POV, K232, K270, and secondary oxidation products such as (E, E)-2,4-decadienal and 2-pentylfuran than the olive oil model with a single antioxidant in three months of accelerated oxidation. The dynamic changes of antioxidants during oxidation in olive oil indicated that their synergistic effect was the repair and regeneration of α-tocopherol by quercetin.
Collapse
Affiliation(s)
- Yang Zhang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Xiang Wang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Qingyue Zeng
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Yejun Deng
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Pujun Xie
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Caihong Zhang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Lixin Huang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Red Seaweeds as a Source of Nutrients and Bioactive Compounds: Optimization of the Extraction. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9060132] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present work aimed to determine the nutritional composition (ash, protein, fat, carbohydrate content and energy value), phenolic compounds, pigments and organic acids content of three typical red algae from the Northwest of Spain: Chondrus crispus, Mastocarpus stellatus, and Gigartina pistillata; as well as their antioxidant and antimicrobial activities. Furthermore, the present work compared two extraction techniques: conventional heat assisted extraction (HAE) and high pressure assisted extraction (HPAE) to maximize the yield and the concentration of target compounds. Different independent variables were considered for the response study. Time (t) and percentage of ethanol of the solvent (S) were chosen for both techniques and temperature (T) and pressure (P) were used for HAE and HPAE, respectively. The experiments were designed following a response surface methodology (RSM) approach. The obtained results showed a similar nutritional composition between algae samples: low-fat content and high content of proteins, carbohydrates and energy. All tested algae showed good antioxidant and antimicrobial properties. Finally, HEA demonstrated to be the most efficient extraction technique. This study confirms the potential of red algae to be part of the human diet as a source of non-animal protein, due to its nutritional content, phenolic profile, pigments concentration and bioactive properties, which proves that HAE is the optimum technique for the extraction maximization.
Collapse
|
3
|
Chen X, Li H, Zhang B, Deng Z. The synergistic and antagonistic antioxidant interactions of dietary phytochemical combinations. Crit Rev Food Sci Nutr 2021; 62:5658-5677. [PMID: 33612011 DOI: 10.1080/10408398.2021.1888693] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The frequent intake of whole foods and dietary food variety is recommended due to their health benefits, such as prevention of multiple chronic diseases, including cancer, Alzheimer's disease, cardiovascular diseases, and type 2 diabetes mellitus. Often, consuming whole fruits or vegetables showed the enhanced effects than consuming the individual dietary supplement from natural products, which is widely explained by the interactive effects of co-existing phytochemicals in whole foods. Although research relevant to interactive effects among the bioactive compounds mounted up, the mechanism of interaction is still not clear. Especially, biological influence factors such as bioavailability are often neglected. The present review summarizes the progress on the synergistic and antagonistic effects of dietary phytochemicals, the evaluating models for antioxidant interactions, and the possible interaction mechanisms both in vitro and in vivo, and with an emphasis on biological-related molecular mechanisms of phytochemicals. The research on the interaction mechanism is of value for guiding how to take advantage of synergistic effects and avoid antagonistic effects in daily diets or phytochemical-based treatments for preventing chronic diseases.
Collapse
Affiliation(s)
- Xuan Chen
- State Key Laboratory of Food Science and Technology, University of Nanchang, Jiangxi, China Nanchang
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, University of Nanchang, Jiangxi, China Nanchang
| | - Bing Zhang
- State Key Laboratory of Food Science and Technology, University of Nanchang, Jiangxi, China Nanchang
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, University of Nanchang, Jiangxi, China Nanchang.,Institute for Advanced Study, University of Nanchang, Nanchang, Jiangxi, China
| |
Collapse
|
4
|
Ghada B, Pereira E, Pinela J, Prieto MA, Pereira C, Calhelha RC, Stojković D, Sokóvić M, Zaghdoudi K, Barros L, Ferreira ICFR. Recovery of Anthocyanins from Passion Fruit Epicarp for Food Colorants: Extraction Process Optimization and Evaluation of Bioactive Properties. Molecules 2020; 25:molecules25143203. [PMID: 32674320 PMCID: PMC7397062 DOI: 10.3390/molecules25143203] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/29/2020] [Accepted: 07/12/2020] [Indexed: 11/16/2022] Open
Abstract
The potential of passion fruit (Passiflora edulis Sims) epicarp to produce anthocyanin-based colorants with bioactive properties was evaluated. First, a five-level three-factor factorial design coupled with response surface methodology was implemented to optimize the extraction of anthocyanins from dark purple epicarps. The extraction yield and cyanidin-3-O-glucoside content were used as response criteria. The constructed models were fitted to the experimental data and used to calculate the optimal processing conditions (t = 38 min, T = 20 °C, S = 0% ethanol/water (v/v) acidified with citric acid to pH 3, and RS/L = 50 g/L) that lead to maximum responses (3.4 mg/g dried epicarp and 9 mg/g extract). Then, the antioxidant, antimicrobial, and cytotoxic activities of anthocyanin extracts obtained using the optimized method and a conventional extraction method were evaluated in vitro. The extract obtained by the optimized method revealed a higher bioactivity, in agreement with the higher cyanidin-3-O-glucoside content. This study highlighted the coloring and bioactive potential of a bio-based ingredient recycled from a bio-waste, which promotes a sustainable bioeconomy in the agri-food sector.
Collapse
Affiliation(s)
- Bejaoui Ghada
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.G.); (J.P.); (C.P.); (R.C.C.); (I.C.F.R.F.)
- Department of Chemical Engineering, Tunisia Private University (ULT), 32 Bis Av. Kheireddine Pacha, Tunis 1002, Tunisia;
| | - Eliana Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.G.); (J.P.); (C.P.); (R.C.C.); (I.C.F.R.F.)
- Correspondence: (E.P.); (L.B.)
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.G.); (J.P.); (C.P.); (R.C.C.); (I.C.F.R.F.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain;
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.G.); (J.P.); (C.P.); (R.C.C.); (I.C.F.R.F.)
| | - Ricardo C. Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.G.); (J.P.); (C.P.); (R.C.C.); (I.C.F.R.F.)
| | - Dejan Stojković
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (D.S.); (M.S.)
| | - Marina Sokóvić
- Institute for Biological Research “Siniša Stanković”—National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia; (D.S.); (M.S.)
| | - Khalil Zaghdoudi
- Department of Chemical Engineering, Tunisia Private University (ULT), 32 Bis Av. Kheireddine Pacha, Tunis 1002, Tunisia;
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.G.); (J.P.); (C.P.); (R.C.C.); (I.C.F.R.F.)
- Correspondence: (E.P.); (L.B.)
| | - Isabel C. F. R. Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (B.G.); (J.P.); (C.P.); (R.C.C.); (I.C.F.R.F.)
| |
Collapse
|
5
|
Identification and quantification of synergetic antioxidants and their application in sunflower oil. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108726] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
6
|
da Silva LP, Pereira E, Prieto MA, Simal-Gandara J, Pires TCSP, Alves MJ, Calhelha R, Barros L, Ferreira ICFR. Rubus ulmifolius Schott as a Novel Source of Food Colorant: Extraction Optimization of Coloring Pigments and Incorporation in a Bakery Product. Molecules 2019; 24:E2181. [PMID: 31185684 PMCID: PMC6600145 DOI: 10.3390/molecules24112181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/07/2019] [Accepted: 06/09/2019] [Indexed: 12/27/2022] Open
Abstract
(1) Background: Color has been considered to be the flashiest attribute of foodstuffs and researchers have shown a great interest in the extraction of pigmented compounds from vegetal products, with the purpose to provide alternative counterparts to the food industry; (2) Methods: This study aimed to explore Rubus ulmifolius Schott fruits as a potential source of anthocyanins, optimizing the extraction method, evaluating the bioactivity and incorporating the rich extract into a bakery food product; (3) Results: After the extraction optimization, results showed R. ulmifolius fruits to be a great source of anthocyanins, obtaining an amount of 33.58 mg AT/g E, with an extraction yield of 62.08%. The rich anthocyanin extract showed antitumor and antimicrobial potential in some tumor cell lines and strains, respectively, as well as the absence of toxicity; (4) Conclusions: The extract when incorporated in a bakery product showed a good coloring capacity, maintaining the nutritional value, revealing its use to be a great approach for replacing artificial colorants.
Collapse
Affiliation(s)
- Liliana Primo da Silva
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Eliana Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain.
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain.
| | - Tânia C S P Pires
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Maria José Alves
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Ricardo Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
7
|
Resende Oliveira É, Fonseca da Silva R, Ribeiro Santos P, Queiroz F. An investigation into green coffee press cake as a renewable source of bioactive compounds. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Érica Resende Oliveira
- Food Science Department Federal University of Lavras Avenida Doutor Sylvio Menicucci 1001 Lavras MG 37200‐000 Brazil
| | - Rodrigo Fonseca da Silva
- Soil Science Department Federal University of Lavras Avenida Doutor Sylvio Menicucci 1001 Lavras MG 37200‐000 Brazil
| | - Paula Ribeiro Santos
- Statistics Department Federal University of Lavras Avenida Doutor Sylvio Menicucci 1001 Lavras MG 37200‐000 Brazil
| | - Fabiana Queiroz
- Food Science Department Federal University of Lavras Avenida Doutor Sylvio Menicucci 1001 Lavras MG 37200‐000 Brazil
| |
Collapse
|
8
|
Fernandes F, Pereira E, Prieto MA, Calhelha RC, Ćirić A, Soković M, Simal-Gandara J, Barros L, Ferreira ICFR. Optimization of the Extraction Process to Obtain a Colorant Ingredient from Leaves of Ocimum basilicum var. purpurascens. Molecules 2019; 24:molecules24040686. [PMID: 30769867 PMCID: PMC6413035 DOI: 10.3390/molecules24040686] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/10/2019] [Accepted: 02/13/2019] [Indexed: 11/30/2022] Open
Abstract
Heat-Assisted Extraction (HAE) was used for the optimized production of an extract rich in anthocyanin compounds from Ocimum basilicum var. purpurascens leaves. The optimization was performed using the response surface methodology employing a central composite experimental design with five-levels for each of the assessed variables. The independent variables studied were the extraction time (t, 20–120 min), temperature (T, 25–85 °C), and solvent (S, 0–100% of ethanol, v/v). Anthocyanin compounds were analysed by HPLC-DAD-ESI/MS and the extraction yields were used as response variables. Theoretical models were developed for the obtained experimental data, then the models were validated by a selected number of statistical tests, and finally, those models were used in the prediction and optimization steps. The optimal HAE conditions for the extraction of anthocyanin compounds were: t = 65.37 ± 3.62 min, T = 85.00 ± 1.17 °C and S = 62.50 ± 4.24%, and originated 114.74 ± 0.58 TA mg/g of extract. This study highlighted the red rubin basil leaves as a promising natural matrix to extract pigmented compounds, using green solvents and reduced extraction times. The extract rich in anthocyanins also showed antimicrobial and anti-proliferative properties against four human tumor cell lines, without any toxicity on a primary porcine liver cell line.
Collapse
Affiliation(s)
- Filipa Fernandes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Eliana Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Miguel A Prieto
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain.
| | - Ricardo C Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Ana Ćirić
- University of Belgrade, Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", Bulevar Despota Stefana 142, 11000 Belgrade, Serbia.
| | - Marina Soković
- University of Belgrade, Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", Bulevar Despota Stefana 142, 11000 Belgrade, Serbia.
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain.
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
9
|
Backes E, Pereira C, Barros L, Prieto MA, Genena AK, Barreiro MF, Ferreira ICFR. Recovery of bioactive anthocyanin pigments from Ficus carica L. peel by heat, microwave, and ultrasound based extraction techniques. Food Res Int 2018; 113:197-209. [PMID: 30195514 DOI: 10.1016/j.foodres.2018.07.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/17/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022]
Abstract
Due to its coloration, the fig (Ficus carica L.) peel, a by-product of fruit processing and/or consumption, is a potential source of anthocyanin compounds. In the present study different extraction techniques (heat, ultrasound, and microwave) were compared aiming to recover the anthocyanin pigments and optimize its extraction conditions. A response surface methodology tool with three factors and five levels for each factor was used according to a circumscribed central composite design. The variables tested for the heat and microwave extraction methods were time, temperature, and solvent proportion (ethanol/water ratio), meanwhile, for the ultrasound method, the variables tested were the ultrasonic power, time, and solvent proportion. The anthocyanin composition of the extract was determined by HPLC-DAD-ESI/MS, and the used criteria responses were: i) quantification of cyanidin 3-rutinoside (C) in the extracted residue (mg C/g R) and in the dried peel (mg C/g P dw), and the extraction yield of the obtained residue (g R/g P dw). Ultrasound extraction was the most effective method, yielding 3.82 mg C/g R at the optimal global extraction conditions (21 min, 310 W, and 100% of ethanol). Additionally, the solid-to-liquid ratio effect was studied at the optimal conditions, using a dose-response format, in view of its plausible transference to industrial level. For the ultrasound method, an increased non-linear relationship was observed for concentrations in the range 5 to 200 g/L, being the optimal solution close to 150 g/L. In brief, the obtained results show the potential of fig peels as a source of anthocyanin pigments, with potential uses in various industrial fields, such as food, pharmaceutical, and cosmetic.
Collapse
Affiliation(s)
- Emanueli Backes
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Carla Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - M A Prieto
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, E32004 Ourense, Spain
| | - Aziza Kamal Genena
- Departamento Acadêmico de Alimentos (DAALM), Universidade Tecnológica Federal do Paraná, Campus Medianeira, 85884-000 Paraná, Brazil
| | - Maria Filomena Barreiro
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Polytechnic Institute of Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
10
|
Albuquerque BR, Prieto M, Vazquez J, Barreiro MF, Barros L, Ferreira IC. Recovery of bioactive compounds from Arbutus unedo L. fruits: Comparative optimization study of maceration/microwave/ultrasound extraction techniques. Food Res Int 2018; 109:455-471. [DOI: 10.1016/j.foodres.2018.04.061] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 04/18/2018] [Accepted: 04/28/2018] [Indexed: 01/06/2023]
|
11
|
Antioxidant synergistic effects of Osmanthus fragrans flowers with green tea and their major contributed antioxidant compounds. Sci Rep 2017; 7:46501. [PMID: 28422181 PMCID: PMC5395974 DOI: 10.1038/srep46501] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/16/2017] [Indexed: 12/25/2022] Open
Abstract
The antioxidant synergistic effects of Osmanthus fragrans flowers with green tea were evaluated, and their major antioxidant compounds contributed to the total amount of synergy were determined. The antioxidant compounds in O. fragrans flowers with green tea were identified by LC-MS and quantified by UPLC-PDA. The synergistic antioxidant interactions between O. fragrans flowers with green tea and their antioxidant compounds were tested using the Prieto’s model after the simulated digestion. The main antioxidant compounds in O. fragrans flowers were acteoside and salideroside, whereas the main antioxidant compounds in green tea were caffeine, gallic acid, and L-epicatechin. The significant synergistic effect between O. fragrans flowers and green tea was observed and among nearly all of the combinations of their antioxidant compounds. Among the combinations, acteoside and gallic acid contributed most to the antioxidant synergy between O. fragrans flowers and green tea. However, the simulated digestion decreased this antioxidant synergy because it reduced the contents and the antioxidant capacities of their compounds, as well as the antioxidant synergy among the compounds.
Collapse
|
12
|
Kanokwan K, Thananya N, Pimporn L. Evaluation of antioxidant and anti-tyrosinase activities as well as stability of green and roasted coffee bean extracts from Coffea arabica and Coffea canephora grown in Thailand. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/jpp2016.0413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
13
|
Optimization of microwave-assisted extraction of hydrophilic and lipophilic antioxidants from a surplus tomato crop by response surface methodology. FOOD AND BIOPRODUCTS PROCESSING 2016. [DOI: 10.1016/j.fbp.2016.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Characterization of free, conjugated and bound phenolics and lipophilic antioxidants in regular- and non-darkening cranberry beans (Phaseolus vulgaris L.). Food Chem 2015; 185:298-308. [DOI: 10.1016/j.foodchem.2015.03.100] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 01/09/2015] [Accepted: 03/19/2015] [Indexed: 12/13/2022]
|
15
|
Lu FC, Lee CY, Wang CL. The influence of arbuscular mycorrhizal fungi inoculation on yam (Dioscorea spp.) tuber weights and secondary metabolite content. PeerJ 2015; 3:e1266. [PMID: 26421239 PMCID: PMC4586806 DOI: 10.7717/peerj.1266] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 09/03/2015] [Indexed: 11/21/2022] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) are widely distributed in nature. They live in the roots of higher plants, in a symbiotic relationship. In this study, five commercial species of yams (Dioscorea spp.) were inoculated with six species of AMF, Glomus clarum, G. etunicatum, G. fasciculatum, Gigaspora sp., G. mosseae, and Acaulospora sp., in field cultivation conditions to investigate the influence of AMF inoculation on tuber weights and secondary metabolite content in yam tubers. The results showed that mycorrhizae formation rates ranged from 63.33% to 90%. G. etunicatum inoculation treatment increased the tube weights of the five species of yam tubers by 39%, 35%, 20%, 56%, and 40% for Tainung 1, Tainung 2, Ercih, Zihyuxieshu, and Tainung 5, respectively. The content of secondary metabolites, such as polyphenols, flavonoids, and anthocyanin, was significantly increased by the AMF treatment in tuber flesh and peel of all the tested yam species. Specifically, the maximums exchange of secondary metabolite contents increased to 40%, 42%, and 106% for polyphenols, flavonoids, and anthocyanin, respectively, in the tuber fresh. This study revealed that different species of yam had varying degrees of affinity with various AMF species; selecting effective AMF species is necessary to facilitate yam growth and improve the quality and quantity of yam tubers.
Collapse
Affiliation(s)
- Fun-Chi Lu
- Department of Plant Industry, National Pingtung University of Science and Technology , Pingtung , Taiwan
| | - Chen-Yu Lee
- Department of Plant Industry, National Pingtung University of Science and Technology , Pingtung , Taiwan
| | - Chun-Li Wang
- Department of Plant Industry, National Pingtung University of Science and Technology , Pingtung , Taiwan
| |
Collapse
|
16
|
An efficient methodology for quantification of synergy and antagonism in single electron transfer antioxidant assays. Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.11.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|