1
|
Gao Y, Guo M, Wang D, Zhao D, Wang M. Advances in extraction, purification, structural characteristics and biological activities of hemicelluloses: A review. Int J Biol Macromol 2023; 225:467-483. [PMID: 36379281 DOI: 10.1016/j.ijbiomac.2022.11.099] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022]
Abstract
Hemicelluloses, a major component of plant cell walls, are a non-cellulosic heteropolysaccharide composed of several distinct sugars that is second in abundance to cellulose, which are one of the most abundant and cheapest renewable resources on earth. Hemicelluloses structure is complex and its chemical structure varies greatly among the different plant species. In addition to its wide use in production of feed and other chemical materials, hemicelluloses are known for its remarkable biological activities that remain largely underutilised to date. Therefore, comprehensive investigations of hemicelluloses structural and biological properties would be helpful for achieving rational utilisation and high-value conversion of this underutilised substance into agents with enhanced health benefits for incorporation in drugs and health foods. In this review, details of diverse research initiatives that have enhanced our understanding of hemicelluloses properties are summarised, including hemicelluloses sources, extraction and purification methods, structural characteristics and biological activities. Furthermore, hemicelluloses structure-activity relationships and new directions for future hemicelluloses research studies are discussed.
Collapse
Affiliation(s)
- Yanan Gao
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Mingkun Guo
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China; College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Dandan Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Mingxing Wang
- Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
2
|
Li YX, Hua XH, Yan QJ, Jin Y, Jiang ZQ. One-Pot Three-Enzyme System for Production of a Novel Prebiotic Mannosyl-β-(1 → 4)-Fructose Using a d-Mannose Isomerase from Xanthomonas phaseoli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12117-12127. [PMID: 36121717 DOI: 10.1021/acs.jafc.2c04649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The present supply of prebiotics is entirely inadequate to meet their demand. To produce novel prebiotics, a d-mannose isomerase (XpMIaseA) from Xanthomonas phaseoli was first produced in Komagataella phaffii (Pichia pastoris). XpMIaseA shared the highest amino acid sequence identity (58.0%) with the enzyme from Marinomonas mediterranea. Efficient secretory production of XpMIaseA (282.0 U mL-1) was achieved using high cell density fermentation. The optimal conditions of XpMIaseA were pH 7.5 and 55 °C. It showed a broad substrate specificity, which isomerized d-mannose, d-talose, mannobiose, epilactose, and mannotriose. XpMIaseA was employed to construct a one-pot three-enzyme system for the production of mannosyl-β-(1 → 4)-fructose (MF) using mannan (5%, w/v) as the substrate. The equilibrium yield of MF was 58.2%. In in vitro fermentations, MF significantly stimulated (≤3.2-fold) the growth of 12 among 15 tested Bifidobacterium and Lactobacillus strains compared with fructo-oligosaccharides. Thus, the novel d-mannose isomerase provides a one-pot bioconversion strategy for efficiently producing novel prebiotics.
Collapse
Affiliation(s)
- Yan-Xiao Li
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
| | - Xiao-Han Hua
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
| | - Qiao-Juan Yan
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Yan Jin
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
| | - Zheng-Qiang Jiang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, No.17 Qinghua Donglu, Haidian District, Beijing 100083, China
| |
Collapse
|
3
|
Bonifácio-Lopes T, Catarino MD, Vilas-Boas AA, Ribeiro TB, Campos DA, Teixeira JA, Pintado M. Impact of Circular Brewer’s Spent Grain Flour after In Vitro Gastrointestinal Digestion on Human Gut Microbiota. Foods 2022; 11:foods11152279. [PMID: 35954046 PMCID: PMC9368080 DOI: 10.3390/foods11152279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/03/2022] Open
Abstract
Brewer’s spent grain (BSG) solid residues are constituted by dietary fibre, protein, sugars, and polyphenols, which can have potential effects on human health. In this study, for the first time, the flours obtained from solid residues of solid-liquid extraction (SLE) and ohmic heating extraction (OHE) were applied throughout the gastrointestinal digestion simulation (GID), in order to evaluate their prebiotic potential and in vitro human gut microbiota fermentation. The results showed that the digestion of BSG flours obtained by the different methods lead to an increase throughout the GID of total phenolic compounds (SLE: from 2.27 to 7.20 mg gallic acid/g BSG—60% ethanol:water (v/v); OHE: 2.23 to 8.36 mg gallic acid/g BSG—80% ethanol:water (v/v)) and consequently an increase in antioxidant activity (ABTS—SLE: from 6.26 to 13.07 mg ascorbic acid/g BSG—80% ethanol:water (v/v); OHE: 4.60 to 10.60 mg ascorbic acid/g BSG—80% ethanol:water (v/v)—ORAC—SLE: 3.31 to 14.94 mg Trolox/g BSG—80% ethanol:water (v/v); OHE: from 2.13 to 17.37 mg Trolox/g BSG—60% ethanol:water (v/v)). The main phenolic compounds identified included representative molecules such as vanillic and ferulic acids, vanillin and catechin, among others being identified and quantified in all GID phases. These samples also induced the growth of probiotic bacteria and promoted the positive modulation of beneficial strains (such as Bifidobacterium spp. and Lactobacillus spp.) present in human faeces. Moreover, the fermentation by human faeces microbiota also allowed the production of short chain fatty acids (acetic, propionic, and butyric). Furthermore, previous identified polyphenols were also identified during fecal fermentation. This study demonstrates that BSG flours obtained from the solid residues of SLE and OHE extractions promoted a positive modulation of gut microbiota and related metabolism and antioxidant environment associated to the released phenolic compounds.
Collapse
Affiliation(s)
- Teresa Bonifácio-Lopes
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (T.B.-L.); (A.A.V.-B.); (T.B.R.); (D.A.C.)
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Marcelo D. Catarino
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Ana A. Vilas-Boas
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (T.B.-L.); (A.A.V.-B.); (T.B.R.); (D.A.C.)
| | - Tânia B. Ribeiro
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (T.B.-L.); (A.A.V.-B.); (T.B.R.); (D.A.C.)
| | - Débora A. Campos
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (T.B.-L.); (A.A.V.-B.); (T.B.R.); (D.A.C.)
| | - José A. Teixeira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Manuela Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (T.B.-L.); (A.A.V.-B.); (T.B.R.); (D.A.C.)
- Correspondence:
| |
Collapse
|
4
|
Impact of Simulated Human Gastrointestinal Digestion on the Bioactive Fraction of Upcycled Pineapple By-Products. Foods 2022; 11:foods11010126. [PMID: 35010252 PMCID: PMC8750162 DOI: 10.3390/foods11010126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 02/01/2023] Open
Abstract
Pineapple by-products (peels and stems) from fruit processing industries were evaluated to understand its potential application as a functional food. Therefore, the bioactive compounds of pineapple by-products were characterized for prebiotic and antioxidant activities. A total characterization of soluble carbohydrates profile (simples and complex carbohydrates), as well as polyphenols was performed, after removal of enzymatic fraction from pineapple crude juice, allowing the decrease of proteolytic activity and improving the other biological activities. Results showed that pineapple liquid fraction, from stem and peels, can be applied as a prebiotic enhancer, promoting the growth of five probiotic microorganisms (two strains of Lactobacillus sp. and three strains of Bifidobacterium sp.), as a single carbohydrate source. Moreover, through HPLC (High Performance Liquid Chromatography) analysis, 10 polyphenols were identified in pineapple liquid fractions, with some expected differences between both evaluated by-products. Gastrointestinal tract was simulated, in a continuous mode to understand the impact of pH changes and gastrointestinal enzymes into pineapple liquid fractions. Results showed a digestion of high molecular weight polysaccharides into small molecular weight tri-, di-, and monosaccharides. There was an increase of samples antioxidant activity through the gastrointestinal stage, followed by the release of specific polyphenols, such as chlorogenic, coumaric, and ferulic acids. The prebiotic activity did not improve throughout the simulation, in fact, the prebiotic potential decreased throughout the different stages.
Collapse
|
5
|
Han D, Yan Q, Liu J, Jiang Z, Yang S. Transcriptomic Analysis of Pediococcus pentosaceus Reveals Carbohydrate Metabolic Dynamics Under Lactic Acid Stress. Front Microbiol 2021; 12:736411. [PMID: 34603267 PMCID: PMC8481956 DOI: 10.3389/fmicb.2021.736411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Stress physiology of lactic acid bacteria (LAB) is crucial to their ecological fitness and applicational implications. As a self-imposed stress, lactic acid is the major final metabolic product of LAB and its accumulation can be detrimental to bacterial cells. However, the relationship between LAB carbohydrate metabolism, the primary energy supplying bioactivities, and lactic acid stress responses is not fully understood. Pediococcus pentosaceus has been recognized as an important cell factory and demonstrated probiotic activities. This study investigated behavior of P. pentosaceus under lactic and acetic acid stresses, particularly with supplementations of metabolizable carbohydrates. Lactic and acetic acid retain similar growth stagnation effect, and both resulted in cell death in P. pentosaceus. All metabolizable carbohydrates improved bacterial survival compared to lactic acid control, while xylooligosaccharides (XOS) exerted the highest viability protective efficacy, 0.82 log CFU/mL higher population survived than other carbohydrates after 30 h of incubation. RNA-seq pipeline showcased the intensive global transcriptional responses of P. pentosaceus to lactic acid, which caused significant regulations (more than 2 Log2 fold) of 16.5% of total mRNA coding genes. Glucose mainly led to gene suppressions (83 genes) while XOS led to gene up-regulations (19 genes) under lactic acid stress. RT-qPCR study found that RNA polymerase-centered transcriptional regulation is the primary regulatory approach in evaluated culture conditions. The synergy between lactic acid stress and carbohydrate metabolism should be attentively contemplated in future studies and applications.
Collapse
Affiliation(s)
- Dong Han
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- School of Food and Health, Beijing Technology and Business University, Beijing, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing, China
| | - Jun Liu
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shaoqing Yang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
6
|
Boonchuay P, Wongpoomchai R, Jaturasitha S, Mahatheeranont S, Watanabe M, Chaiyaso T. Prebiotic properties, antioxidant activity, and acute oral toxicity of xylooligosaccharides derived enzymatically from corncob. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.100895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Rivas S, Rigual V, Domínguez JC, Alonso MV, Oliet M, Parajó JC, Rodriguez F. A biorefinery strategy for the manufacture and characterization of oligosaccharides and antioxidants from poplar hemicelluloses. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.07.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Campos DA, Coscueta ER, Vilas-Boas AA, Silva S, Teixeira JA, Pastrana LM, Pintado MM. Impact of functional flours from pineapple by-products on human intestinal microbiota. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103830] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
9
|
Encapsulation of phycocyanin by prebiotics and polysaccharides-based electrospun fibers and improved colon cancer prevention effects. Int J Biol Macromol 2020; 149:672-681. [DOI: 10.1016/j.ijbiomac.2020.01.189] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/09/2019] [Accepted: 01/20/2020] [Indexed: 12/19/2022]
|
10
|
Costa JR, Amorim M, Vilas-Boas A, Tonon RV, Cabral LMC, Pastrana L, Pintado M. Impact of in vitro gastrointestinal digestion on the chemical composition, bioactive properties, and cytotoxicity of Vitis vinifera L. cv. Syrah grape pomace extract. Food Funct 2019; 10:1856-1869. [PMID: 30950465 DOI: 10.1039/c8fo02534g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Grape pomace (GP) is a major byproduct worldwide, and it is well known for its bioactive compounds, such as fibers and phenolic compounds, that are popular for their impact upon human health, including gastrointestinal health. The objective of this work was to evaluate the chemical composition and biological activities of an enzymatic GP extract, as well as to investigate how gastrointestinal digestion (GID) modulates these properties. GP extract was previously produced using an enzymatic cocktail with xylanase activity and was then exposed to simulated conditions of GID, characterized for its chemical composition, and screened for antimicrobial, prebiotic, and antioxidant activities. The safety of this ingredient after GID was also assessed. GP extract presented high contents of dietary fiber and other carbohydrates, including xylooligosaccharides, in addition to minerals and phenolic compounds. In vitro simulated GID revealed that xylobiose was resistant to gastric conditions, unlike phenolic compounds. The use of 2% (w/v) of this ingredient proved to be a potential carbon source that could be fermented by Lactobacillus and Bifidobacterium spp, even after digestion. The extract also exhibited strong antioxidant and antimicrobial activities against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa; however, after GID, the antioxidant capacity decreased, and the antimicrobial capacity was strongly reduced or lost. Furthermore, the extract safety was also guaranteed on Caco-2 intestinal cells. This novel and green GP extract proved to be composed of relevant bioactive molecules, including xylooligosaccharides, polyphenols, organic acids, and minerals, which provided different biological properties; it has potential applications in the food industry such that it can be used as an ingredient in the development of new functional foods.
Collapse
Affiliation(s)
- Joana R Costa
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital 172, 4200-374 Porto, Portugal.
| | | | | | | | | | | | | |
Collapse
|
11
|
Boosted Growth Performance, Mucosal and Serum Immunity, and Disease Resistance Nile Tilapia (Oreochromis niloticus) Fingerlings Using Corncob-Derived Xylooligosaccharide and Lactobacillus plantarum CR1T5. Probiotics Antimicrob Proteins 2019; 12:400-411. [DOI: 10.1007/s12602-019-09554-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Wen P, Hu TG, Li L, Zong MH, Wu H. A colon-specific delivery system for quercetin with enhanced cancer prevention based on co-axial electrospinning. Food Funct 2019; 9:5999-6009. [PMID: 30382268 DOI: 10.1039/c8fo01216d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The antioxidant quercetin (Q) is a bioactive compound that can inhibit colon cancer. However, its poor stability in the upper gastro-intestinal tract and low bioavailability compromised its benefits. In this study, a biopolymer-based colon-specific delivery system for Q was constructed by co-axial electrospinning. Quercetin-loaded chitosan nanoparticles (QCNP) were firstly prepared and characterized. Then, a Q-loaded electrospun fiber mat (Q-loaded EFM) containing prebiotics (galactooligosaccharide, GOS) was fabricated using sodium alginate as the shell layer and the abovementioned QCNP and prebiotics as the core layer. The DPPH assay showed that the antioxidant activity of Q was maintained in the obtained film. Owing to the addition of prebiotic GOS, the obtained fiber mat exhibited good prebiotic effects. In vitro release kinetics showed a sustained and targeted colon-specific release of Q from the Q-loaded EFM containing GOS, and the release rate of Q was enhanced by the presence of GOS. The obtained film also exhibited inhibition effects on Caco-2 cells in a dose- and time-dependent manner. Flow cytometry and fluorescence microscopy analysis indicated that the Q-loaded EFM containing GOS exerted its activity on colonic cancer cells by arresting the cell cycle in the G0/G1 phase and triggering apoptotic cell death. This study demonstrates the potential of the obtained film as an oral delivery system for encapsulation, protection, and release of Q at the colon for the oral therapy of colon disorders.
Collapse
Affiliation(s)
- Peng Wen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | | | | | | | | |
Collapse
|
13
|
Moens F, Van den Abbeele P, Basit AW, Dodoo C, Chatterjee R, Smith B, Gaisford S. A four-strain probiotic exerts positive immunomodulatory effects by enhancing colonic butyrate production in vitro. Int J Pharm 2018; 555:1-10. [PMID: 30445175 DOI: 10.1016/j.ijpharm.2018.11.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022]
Abstract
Poorly formulated probiotic supplements intended for oral administration often fail to protect bacteria from the challenges of human digestion, meaning bacteria do not reach the small intestine in a viable state. As a result, the ability of probiotics to influence the human gut microbiota has not been proven. Here we show how (i) considered formulation of an aqueous probiotic suspension can facilitate delivery of viable probiotic bacteria to the gut and (ii) quantitate the effect of colonisation and proliferation of specific probiotic species on the human gut microbiota, using an in-vitro gut model. Our data revealed immediate colonisation and growth of three probiotic species in the luminal and mucosal compartments of the proximal and distal colon, and growth of a fourth species in the luminal proximal colon, leading to higher proximal and distal colonic lactate concentrations. The lactate stimulated growth of lactate-consuming bacteria, altering the bacterial diversity of the microbiota and resulting in increased short-chain fatty acid production, especially butyrate. Additionally, an immunomodulatory effect of the probiotics was seen; production of anti-inflammatory cytokines (IL-6 and IL-10) was increased and production of inflammatory chemokines (MCP-1, CXCL 10 and IL-8.) was reduced. The results indicate that the probiotic species alone do not result in a clinical effect; rather, they facilitate modulation of the gut microbiota composition and metabolic activity thereby influencing the immune response.
Collapse
Affiliation(s)
| | | | - Abdul W Basit
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Cornelius Dodoo
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | | | - Barry Smith
- Symprove Ltd, Sandy Farm, The Sands, Farnham, Surrey GU10 1PX, UK
| | - Simon Gaisford
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
14
|
Vazquez-Olivo G, Gutiérrez-Grijalva EP, Heredia JB. Prebiotic compounds from agro-industrial by-products. J Food Biochem 2018; 43:e12711. [PMID: 31353613 DOI: 10.1111/jfbc.12711] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/20/2018] [Accepted: 10/02/2018] [Indexed: 11/26/2022]
Abstract
Prebiotics are nondigestible food components that have an impact on gut microbiota composition and activity, which in turn results in the improvement of health conditions. Nowadays, the production of prebiotics from agro-industrial by-products is under investigation. In this regard, polysaccharides are usually found in these sources and their potential use as prebiotics has been studied recently since these compounds act as substrates for the human gut microbiota, and they have the potential to modulate its composition through many mechanisms. Additionally, the use of agricultural by-products is advantageous because it is a cheap and abundantly available material. This review focuses on the recent scientific literature regarding the prebiotic properties of polysaccharides from agro-industrial by-products. PRACTICAL APPLICATIONS: Currently, the maintenance of gut homeostasis is a target for the improvement of human health. This review can broaden the perspective on the utilization of agro-industrial by-products that can compete in the market with the commercial ones or act as a source for new food ingredients.
Collapse
Affiliation(s)
- Gabriela Vazquez-Olivo
- CONACyT - Centro de Investigación en Alimentación y Desarrollo A.C., Nutraceuticals and Functional Foods Laboratory, Culiacan, México
| | - Erick P Gutiérrez-Grijalva
- CONACyT - Centro de Investigación en Alimentación y Desarrollo A.C., Nutraceuticals and Functional Foods Laboratory, Culiacan, México
| | - José Basilio Heredia
- CONACyT - Centro de Investigación en Alimentación y Desarrollo A.C., Nutraceuticals and Functional Foods Laboratory, Culiacan, México
| |
Collapse
|
15
|
Shi Y, Liu J, Yan Q, You X, Yang S, Jiang Z. In vitro digestibility and prebiotic potential of curdlan (1 → 3)-β- d -glucan oligosaccharides in Lactobacillus species. Carbohydr Polym 2018. [DOI: 10.1016/j.carbpol.2018.01.085] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Zhang L, Zeng X, Fu N, Tang X, Sun Y, Lin L. Maltodextrin: A consummate carrier for spray-drying of xylooligosaccharides. Food Res Int 2018; 106:383-393. [DOI: 10.1016/j.foodres.2018.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/21/2017] [Accepted: 01/05/2018] [Indexed: 12/15/2022]
|
17
|
Hansawasdi C, Kurdi P. Potential Prebiotic Oligosaccharide Mixtures from Acidic Hydrolysis of Rice Bran and Cassava Pulp. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2017; 72:396-403. [PMID: 28975455 DOI: 10.1007/s11130-017-0636-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two agricultural wastes, rice bran and cassava pulp were subjected to acidic hydrolysis by 2 M sulfuric acid which resulted in hemicellulosic oligosaccharide mixtures. Monosaccharide component analysis of these mixtures revealed that the oligosaccharides of rice bran acid hydrolysate (RAHF) composed of glucose and arabinose while cassava pulp acid hydrolysate (CAHF) was found to be comprised of glucose, galactose and arabinose. Both RAHF and CAHF were able to fuel all of the tested three Lactobacillus, five Bifidobacterium and three Bacteroides strains indicating the prebiotic potential of these oligosaccharide mixtures. Moreover, Lb. gasseri grew significantly better on RAHF than on inulin, a benchmark prebiotic oligo- and polysaccharide mixture. When the digestibility of RAHF and CAHF were tested it was found that these oligosaccharide mixtures were only slightly hydrolyzed upon exposure to simulated human gastric (by less than 8%) and pancreatic juices (by less than 3%). Additionally, most sensory attributes of the above obtained oligosaccharide mixtures supplemented two model cereal drink formulations were generally not different from those of the control, while the overall acceptance was not affected significantly in one cereal drink formulation.
Collapse
Affiliation(s)
- Chanida Hansawasdi
- Food Science and Technology, Science Division, International College, Mahidol University, Buddhamonthon 4 Rd, Nakhonpathom, Salaya, 73170, Thailand
| | - Peter Kurdi
- Food Biotechnology Laboratory, Food Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Klong Nueng, Klong Luang, Pathum Thani, 12120, Thailand.
| |
Collapse
|
18
|
Ruiz E, Gullón B, Moura P, Carvalheiro F, Eibes G, Cara C, Castro E. Bifidobacterial growth stimulation by oligosaccharides generated from olive tree pruning biomass. Carbohydr Polym 2017; 169:149-156. [PMID: 28504130 DOI: 10.1016/j.carbpol.2017.04.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/03/2017] [Accepted: 04/08/2017] [Indexed: 01/02/2023]
Abstract
This work aims to evaluate the prebiotic potential of oligosaccharides (OS) obtained from autohydrolysis of olive tree pruning biomass (OTPB). Two selected fractions (F1 and F2) were characterized and used in in vitro fermentations by two Bifidobacterium spp. (B. adolescentis and B. longum) and one fecal inoculum. The fraction F1 presented a lower average degree of polymerization (DP) mainly with OS ranging from 3 to 6 DP, whereas the fraction F2 corresponded to a pool of unsubstituted and acetylated oligomers with DP between 4 and 19. In the fermentation by Bifidobacterium, F1 supported a higher biomass formation, OS consumption and organic acids production than F2. With the fecal inoculum, the accumulation of organic acids, as the sum of acetate, propionate and butyrate, was similar for F1 and F2 (107 and 101mM, respectively). The bifidobacteria counts also increased during the incubation time for both OS fractions.
Collapse
Affiliation(s)
- Encarnación Ruiz
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain.
| | - Beatriz Gullón
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Patrícia Moura
- Unidade de Bioenergia, LNEG - Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar, 22, Lisboa 1649-038, Portugal.
| | - Florbela Carvalheiro
- Unidade de Bioenergia, LNEG - Laboratório Nacional de Energia e Geologia, Estrada do Paço do Lumiar, 22, Lisboa 1649-038, Portugal.
| | - Gemma Eibes
- Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Cristóbal Cara
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain.
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, Universidad de Jaén, Campus Las Lagunillas, 23071, Jaén, Spain.
| |
Collapse
|
19
|
Bevilacqua A, Corbo MR, Sinigaglia M, Speranza B, Campaniello D, Altieri C. Effects of inulin, fructooligosaccharides/glucose and pH on the shape of the death kinetic ofLactobacillus reuteriDSM 20016. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Antonio Bevilacqua
- Department of the Science of Agriculture; Food and Environment; University of Foggia; Via Napoli 25 71122 Foggia Italy
| | - Maria Rosaria Corbo
- Department of the Science of Agriculture; Food and Environment; University of Foggia; Via Napoli 25 71122 Foggia Italy
| | - Milena Sinigaglia
- Department of the Science of Agriculture; Food and Environment; University of Foggia; Via Napoli 25 71122 Foggia Italy
| | - Barbara Speranza
- Department of the Science of Agriculture; Food and Environment; University of Foggia; Via Napoli 25 71122 Foggia Italy
| | - Daniela Campaniello
- Department of the Science of Agriculture; Food and Environment; University of Foggia; Via Napoli 25 71122 Foggia Italy
| | - Clelia Altieri
- Department of the Science of Agriculture; Food and Environment; University of Foggia; Via Napoli 25 71122 Foggia Italy
| |
Collapse
|
20
|
Li W, Wang K, Sun Y, Ye H, Hu B, Zeng X. Lactosucrose and its analogues derived from lactose and sucrose: Influence of structure on human intestinal microbiota in vitro. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|