1
|
Liu J, Xie S, Xu M, Jiang X, Wang Q, Zhao H, Zhang B. Screening the Protective Agents Able to Improve the Survival of Lactic Acid Bacteria Strains Subjected to Spray Drying Using Several Key Enzymes Responsible for Carbohydrate Utilization. Microorganisms 2024; 12:1094. [PMID: 38930476 PMCID: PMC11205755 DOI: 10.3390/microorganisms12061094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
The aim of this study was to identify the most effective protectants for enhancing the viability of specific lactic acid bacteria (LAB) strains (Lactobacillus delbrueckii subsp. bulgaricus CICC 6097, Lactiplantibacillus plantarum CICC 21839, Lactobacillus acidophilus NCFM) by assessing their enzymatic activity when exposed to spray drying (inlet/outlet temperature: 135 °C/90 °C). Firstly, it was found that the live cell counts of the selected LAB cells from the 10% (w/v) recovered skim milk (RSM) group remained above 107 CFU/g after spray drying. Among all the three groups (1% w/v RSM group, 10% w/v RSM group, and control group), the two enzymes pyruvate kinase (PK) and lactate dehydrogenase (LDH) were more sensitive to spray drying than hexokinase (HK) and β-galactosidase (β-GAL). Next, transcriptome data of Lb. acidophilus NCFM showed that 10% (w/v) RSM improved the down-regulated expressions of genes encoding PK (pyk) and LDH (ldh) after spray drying compared to 1% (w/v) RSM. Finally, four composite protectants were created, each consisting of 10% (w/v) RSM plus a different additive-sodium glutamate (CP-A group), sucrose (CP-B group), trehalose (CP-C group), or a combination of sodium glutamate, sucrose, and trehalose (CP-D group)-to encapsulate Lb. acidophilus NCFM. It was observed that the viable counts of strain NCFM (8.56 log CFU/g) and enzymatic activity of PK and LDH in the CP-D group were best preserved compared to the other three groups. Therefore, our study suggested that measuring the LDH and PK activity could be used as a promising tool to screen the effective spray-dried protective agent for LAB cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bolin Zhang
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing 100083, China; (J.L.); (S.X.); (M.X.); (X.J.); (Q.W.); (H.Z.)
| |
Collapse
|
2
|
Jayaprakash P, Gaiani C, Edorh JM, Borges F, Beaupeux E, Maudhuit A, Desobry S. Comparison of Electrostatic Spray Drying, Spray Drying, and Freeze Drying for Lacticaseibacillus rhamnosus GG Dehydration. Foods 2023; 12:3117. [PMID: 37628116 PMCID: PMC10453923 DOI: 10.3390/foods12163117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Spray drying (SD) is extensively used to encapsulate lactic acid bacteria in large-scale industrial applications; however, bacteria combat several harms that reduce their viability. In this study, a novel technique called electrostatic spray drying (ESD) was used to explore the benefits and disadvantages of using electrostatic charge and lower temperatures in the system. Freeze drying (FD) was used as a reference. The effect of different encapsulation agents, like maltodextrin, arabic gum, and skim milk, on the viability of Lacticaseibacillus rhamnosus GG (LGG) was investigated. The initial cell concentration, particle size distribution, aspect ratio, sphericity, scanning-electron-microscopy images, moisture content, water activity, glass transition, rehydration abilities, and survival during storage were compared. Skim milk was proven to be the best protectant for LGG, regardless of the drying process or storage time. A huge reduction in cell numbers (4.49 ± 0.06 log CFU/g) was observed with maltodextrin using SD; meanwhile, it was protected with minimum loss (8.64 ± 0.62 log CFU/g) with ESD. In general, ESD preserved more LGG cells during processing compared to SD, and provided better stability than FD and SD during storage, regardless of the applied voltage. The ESD product analysis demonstrated an efficient LGG preservation, close to FD; therefore, ESD presented to be a promising and scalable substitute for SD and FD.
Collapse
Affiliation(s)
- Preethi Jayaprakash
- Laboratoire d’Ingénierie des Biomolécules (LIBio), ENSAIA-Université de Lorraine, 2 Avenue de la Forêt de Haye, BP 20163, 54505 Vandœuvre-lès-Nancy, France; (C.G.)
- Fluid Air, ZA du Ragon, 28 Rue Louis Pasteur, 44119 Treillières, France; (J.-M.E.); (A.M.)
| | - Claire Gaiani
- Laboratoire d’Ingénierie des Biomolécules (LIBio), ENSAIA-Université de Lorraine, 2 Avenue de la Forêt de Haye, BP 20163, 54505 Vandœuvre-lès-Nancy, France; (C.G.)
| | - Jean-Maxime Edorh
- Fluid Air, ZA du Ragon, 28 Rue Louis Pasteur, 44119 Treillières, France; (J.-M.E.); (A.M.)
| | - Frédéric Borges
- Laboratoire d’Ingénierie des Biomolécules (LIBio), ENSAIA-Université de Lorraine, 2 Avenue de la Forêt de Haye, BP 20163, 54505 Vandœuvre-lès-Nancy, France; (C.G.)
| | - Elodie Beaupeux
- Fluid Air, ZA du Ragon, 28 Rue Louis Pasteur, 44119 Treillières, France; (J.-M.E.); (A.M.)
| | - Audrey Maudhuit
- Fluid Air, ZA du Ragon, 28 Rue Louis Pasteur, 44119 Treillières, France; (J.-M.E.); (A.M.)
| | - Stéphane Desobry
- Laboratoire d’Ingénierie des Biomolécules (LIBio), ENSAIA-Université de Lorraine, 2 Avenue de la Forêt de Haye, BP 20163, 54505 Vandœuvre-lès-Nancy, France; (C.G.)
| |
Collapse
|
3
|
Yin M, Yuan Y, Chen M, Liu F, Saqib MN, Chiou BS, Zhong F. The dual effect of shellac on survival of spray-dried Lactobacillus rhamnosus GG microcapsules. Food Chem 2022; 389:132999. [PMID: 35552127 DOI: 10.1016/j.foodchem.2022.132999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/26/2022] [Accepted: 04/15/2022] [Indexed: 11/04/2022]
Abstract
Heat shock and hygroscopicity are two main factors that resulted in low viability of probiotics in spray-dried microcapsules during storage. Hydrophobic polyester shellac was combined with whey protein isolate (WPI) to solve this problem. The results suggested that although the survival rate after drying decreased from 20.63% to 0.01% with increased shellac to WPI ratio, the 1:1 shellac-WPI provided the best protection among all samples during storage. The consistence between moisture-adsorption-isotherm and bacterial inactivation constants confirmed the moisture barrier effect of shellac under moderate humidity. Single-droplet drying and differential scanning calorimeter revealed that shellac addition reduced the drying rate and glass transition temperature of microcapsules, which in turn decreased the membrane integrity and growth capability of the probiotics after drying. This study revealed the dual effect of hydrophobic material on instant and long-term survival of spray-dried probiotic microcapsules, which provided new sight to the design of composite wall materials.
Collapse
Affiliation(s)
- Ming Yin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yongkai Yuan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Maoshen Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Fei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Md Nazmus Saqib
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Bor-Sen Chiou
- Western Regional Research Center, ARS, U.S, Department of Agriculture, Albany, CA 94710, United States
| | - Fang Zhong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Exploring the integrity of cellular membrane and resistance to digestive juices of dehydrated lactic acid bacteria as influenced by drying kinetics. Food Res Int 2022; 157:111395. [DOI: 10.1016/j.foodres.2022.111395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/21/2022]
|
5
|
To HTA, Chhetri V, Settachaimongkon S, Prakitchaiwattana C. Stress tolerance-Bacillus with a wide spectrum bacteriocin as an alternative approach for food bio-protective culture production. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
The extent and mechanism of the effect of protectant material in the production of active lactic acid bacteria powder using spray drying: A review. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Baral KC, Bajracharya R, Lee SH, Han HK. Advancements in the Pharmaceutical Applications of Probiotics: Dosage Forms and Formulation Technology. Int J Nanomedicine 2021; 16:7535-7556. [PMID: 34795482 PMCID: PMC8594788 DOI: 10.2147/ijn.s337427] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotics have demonstrated their high potential to treat and/or prevent various diseases including neurodegenerative disorders, cancers, cardiovascular diseases, and inflammatory diseases. Probiotics are also effective against multidrug-resistant pathogens and help maintain a balanced gut microbiota ecosystem. Accordingly, the global market of probiotics is growing rapidly, and research efforts to develop probiotics into therapeutic adjuvants are gaining momentum. However, because probiotics are living microorganisms, many biological and biopharmaceutical barriers limit their clinical application. Probiotics may lose their activity in the harsh gastric conditions of the stomach or in the presence of bile salts. Moreover, they easily lose their viability under thermal or oxidative stress during their preparation and storage. Therefore, stable formulations of probiotics are required to overcome the various physicochemical, biopharmaceutical, and biological barriers and to maximize their therapeutic effectiveness and clinical applicability. This review provides an overview of the pharmaceutical applications of probiotics and covers recent formulation approaches to optimize the delivery of probiotics with particular emphasis on various dosage forms and formulation technologies.
Collapse
Affiliation(s)
- Kshitis Chandra Baral
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| | - Rajiv Bajracharya
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| | - Sang Hoon Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| | - Hyo-Kyung Han
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Korea
| |
Collapse
|
8
|
Inorganic Additive Improves the Survival of the Probiotic Lacticaseibacillus rhamnosus CRL1505 During Spray Drying, Rehydration, and Storage. Curr Microbiol 2021; 78:3863-3871. [PMID: 34508271 DOI: 10.1007/s00284-021-02648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
In previous in vitro studies, an inorganic additive (MCM3) showed a thermo-protective effect on the cell viability of Lacticaseibacillus rhamnosus CRL1505 (Lr-CRL1505). In this work, cultures of this probiotic strain were spray dried at lab scale using two carriers: maltodextrin (powder MA) and maltodextrin plus MCM3 (powder MA/MCM3). The cell survival was higher in powder MA/MCM3 (72.8%) than in powder MA (42.8%). Different rehydration media, including the additive MCM3, and two temperatures (37 °C and 45 °C) were evaluated. The best results were obtained in cells rehydrated at 37 °C in MCM3. During the storage of the powders, the highest cell counts were observed in the MA/MCM3 powder. Our results demonstrated that the presence of MCM3 in the carrier and in reconstitution media benefits the spray drying process and the recovery of dehydrated cells. Thus, the use of this additive of inorganic nature and low cost represents a promising technological alternative.
Collapse
|
9
|
Yang K, Wang Q, Wang Y, Li S, Gu Y, Gao N, Zhang F, Lei P, Wang R, Xu H. Poly(γ-glutamic acid) Nanocoating To Enhance the Viability of Pseudomonas stutzeri NRCB010 through Cell Surface Engineering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:39957-39966. [PMID: 34376049 DOI: 10.1021/acsami.1c12538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microbial inoculants can enhance soil quality, promote plant nutrient acquisition, and alleviate problems caused by the excessive use of chemical fertilizers. However, susceptibility to harsh conditions during transport and storage, as well as the short shelf-life of plant growth-promoting rhizobacteria (PGPR), limit industrial application. Herein, a novel strategy to form nanocoating on bacterial surfaces to enhance viability was proposed. The nanocoating was composed of N-hydroxysuccinimide (NHS)-modified poly (γ-glutamic acid) (γ-PGA) and calcium ions, which could adhere to the surface of bacteria by forming covalent bonds and ionic bonds with the bacteria. The bacteria encapsulated in the coating had better resistance against harsh conditions than bare bacteria. The viability of coated bacteria was also increased by 2.38 times compared with bare bacteria after 4 weeks of storage. The pot experiment showed that coated Pseudomonas stutzeri NRCB010 had better growth-promoting properties compared with free P. stutzeri NRCB010. These results indicate that cell surface engineering is an effective method to enhance the resistance of bacteria against harsh conditions and is expected to promote the widespread use of PGPR.
Collapse
Affiliation(s)
- Kai Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Qian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yu Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yian Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Nan Gao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Fuhai Zhang
- Agricultural and Rural Affairs of Yantai, Yantai 264000, China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211816, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
10
|
Moreira MTC, Martins E, Perrone ÍT, de Freitas R, Queiroz LS, de Carvalho AF. Challenges associated with spray drying of lactic acid bacteria: Understanding cell viability loss. Compr Rev Food Sci Food Saf 2021; 20:3267-3283. [PMID: 34146458 DOI: 10.1111/1541-4337.12774] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 04/18/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022]
Abstract
Lactic acid bacteria (LAB) cultures used in food fermentation are often dried to reduce transportation costs and facilitate handling during use. Dried LAB ferments are generally lyophilized to ensure high cell viability. Spray drying has come to the forefront as a promising technique due to its versatility and lower associated energy costs. Adverse conditions during spray drying, such as mechanical stress, dehydration, heating, and oxygen exposure, can lead to low LAB cell viability. This reduced viability has limited spray drying's industrial applications thus far. This review aims to demonstrate the operations and thermodynamic principles that govern spray drying, then correlate them to the damage suffered by LAB cells during the spray-drying process. The particularities of spray drying that might cause LAB cell death are detailed in this review, and the conclusion may enhance future studies on ways to improve cell viability.
Collapse
Affiliation(s)
| | - Evandro Martins
- Inovaleite Laboratory, Department of Food Technology, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
| | - Ítalo Tuler Perrone
- Pharmaceutical Sciences Department, Universidade Federal de Juiz de Fora, Minas Gerais, Brazil
| | - Rosângela de Freitas
- Inovaleite Laboratory, Department of Food Technology, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
| | - Lucas Sales Queiroz
- Inovaleite Laboratory, Department of Food Technology, Universidade Federal de Viçosa (UFV), Viçosa, Brazil
| | | |
Collapse
|
11
|
Lu W, Fu N, Woo MW, Chen XD. Exploring the interactions between Lactobacillus rhamnosus GG and whey protein isolate for preservation of the viability of bacteria through spray drying. Food Funct 2021; 12:2995-3008. [PMID: 33704292 DOI: 10.1039/d0fo02906h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Protective agents used in spray drying protect the activity of lactic acid bacteria (LAB) by stabilizing the subcellular structures, constituting a protective layer at the cellular surface, or having mild drying kinetics. The effects of a reputed protectant, whey protein isolate (WPI), on Lactobacillus rhamnosus GG (LGG) were examined by exposing the cells to WPI solution to induce protein adsorption at the cellular surface prior to spray drying. WPI-treated LGG demonstrated enhanced thermotolerance with cell survival increased by 1.64 log after heat treatment. The survival after spray drying was significantly decreased from 45.75% to 8.6% and from 32.96% to 10.44%, when the WPI-treated cells were resuspended in trehalose solution or reconstituted skimmed milk as protectant, respectively, associated with decreased growth capability and metabolic activity. The contact with WPI appeared to stimulate the cellular response of LGG. With well-maintained cell viability and intact cellular membrane, the metabolic activity of WPI-treated LGG was decreased, and subsequent resuspension of the cells in trehalose solution led to a reduction in the stability of the cellular surface charge. The WPI-treated cells showed marginally increased surface roughness, indicating possible WPI attachment, but there was no thick protein coverage at the cellular surface and the size distribution of cells was unaffected. It was proposed that the enhanced thermotolerance and the decreased survival of spray-dried LGG could be linked to the cellular response toward WPI and protectant media, which may vary among individual LAB strains. Modulating the strain-specific interactions between the LAB cells and the protectant constituents could be crucial to maximizing cell viability retention after spray drying.
Collapse
Affiliation(s)
- Wenjie Lu
- FoodPRINT International Associated Laboratory INRAE, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu 215123, China.
| | | | | | | |
Collapse
|
12
|
Effect of culturing lactic acid bacteria with varying skim milk concentration on bacteria survival during heat treatment. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
13
|
Siemons I, Vaessen E, Oosterbaan van Peski S, Boom R, Schutyser M. Protective effect of carrier matrices on survival of Lactobacillus plantarum WCFS1 during single droplet drying explained by particle morphology development. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2020.110263] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
14
|
Pulsed electric field pre-treatment for enhanced bacterial survival after drying: Effect of carrier matrix and strain variability. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
15
|
Tan LL, Sampathkumar K, Wong JH, Loo SCJ. Divalent cations are antagonistic to survivability of freeze-dried probiotics encapsulated in cross-linked alginate. FOOD AND BIOPRODUCTS PROCESSING 2020. [DOI: 10.1016/j.fbp.2020.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Wang Y, Hao F, Lu W, Suo X, Bellenger E, Fu N, Jeantet R, Chen XD. Enhanced thermal stability of lactic acid bacteria during spray drying by intracellular accumulation of calcium. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.109975] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
Evaluation of the interaction between microencapsulated Bifidobacterium BB-12 added in goat’s milk Frozen Yogurt and Escherichia coli in the large intestine. Food Res Int 2020; 127:108690. [DOI: 10.1016/j.foodres.2019.108690] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/16/2019] [Accepted: 09/17/2019] [Indexed: 02/07/2023]
|
18
|
Spray drying of Lactobacillus rhamnosus GG with calcium-containing protectant for enhanced viability. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.09.082] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Martins E, Cnossen D, Silva C, Vakarelova M, Carvalho A. Short communication: Effect of lactose on the spray drying of Lactococcus lactis in dairy matrices. J Dairy Sci 2019; 102:9763-9766. [DOI: 10.3168/jds.2019-16939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/13/2019] [Indexed: 02/02/2023]
|
20
|
Martins E, Cnossen D, Silva C, Cezarino J, Nero L, Perrone I, Carvalho A. Determination of ideal water activity and powder temperature after spray drying to reduce Lactococcus lactis cell viability loss. J Dairy Sci 2019; 102:6013-6022. [DOI: 10.3168/jds.2019-16297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/06/2019] [Indexed: 01/27/2023]
|
21
|
Cai D, Harrison NA, Kling DN, Gonzalez CF, Lorca GL. Blueberries as an additive to increase the survival of Lactobacillus johnsonii N6.2 to lyophilisation. Benef Microbes 2019; 10:473-482. [PMID: 30931589 DOI: 10.3920/bm2018.0144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Effective cultivation methods, total cost, and biomass preservation are key factors that have a significant impact on the commercialisation and effectiveness of probiotics, such as Lactobacillus. Sugar polymers, milk and whey proteins have been suggested as good additives for industrial preparations. Alternative compounds, such as phytophenols, are a more attractive option, given their potential benefits to human health. The overall goal of this study was to determine if the addition of blueberry phytophenols improves the survival of Lactobacillus johnsonii N6.2 during the freeze-drying process. The addition of blueberry aqueous extract (BAE) stimulated the growth of L. johnsonii under aerobic conditions and improved the stationary phase survival of the bacteria. Furthermore, the addition of BAE to the culture media improved the endurance of L. johnsonii N6.2 to freeze-drying stress, as well as to storage at 4 °C for up to 21 weeks. Moreover, blueberry extract performed more effectively as a lyophilising additive compared to skim milk and microencapsulation with whey protein/sodium alginate. In sum, this study demonstrates that BAE is an effective additive to increase the growth and survival of L. johnsonii N6.2 when added to the culture medium and/or used as a lyophilising preservative. Moreover, BAE or other polyphenols sources might likely enhance growth and increase survival of more probiotic lactic acid bacterial strains.
Collapse
Affiliation(s)
- D Cai
- 1 Department of Microbiology and Cell Science, Genetics Institute, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL 32610, USA
| | - N A Harrison
- 1 Department of Microbiology and Cell Science, Genetics Institute, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL 32610, USA
| | - D N Kling
- 1 Department of Microbiology and Cell Science, Genetics Institute, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL 32610, USA
| | - C F Gonzalez
- 1 Department of Microbiology and Cell Science, Genetics Institute, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL 32610, USA
| | - G L Lorca
- 1 Department of Microbiology and Cell Science, Genetics Institute, Institute for Food and Agricultural Sciences, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
22
|
Liu B, Fu N, Woo MW, Chen XD. Heat stability of Lactobacillus rhamnosus GG and its cellular membrane during droplet drying and heat treatment. Food Res Int 2018; 112:56-65. [DOI: 10.1016/j.foodres.2018.06.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/27/2022]
|
23
|
Zhang L, Chen XD, Boom RM, Schutyser MA. Survival of encapsulated Lactobacillus plantarum during isothermal heating and bread baking. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.067] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Fu N, Huang S, Xiao J, Chen XD. Producing Powders Containing Active Dry Probiotics With the Aid of Spray Drying. ADVANCES IN FOOD AND NUTRITION RESEARCH 2018; 85:211-262. [PMID: 29860975 DOI: 10.1016/bs.afnr.2018.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Probiotics are microorganisms capable of conferring health benefits to humans and animals when ingested. Probiotic products that prevail in food market usually contain viable bacteria from Lactobacillus and Bifidobacterium genera. Bacterial strains in these genera often have complex nutrient requirements and tend to be fragile under environmental stresses. How to incorporate the cells into food matrix without causing undesired viability loss is a key issue for developing products of viable probiotics. Spray drying offers a rapid way to produce powders encapsulating probiotics in a matrix of protectant(s), which may extend the term of viability preservation and expand the application of probiotic products. In spray drying, feed solution that contains probiotic cells and dissolved or suspended protectant solids are atomized into droplets, which are quickly converted into particles by drying in a hot airflow. The harsh conditions and interplaying stresses make the maintenance of cell viability a challenging task. To enhance cell survival in dried powders, various approaches have been attempted, including the enhancement of the intrinsic stress tolerance of cells, adjustment of protectant composition, and optimization of the production process and dryer settings. This chapter discusses important factors influencing probiotic viability during spray drying from aspects of microbiology, food chemistry, and drying process. The mechanisms underlying the influences at the droplet and cellular levels and strategies taken to protect cell viability at the process level are discussed.
Collapse
Affiliation(s)
- Nan Fu
- China-Australia Joint Research Center in Future Dairy Manufacturing, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, PR China.
| | - Song Huang
- China-Australia Joint Research Center in Future Dairy Manufacturing, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, PR China; UMR1253 STLO, Agrocampus Ouest, INRA, Rennes, France
| | - Jie Xiao
- China-Australia Joint Research Center in Future Dairy Manufacturing, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, PR China
| | - Xiao Dong Chen
- China-Australia Joint Research Center in Future Dairy Manufacturing, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, PR China
| |
Collapse
|
25
|
Verruck S, de Carvalho MW, de Liz GR, Amante ER, Vieira CRW, Amboni RDDMC, Prudencio ES. Survival of Bifidobacterium BB-12 microencapsulated with full-fat goat’s milk and prebiotics when exposed to simulated gastrointestinal conditions and thermal treatments. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2017.05.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
26
|
Zheng X, Fu N, Huang S, Jeantet R, Chen XD. Exploring the protective effects of calcium-containing carrier against drying-induced cellular injuries of probiotics using single droplet drying technique. Food Res Int 2016; 90:226-234. [DOI: 10.1016/j.foodres.2016.10.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/18/2016] [Accepted: 10/23/2016] [Indexed: 12/31/2022]
|
27
|
Wang J, Huang S, Fu N, Jeantet R, Chen XD. Thermal Aggregation of Calcium-Fortified Skim Milk Enhances Probiotic Protection during Convective Droplet Drying. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6003-6010. [PMID: 27420726 DOI: 10.1021/acs.jafc.6b02205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Probiotic bacteria have been reported to confer benefits on hosts when delivered in an adequate dose. Spray-drying is expected to produce dried and microencapsulated probiotic products due to its low production cost and high energy efficiency. The bottleneck in probiotic application addresses the thermal and dehydration-related inactivation of bacteria during process. A protective drying matrix was designed by modifying skim milk with the principle of calcium-induced protein thermal aggregation. The well-defined single-droplet drying technique was used to monitor the droplet-particle conversion and the protective effect of this modified Ca-aggregated milk on Lactobacillus rhamnosus GG. The Ca-aggregated milk exhibited a higher drying efficiency and superior protection on L. rhamnosus GG during thermal convective drying. The mechanism was explained by the aggregation in milk, causing the lower binding of water in the serum phase and, conversely, local concentrated milk aggregates involved in bacteria entrapment in the course of drying. This work may open new avenues for the development of probiotic products with high bacterial viability and calcium enrichment.
Collapse
Affiliation(s)
- Juan Wang
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University , Suzhou 215123, Jiangsu Province, China
| | - Song Huang
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University , Suzhou 215123, Jiangsu Province, China
- STLO, Agrocampus Ouest, INRA , 35000 Rennes, France
| | - Nan Fu
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University , Suzhou 215123, Jiangsu Province, China
| | | | - Xiao Dong Chen
- Suzhou Key Laboratory of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Material Science, Soochow University , Suzhou 215123, Jiangsu Province, China
| |
Collapse
|
28
|
Broeckx G, Vandenheuvel D, Claes IJ, Lebeer S, Kiekens F. Drying techniques of probiotic bacteria as an important step towards the development of novel pharmabiotics. Int J Pharm 2016; 505:303-18. [DOI: 10.1016/j.ijpharm.2016.04.002] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 02/07/2023]
|
29
|
Slavutsky AM, Chávez MC, Favaro-trindade CS, Bertuzzi MA. Encapsulation ofLactobacillus Acidophilusin a Pilot-Plant Spray-Dryer. Effect of Process Parameters on Cell Viability. J FOOD PROCESS ENG 2016. [DOI: 10.1111/jfpe.12394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Aníbal M. Slavutsky
- Instituto De Investigaciones Para La Industria Química (CONICET), CIUNSa, Universidad Nacional De Salta; Av. Bolivia 5150 Salta A4408TVY Argentina
| | - Mónica C. Chávez
- Instituto Nacional De Tecnología Agropecuaria (INTA-Cerrillos); Salta Argentina
| | - Carmen S. Favaro-trindade
- Departamento De Engenharia De Alimentos, Da Faculdade De Zootecnia E Engenharia De Alimentos Da Universidade De São Paulo; Campus De Pirassununga. Av. Duque De Caxias Norte Pirassununga Brazil
| | - María A. Bertuzzi
- Instituto De Investigaciones Para La Industria Química (CONICET), CIUNSa, Universidad Nacional De Salta; Av. Bolivia 5150 Salta A4408TVY Argentina
| |
Collapse
|