1
|
Pardo-Hernández M, Zhang L, Lucini L, Rivero RM. Seasonal influence on tomato fruit metabolome profile: Implications for ABA signaling in multi-stress resilience. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109234. [PMID: 39490099 DOI: 10.1016/j.plaphy.2024.109234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
The increasing effects of climate change are leading to an increase in the number and intensity of extreme events, making it essential to study how plants respond to various stresses occurring simultaneously. A crucial regulator of plant responses to abiotic stress is abscisic acid (ABA), as its accumulation in response to stress leads to transcriptomic and metabolomic changes that contribute to plant stress tolerance. In the present study, we investigated how ABA, stress conditions (salinity, water deficit and their combination) and seasons (autumn-winter and spring-summer) regulate tomato fruit yield and metabolism using tomato wild type (WT) and the ABA-deficient flacca mutant (flc) under stress conditions in cold and warm seasons. Our results showed that the applied stresses did not have the same effect in the warm season as in the cold season. In WT plants, the levels of other flavonoids, lignans and other polyphenols were higher in summer fruits, whereas the levels of anthocyanins, flavanols, flavonols, phenolic acids and stilbenes were higher in winter fruits. Furthermore, the significant increase in anthocyanins and flavonols was associated with the combination of salinity + water deficit in both seasons. Additionally, under certain conditions, flc mutants showed an enrichment of the superclasses of benzenoids and organosulphur compounds. The synthesis of phenolic compounds in flc fruits was also significantly different compared to WT plants. Thus, the metabolic profile of tomato fruits varies significantly with endogenous ABA levels, season of cultivation and applied stress treatments, highlighting the multifactorial nature of plant responses to combined environmental factors.
Collapse
Affiliation(s)
- Miriam Pardo-Hernández
- Center of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed 25, 30100, Murcia, Spain.
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy.
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy.
| | - Rosa M Rivero
- Center of Edaphology and Applied Biology of Segura (CEBAS-CSIC), Department of Plant Nutrition, Campus Universitario Espinardo, Ed 25, 30100, Murcia, Spain.
| |
Collapse
|
2
|
Fedeli R, Marotta L, Frattaruolo L, Panti A, Carullo G, Fusi F, Saponara S, Gemma S, Butini S, Cappello AR, Vannini A, Campiani G, Loppi S. Nutritionally enriched tomatoes (Solanum lycopersicum L.) grown with wood distillate: chemical and biological characterization for quality assessment. J Food Sci 2023; 88:5324-5338. [PMID: 37961008 DOI: 10.1111/1750-3841.16829] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
Bio-based products are nowadays useful tools able to affect the productivity and quality of conventionally cultivated crops. Several bio-based products are currently on the market; one of the newest and most promising is the wood distillate (WD) derived from the pyrolysis process of waste biomass after timber. Its foliar application has been widely investigated and shown to promote the antioxidant profile of cultivated crops. WD was used here as additive for the cultivation of tomato (Solanum lycopersicum L.) plants. The application improved quality (chemical) parameters, minerals, polyphenols, and lycopene contents of tomato fruits. The extracts of WD-treated and untreated tomatoes have been chemically and biologically characterized. The 1 H-NMR and ESI-mass spectrometry analyses of the extracts revealed the presence of different fatty acids, amino acids and sugars. In particular, the WD-treated tomatoes showed the presence of pyroglutamic acid and phloridzin derivatives, but also dihydrokaempferol, naringenin glucoside, cinnamic acid, and kaempferol-3-O-glucoside. When tested in cells, the extracts showed a promising anti-inflammatory profile in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Furthermore, the extracts displayed a slight vasorelaxant activity on rat aorta rings (either endothelium-denuded or endothelium-intact) pre-contracted with phenylephrine or potassium chloride. PRACTICAL APPLICATION: Wood distillate has been used for tomato plant growth. Tomatoes showed improved nutritional parameters, and their extracts displayed antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Riccardo Fedeli
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Ludovica Marotta
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Luca Frattaruolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Cosenza, Italy
| | - Alice Panti
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Gabriele Carullo
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Fabio Fusi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Simona Saponara
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Cosenza, Italy
| | - Andrea Vannini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Stefano Loppi
- Department of Life Sciences, University of Siena, Siena, Italy
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Napoli, Italy
| |
Collapse
|
3
|
Panebianco S, van Wijk E, Yan Y, Cirvilleri G, Continella A, Modica G, Musumarra A, Pellegriti MG, Scordino A. Applications of Delayed Luminescence for tomato fruit quality assessment across varied Sicilian cultivation zones. PLoS One 2023; 18:e0286383. [PMID: 37262025 DOI: 10.1371/journal.pone.0286383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/15/2023] [Indexed: 06/03/2023] Open
Abstract
The food industry places significant emphasis on ensuring quality and traceability as key components of a healthy diet. To cater to consumer demands, researchers have prioritized the development of analytical techniques that can rapidly and non-invasively provide data on quality parameters. In this study, we propose to use the Delayed Luminescence (DL), an ultra-weak and photo-induced emission of optical photons, as a tool for a rapid evaluation of quality profile associated with fruit ripening, in support of traditional analysis methods. Delayed Luminescence measurements have been performed on cherry tomatoes, with and without the PGI "Pomodoro di Pachino" certification, harvested from two different growing areas of south-eastern Sicily (Italy). Then, DL emissions were correlated with soluble solid content and titratable acidity values, which are known to affect the flavor, the commerciality and the maturity degree of tomato fruits. In addition, we evaluated the changes in the DL parameters with respect to the geographical origin of the cherry tomatoes, with the aim of testing the possibility of applying the technique for identification purposes. The signals of Delayed Luminescence appeared to be good indicators of the macromolecular structure of the biological system, revealing structural changes related to the content of total soluble solids present in the juice of tomatoes analyzed, and they appeared unsuitable for authenticating vegetable crops, since the differences in the photon yields emitted by tomato Lots were not related to territory of origin. Thus, our results suggest that DL can be used as a nondestructive indicator of important parameters linked to tomato fruit quality.
Collapse
Affiliation(s)
- Salvina Panebianco
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, Catania, Italy
| | - Eduard van Wijk
- Department of Biophotonics, Meluna Research, Wageningen, Netherlands
| | - Yu Yan
- Department of Biophotonics, Meluna Research, Wageningen, Netherlands
| | - Gabriella Cirvilleri
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, Catania, Italy
| | - Alberto Continella
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, Catania, Italy
| | - Giulia Modica
- Dipartimento di Agricoltura, Alimentazione e Ambiente, Università di Catania, Catania, Italy
| | - Agatino Musumarra
- Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy
- Istituto Nazionale di Fisica Nucleare - Sezione di Catania, Catania, Italy
| | | | - Agata Scordino
- Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy
- Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, Catania, Italy
| |
Collapse
|
4
|
Geographical Origin Identification of Chinese Tomatoes Using Long-Wave Fourier-Transform Near-Infrared Spectroscopy Combined with Deep Learning Methods. FOOD ANAL METHOD 2023. [DOI: 10.1007/s12161-023-02444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
5
|
Bai X, Wan P, Liu J, Yao J, Chen DW. Investigation on the changes of carotenoids and capsaicinoids in chili oil at different frying temperature by using 1H NMR. Curr Res Food Sci 2022; 6:100411. [PMID: 36510595 PMCID: PMC9735263 DOI: 10.1016/j.crfs.2022.100411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
The color and pungency are important indicators for evaluating the quality of chili oil, which are mainly determined by the carotenoids and capsaicinoids, respectively. In this study, the effect of frying temperature on the changes of carotenoids and capsaicinoids in chili oil was qualitatively and quantitatively analyzed by 1H NMR. The increasing frying temperature caused the thermal degradation of carotenoids to be intensified, and the degradation of red carotenoids was greater than that of yellow carotenoids. After 10 min of frying at 130, 150, 170 and 190 °C, the contents of capsanthin in chili oil were 40.3, 15.4, 9.6 and 6.2 mg/kg, respectively. Meanwhile, the contents of total carotenoids were 63.0, 25.5, 17.7 and 13.3 mg/kg, respectively. The observed change of R/Y values correlated well with the degradation of carotenoids. The contents of capsaicinoids were 14.8, 20.9, 19.4 and 7.4 mg/kg, respectively. The best frying temperature for the extraction of carotenoids was 130 °C, and over 90% of the carotenoids were dissolved in the frying oil at this frying condition. However, capsaicinoids were more stable than carotenoids, and the best frying temperature for capsaicinoids was 150-170 °C with over 90% extraction rate. Therefore, the temperature fried at 130-150 °C was suitable for the quality of chili oil, considering the higher extraction rates of both total carotenoids and capsaicinoids. This study is of great significance for the quality control of chili oil.
Collapse
Affiliation(s)
- Xueying Bai
- School of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi, 530004, China,Department of Food Science, Guangxi University, Nanning, Guangxi, 530004, China
| | - Peng Wan
- School of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi, 530004, China,Department of Food Science, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jie Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi, 530004, China,Department of Food Science, Guangxi University, Nanning, Guangxi, 530004, China
| | - Jingyu Yao
- School of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi, 530004, China,Department of Food Science, Guangxi University, Nanning, Guangxi, 530004, China
| | - De-Wei Chen
- Department of Food Science, Guangxi University, Nanning, Guangxi, 530004, China,Corresponding author.
| |
Collapse
|
6
|
Giorgia Potortì A, Francesco Mottese A, Rita Fede M, Sabatino G, Dugo G, Lo Turco V, Costa R, Caridi F, Di Bella M, Di Bella G. Multielement and chemometric analysis for the traceability of the Pachino Protected Geographical Indication (PGI) cherry tomatoes. Food Chem 2022; 386:132746. [PMID: 35334318 DOI: 10.1016/j.foodchem.2022.132746] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 11/15/2022]
Abstract
To prevent PGI (Protected Geographical Indication) cherry tomato of Pachino (Sicily, Italy) from frauds, an alternative method, which includes chemometric treatments, was proposed. The content of 32 inorganic elements (macro-micronutrients and lanthanides) present in 16 PGI and 24 not PGI cherry tomato samples cv Naomy, and in 16 PGI and 8 not PGI soil samples, was determined by Inductively Coupled Plasma - Mass Spectrometer (ICP-MS). To identify the elements able to differentiate PGI and not PGI cherry tomato samples, Principal Components Analysis (PCA) and Canonical discriminant analysis (CDA) were performed. The first two principal components (PC1-PC2) explain a total variance of 71,41% between PGI and not PGI group, whereas CDA showed Zn, Cd, Mn and Ca as inorganic markers able to correctly classify the 100% of samples. Furthermore, with a translocation factor (K), evaluated in soil/plant chain, the comparison of absorption trends for PGI and not PGI samples was realized.
Collapse
Affiliation(s)
- Angela Giorgia Potortì
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Antonio Francesco Mottese
- Department of Mathematics and Informatics, Physics and Earth Sciences (MIFT), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| | - Maria Rita Fede
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Giuseppe Sabatino
- Department of Mathematics and Informatics, Physics and Earth Sciences (MIFT), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giacomo Dugo
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Vincenzo Lo Turco
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Rosaria Costa
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| | - Francesco Caridi
- Department of Mathematics and Informatics, Physics and Earth Sciences (MIFT), University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Marcella Di Bella
- Istituto Nazionale di Geofisica e Vulcanologia (INGV), Sezione di Palermo, Milazzo Office, Via dei Mille 46, 98057 Milazzo, ME, Italy; Sede Territoriale Sicilia, Dipartimento di Ecologia Marina Integrata, Stazione Zoologica Anton Dohrn (SZN), Via dei Mille 46, 98057 Milazzo, Italy
| | - Giuseppa Di Bella
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Viale Annunziata, 98168 Messina, Italy
| |
Collapse
|
7
|
NMR Tracing of Food Geographical Origin: The Impact of Seasonality, Cultivar and Production Year on Data Analysis. SEPARATIONS 2021. [DOI: 10.3390/separations8120230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The traceability of typical foodstuffs is necessary to protect high quality of traditional products. It is well-known that several factors could influence metabolites content in certified foods, but soil composition, altitude, latitude and coded production protocols constitute the territorial conditions responsible for the peculiar organoleptic and nutritional properties of labelled foods. Instead, regardless of origin, seasonality, cultivar, collection year can affect all agricultural products, so it is appropriate to include them in data analysis in order to obtain a correct interpretation of the differences linked to growing areas alone. Therefore, it is useful to use a flexible all-round technique, and NMR spectroscopy coupled with multivariate statistical analysis is considered a powerful means of assessing food authenticity. The purpose of this review is to investigate the relevance of year, cultivar, and seasonal period in the determination of food geographical origin using NMR spectroscopy. The strategy for testing these three factors may differ from author to author, but a preliminary study of cultivar or collection year effects on NMR spectra is the most popular method before starting the geographical characterization of samples. In summary, based on the available literature, the most significant influence is due to cultivar, followed by harvesting year, however seasonality is not considered a source of variability in data analysis.
Collapse
|
8
|
Roca M, Pérez-Gálvez A. Metabolomics of Chlorophylls and Carotenoids: Analytical Methods and Metabolome-Based Studies. Antioxidants (Basel) 2021; 10:1622. [PMID: 34679756 PMCID: PMC8533378 DOI: 10.3390/antiox10101622] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 01/27/2023] Open
Abstract
Chlorophylls and carotenoids are two families of antioxidants present in daily ingested foods, whose recognition as added-value ingredients runs in parallel with the increasing number of demonstrated functional properties. Both groups include a complex and vast number of compounds, and extraction and analysis methods evolved recently to a modern protocol. New methodologies are more potent, precise, and accurate, but their application requires a better understanding of the technical and biological context. Therefore, the present review compiles the basic knowledge and recent advances of the metabolomics of chlorophylls and carotenoids, including the interrelation with the primary metabolism. The study includes material preparation and extraction protocols, the instrumental techniques for the acquisition of spectroscopic and spectrometric properties, the workflows and software tools for data pre-processing and analysis, and the application of mass spectrometry to pigment metabolomics. In addition, the review encompasses a critical description of studies where metabolomics analyses of chlorophylls and carotenoids were developed as an approach to analyzing the effects of biotic and abiotic stressors on living organisms.
Collapse
Affiliation(s)
| | - Antonio Pérez-Gálvez
- Food Phytochemistry Department, Instituto de la Grasa (CSIC), Building 46, 41013 Sevilla, Spain;
| |
Collapse
|
9
|
Dimitrakopoulou ME, Matzarapi K, Chasapi S, Vantarakis A, Spyroulias GA. Nontargeted 1 H NMR fingerprinting and multivariate statistical analysis for traceability of Greek PDO Vostizza currants. J Food Sci 2021; 86:4417-4429. [PMID: 34459510 DOI: 10.1111/1750-3841.15873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 11/28/2022]
Abstract
In this study, non-targeted 1 H NMR fingerprinting was used in combination with multivariate statistical analyses for the classification of Greek currants based on their geographical origins (Aeghion, Nemea, Kalamata, Zante, and Amaliada). As classification techniques, Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) were carried out. To elucidate different components according to PDO (Protected Designation of Origin), products from Aeghion (Vostizza) were statistically compared with each one of the four other regions. PLS-DA plots ensure that currants from Kalamata, Nemea, Zante, and Amaliada are well classified with respect to the PDO currants, according to differences observed in metabolites. Results suggest that composition differences in carbohydrates, amino, and organic acids of currants are sufficient to discriminate them in correlation to their geographical origin. In conclusion, currants metabolites which mostly contribute to classification performance of such discriminant analysis model present a suitable alternative technique for currants traceability. The study results contribute information to the currants' metabolite fingerprinting by NMR spectroscopy and their geographical origin. PRACTICAL APPLICATION: This study presents an analytical approach for a high nutritional value Greek PDO product, Vostizza currant. A further research and implementation of this method in food industry, can be the key to food fraud incidents. Thus, application of this work opens up posibilities to "farm to table" mission.
Collapse
Affiliation(s)
| | - Konstantina Matzarapi
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | - Styliani Chasapi
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| | - Apostolos Vantarakis
- Department of Public Health, Medical School, University of Patras, Patras, Greece
| | - Georgios A Spyroulias
- Department of Pharmacy, School of Health Sciences, University of Patras, Patras, Greece
| |
Collapse
|
10
|
New Hybrid Tomato Cultivars: An NMR-Based Chemical Characterization. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10051887] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Bamano, King Creole, Sugarland, and DulceMiel hybrid tomato cultivars have been recently introduced in the Lazio area (Central Italy) to expand and valorize the regional/national market. Tomatoes from these cultivars, together with tomatoes from the native Fiaschetta cultivar, were sampled at the proper ripening time for the fresh market and characterized to obtain and compare their metabolite profiles. The Bligh–Dyer extraction protocol was carried out, and the resulting organic and hydroalcoholic fractions were analyzed by high-field Nuclear Magnetic Resonance (NMR) spectroscopy. NMR data relative to quantified metabolites (sugars, amino acids, organic acids, sterols, and fatty acids) allowed to point out similarities and differences among cultivars. DulceMiel hybrid and Fiaschetta native cultivars showed some common aspects having the highest levels of the most abundant amino acids as well as comparable amounts of organic acids, amino acids, stigmasterol, and linoleic and linolenic acids. However, DulceMiel turned out to have higher levels of glucose, fructose, and galactose with respect to Fiaschetta, reflecting the particular taste of the DulceMiel product. King Creole, Bamano, and Sugarland hybrid cultivars were generally characterized by the lowest content of amino acids and organic acids. King Creole showed the highest content of malic acid, whereas Bamano was characterized by the highest levels of glucose and fructose.
Collapse
|
11
|
Sogbohossou EOD, Kortekaas D, Achigan-Dako EG, Maundu P, Stoilova T, Van Deynze A, de Vos RCH, Schranz ME. Association between vitamin content, plant morphology and geographical origin in a worldwide collection of the orphan crop Gynandropsis gynandra (Cleomaceae). PLANTA 2019; 250:933-947. [PMID: 30911886 DOI: 10.1007/s00425-019-03142-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 03/15/2019] [Indexed: 06/09/2023]
Abstract
The variability in nutrient content and morphology in Gynandropsis gynandra is associated with the geographic origin of the accessions and provides a basis for breeding for higher levels of vitamin C, carotenoids or tocopherols in higher-yielding cultivars. We examined the variation in carotenoids, tocopherols and ascorbic acid as well as morphological traits in a worldwide germplasm of 76 accessions of the orphan leafy vegetable Gynandropsis gynandra (Cleomaceae) using greenhouse experiments and high-performance liquid chromatography analysis. The levels of carotenoids and tocopherols accumulating in the leaves varied significantly across accessions and were linked with the geographical origin and morphological variation. The main carotenoids included lutein, β-carotene, α-carotene and violaxanthin. A twofold to threefold variation was observed for these compounds. The main tocopherols detected were α-tocopherol and γ-tocopherol with a 20-fold variation. A ninefold variation in vitamin C concentration and independent of geographical origin was observed. Overall, the accessions were grouped into three clusters based on variation in nutrient content and morphology. West African accessions were short plants with small leaves and with high tocopherol contents and relatively low carotenoid contents, Asian accessions were short plants with broad leaves and with relatively low carotenoid and high tocopherol contents, while East-Southern African plants were tall with high contents of both carotenoids and chlorophylls and low tocopherol contents. Carotenoids were positively correlated with plant height as well as foliar and floral traits but negatively correlated with tocopherols. The absence of a significant correlation between vitamin C and other traits indicated that breeding for high carotenoids or tocopherols content may be coupled with improved leaf yield and vitamin C content. Our study provides baseline information on the natural variation available for traits of interest for breeding for enhanced crop yield and nutrient content in Gynandropsis gynandra.
Collapse
Affiliation(s)
- E O Dêêdi Sogbohossou
- Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Laboratory of Genetics, Horticulture and Seed Science, Faculty of Agronomic Sciences, University of Abomey-Calavi, BP 2549, Abomey-Calavi, Republic of Benin
| | - Dieke Kortekaas
- Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Enoch G Achigan-Dako
- Laboratory of Genetics, Horticulture and Seed Science, Faculty of Agronomic Sciences, University of Abomey-Calavi, BP 2549, Abomey-Calavi, Republic of Benin
| | - Patrick Maundu
- Kenya Resource Center for Indigenous Knowledge (KENRIK), Centre for Biodiversity, National Museums of Kenya, Museum Hill, P.O. Box 40658, Nairobi, 00100, Kenya
| | | | - Allen Van Deynze
- Department of Plant Sciences, University of California, Davis, 95616, USA
| | - Ric C H de Vos
- Bioscience, Wageningen Plant Research, Wageningen UR, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
12
|
Zhang X, Wu H, Zhang L, Sun Q. Horseradish peroxidase-mediated synthesis of an antioxidant gallic acid- g-chitosan derivative and its preservation application in cherry tomatoes. RSC Adv 2018; 8:20363-20371. [PMID: 35541661 PMCID: PMC9080819 DOI: 10.1039/c8ra02632g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/23/2018] [Indexed: 11/21/2022] Open
Abstract
Owing to their good solubility and film-forming properties, phenolic acid-g-chitosan derivatives can be used for preservation of fruits and vegetables. However, the chemical synthesis used for the preparation of these derivatives poses a great challenge to food safety. In this study, a method involving horseradish peroxidase catalysis was used to prepare a gallic acid-g-chitosan derivative. The grafting mechanism was studied. Then, the derivative's ability to scavenge free radicals and its preserving application in cherry tomatoes were evaluated. The results indicated that the reaction for horseradish peroxidase catalysis occurred between the amino group of chitosan and the carboxyl group of gallic acid. After enzymatic grafting, the gallic acid-g-chitosan derivative possessed excellent antioxidant abilities in scavenging DPPH, hydroxyl, and superoxide anion radicals. When the derivative was used for the preservation of cherry tomatoes, the results showed that it could effectively protect the ascorbate-glutathione cycle and antioxidant enzyme system of cherry tomatoes and inhibit enzymatic browning. In addition, since this derivative delayed the postharvest senescence of cherry tomatoes, the aroma compounds remain relatively constant throughout the storage period.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Food Science and Engineering, Qingdao Agricultural University Qingdao 266109 Shandong People's Republic of China +86 13583273291
| | - Hao Wu
- College of Food Science and Engineering, Qingdao Agricultural University Qingdao 266109 Shandong People's Republic of China +86 13583273291
| | - Linan Zhang
- Marine Science and Engineering College, Qingdao Agricultural University Qingdao 266109 Shandong People's Republic of China +86 17854233253
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University Qingdao 266109 Shandong People's Republic of China +86 13583273291
| |
Collapse
|