1
|
Truzzi E, Marchetti L, Gibertini G, Benvenuti S, Cappellozza S, Giovannini D, Saviane A, Sirri S, Pinetti D, Assirelli A, Bertelli D. Phytochemical and functional characterization of cultivated varieties of Morus alba L. fruits grown in Italy. Food Chem 2024; 431:137113. [PMID: 37604000 DOI: 10.1016/j.foodchem.2023.137113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/24/2023] [Accepted: 08/05/2023] [Indexed: 08/23/2023]
Abstract
Morus alba L. fruits are considered functional foods with an important nutritional value for their high content of polyphenols. Therefore, the type and level of phytochemicals of the soroses from 13 M. alba cultivars grown in Italy were characterized due to the lack of data available about their nutraceutical properties. Mature M. alba fruits exhibited variable polyphenol, flavonoid, anthocyanin, proanthocyanins, and 1-deoxynojirimycin contents which resulted in different antioxidant and α-glucosidase inhibitory activities. Regression models built on UHPLC-HRMS results revealed a strong correlation between the expression of quercetin derivatives, cyanidin 3-O-glucoside, caffeoyl methyl quinates, and 5,5'-dehydrodivanillic acid, and the biological activity of each fruit. On another note, principal component analysis revealed that the quantity of caffeoyl/dicaffeoyl methyl quinate, caffeoylquinic acids, and quercetin derivatives decreased during ripening. The results on the compositional and functional characterization of mature M. alba fruits might improve their consumption and economic value in Italy.
Collapse
Affiliation(s)
- Eleonora Truzzi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, via G. Campi, 103, 41125 Modena, Italy.
| | - Lucia Marchetti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena (MO), Italy
| | - Giada Gibertini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena (MO), Italy
| | - Stefania Benvenuti
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena (MO), Italy
| | - Silvia Cappellozza
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA) - Centro di Ricerca Agricoltura e Ambiente, Laboratorio di Gelsibachicoltura, Via Eulero, 6a, 35143 Padova (PD), Italy
| | - Daniela Giovannini
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA) - Centro per la Ricerca Olivicoltura, Frutticoltura e Agrumicoltura, Via La Canapona 1 bis, 47121 Forlì (FC), Italy
| | - Alessio Saviane
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA) - Centro di Ricerca Agricoltura e Ambiente, Laboratorio di Gelsibachicoltura, Via Eulero, 6a, 35143 Padova (PD), Italy
| | - Sandro Sirri
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA) - Centro per la Ricerca Olivicoltura, Frutticoltura e Agrumicoltura, Via La Canapona 1 bis, 47121 Forlì (FC), Italy
| | - Diego Pinetti
- Centro Interdipartimentale Grandi Strumenti, University of Modena and Reggio Emilia, Via G. Campi, 213/A, 41125 Modena (MO), Italy
| | - Alberto Assirelli
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria (CREA) - Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via ella Pascolare 16, 00016 Monterotondo (Rm), Italy
| | - Davide Bertelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena (MO), Italy
| |
Collapse
|
2
|
Sun R, Xing R, Zhang J, Yu N, Ge Y, Zhang W, Chen Y. UPLC-QTOF-MS coupled with machine learning to discriminate between NFC and FC orange juice. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Untargeted and targeted metabolomics reveals potential marker compounds of an tea during storage. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112791] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Isolation of Neuroprotective Anthocyanins from Black Chokeberry ( Aronia melanocarpa) against Amyloid-β-Induced Cognitive Impairment. Foods 2020; 10:foods10010063. [PMID: 33383966 PMCID: PMC7823521 DOI: 10.3390/foods10010063] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 01/28/2023] Open
Abstract
Black chokeberry (Aronia melanocarpa) fruits are rich in anthocyanins, which are vital secondary metabolites that possess antioxidative properties. The aim of this study was to isolate and purify the anthocyanins from black chokeberry by simulated moving bed (SMB) chromatography, and to investigate the neuroprotective effect of SMB purified anthocyanin against Aβ-induced memory damage in rats. The parameters of the SMB process were studied and optimized. Anthocyanin extracts were identified by HPLC and UPLC-QTOF-MS, and antioxidant abilities were evaluated. The Aβ-induced animal model was established by intracerebral ventricle injection in rat brain. Through the SMB purification, anthocyanins were purified to 85%; cyanidin 3-O-galactoside and cyanidin 3-O-arabinoside were identified as the main anthocyanins by UPLC-QTOF-MS. The SMB purified anthocyanins exhibited higher DPPH and ABTS free radical scavenging abilities than the crude anthocyanins extract. Furthermore, rats receiving SMB purified anthocyanins treatment (50 mg/kg) showed improved spatial memory in a Morris water maze test, as well as protection of the cells in the hippocampus against Aβ toxicity. These results demonstrate that anthocyanins could serve as antioxidant and neuroprotective agents, with potential in the treatment of Alzheimer's disease.
Collapse
|
5
|
Quantitative Comparison of the Marker Compounds in Different Medicinal Parts of Morus alba L. Using High-Performance Liquid Chromatography-Diode Array Detector with Chemometric Analysis. Molecules 2020; 25:molecules25235592. [PMID: 33261214 PMCID: PMC7730820 DOI: 10.3390/molecules25235592] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022] Open
Abstract
It is thought that the therapeutic efficacy of Morus alba L. is determined by its biological compounds. We investigated the chemical differences in the medicinal parts of M. alba by analyzing a total of 57 samples (15 root barks, 11 twigs, 12 fruits, and 19 leaves). Twelve marker compounds, including seven flavonoids, two stilbenoids, two phenolic acids, and a coumarin, were quantitatively analyzed using a high-performance liquid chromatography-diode array detector and chemometric analyses (principal component and heatmap analysis). The results demonstrated that the levels and compositions of the marker compounds varied in each medicinal part. The leaves contained higher levels of six compounds, the root barks contained higher levels of four compounds, and the twigs contained higher levels of two compounds. The results of chemometric analysis showed clustering of the samples according to the medicinal part, with the marker compounds strongly associated with each part: mulberroside A, taxifolin, kuwanon G, and morusin for the root barks; 4-hydroxycinnamic acid and oxyresveratrol for the twigs and skimmin; chlorogenic acid, rutin, isoquercitrin, astragalin, and quercitrin for the leaves. Our approach plays a fundamental role in the quality evaluation and further understanding of biological actions of herbal medicines derived from various medicinal plant parts.
Collapse
|
6
|
Wang L, Zou Y, Kaw HY, Wang G, Sun H, Cai L, Li C, Meng LY, Li D. Recent developments and emerging trends of mass spectrometric methods in plant hormone analysis: a review. PLANT METHODS 2020; 16:54. [PMID: 32322293 PMCID: PMC7161177 DOI: 10.1186/s13007-020-00595-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 04/04/2020] [Indexed: 05/18/2023]
Abstract
Plant hormones are naturally occurring small molecule compounds which are present at trace amounts in plant. They play a pivotal role in the regulation of plant growth. The biological activity of plant hormones depends on their concentrations in the plant, thus, accurate determination of plant hormone is paramount. However, the complex plant matrix, wide polarity range and low concentration of plant hormones are the main hindrances to effective analyses of plant hormone even when state-of-the-art analytical techniques are employed. These factors substantially influence the accuracy of analytical results. So far, significant progress has been realized in the analysis of plant hormones, particularly in sample pretreatment techniques and mass spectrometric methods. This review describes the classic extraction and modern microextraction techniques used to analyze plant hormone. Advancements in solid phase microextraction (SPME) methods have been driven by the ever-increasing requirement for dynamic and in vivo identification of the spatial distribution of plant hormones in real-life plant samples, which would contribute greatly to the burgeoning field of plant hormone investigation. In this review, we describe advances in various aspects of mass spectrometry methods. Many fragmentation patterns are analyzed to provide the theoretical basis for the establishment of a mass spectral database for the analysis of plant hormones. We hope to provide a technical guide for further discovery of new plant hormones. More than 140 research studies on plant hormone published in the past decade are reviewed, with a particular emphasis on the recent advances in mass spectrometry and sample pretreatment techniques in the analysis of plant hormone. The potential progress for further research in plant hormones analysis is also highlighted.
Collapse
Affiliation(s)
- Liyuan Wang
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Yilin Zou
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Han Yeong Kaw
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Gang Wang
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Huaze Sun
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Long Cai
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| | - Chengyu Li
- State Key Laboratory of Application of Rare Earth Resources, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 China
| | - Long-Yue Meng
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
- Department of Environmental Science, Yanbian University, Yanji, 133002 China
| | - Donghao Li
- Department of Chemistry, MOE Key Laboratory of Biological Resources of the Changbai Mountain and Functional Molecules, Yanbian University, Park Road 977, Yanji, 133002 China
| |
Collapse
|
7
|
D’Urso G, Mes JJ, Montoro P, Hall RD, de Vos RC. Identification of Bioactive Phytochemicals in Mulberries. Metabolites 2019; 10:metabo10010007. [PMID: 31861822 PMCID: PMC7023076 DOI: 10.3390/metabo10010007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 01/20/2023] Open
Abstract
Mulberries are consumed either freshly or as processed fruits and are traditionally used to tackle several diseases, especially type II diabetes. Here, we investigated the metabolite compositions of ripe fruits of both white (Morus alba) and black (Morus nigra) mulberries, using reversed-phase HPLC coupled to high resolution mass spectrometry (LC-MS), and related these to their in vitro antioxidant and α-glucosidase inhibitory activities. Based on accurate masses, fragmentation data, UV/Vis light absorbance spectra and retention times, 35 metabolites, mainly comprising phenolic compounds and amino sugar acids, were identified. While the antioxidant activity was highest in M. nigra, the α-glucosidase inhibitory activities were similar between species. Both bioactivities were mostly resistant to in vitro gastrointestinal digestion. To identify the bioactive compounds, we combined LC-MS with 96-well-format fractionation followed by testing the individual fractions for α-glucosidase inhibition, while compounds responsible for the antioxidant activity were identified using HPLC with an online antioxidant detection system. We thus determined iminosugars and phenolic compounds in both M. alba and M. nigra, and anthocyanins in M. nigra as being the key α-glucosidase inhibitors, while anthocyanins in M. nigra and both phenylpropanoids and flavonols in M. alba were identified as key antioxidants in their ripe berries.
Collapse
Affiliation(s)
- Gilda D’Urso
- Department of Pharmacy, University of Salerno, 84084 Fisciano SA, Italy; (G.D.); (P.M.)
| | - Jurriaan J. Mes
- Business Unit Fresh Food and Chains, Wageningen Food & Biobased Research, Wageningen University and Research, 6708 WG Wageningen, The Netherlands;
| | - Paola Montoro
- Department of Pharmacy, University of Salerno, 84084 Fisciano SA, Italy; (G.D.); (P.M.)
| | - Robert D. Hall
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB Wageningen, The Netherlands;
- Laboratory of Plant Physiology, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Ric C.H. de Vos
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research, 6708 PB Wageningen, The Netherlands;
- Correspondence: ; Tel.: +31-317480841
| |
Collapse
|
8
|
He X, Chen X, Ou X, Ma L, Xu W, Huang K. Evaluation of flavonoid and polyphenol constituents in mulberry leaves using HPLC fingerprint analysis. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14281] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Xiaoyun He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering China Agricultural University Beijing 100083China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) Ministry of Agriculture Beijing 100083China
| | - Xu Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering China Agricultural University Beijing 100083China
| | - Xiaoqun Ou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering China Agricultural University Beijing 100083China
| | - Liyan Ma
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) Ministry of Agriculture Beijing 100083China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering China Agricultural University Beijing 100083China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) Ministry of Agriculture Beijing 100083China
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering China Agricultural University Beijing 100083China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) Ministry of Agriculture Beijing 100083China
| |
Collapse
|
9
|
Wyss KM, Llivina GC, Calderón AI. Biochemometrics and Required Tools in Botanical Natural Products Research: A Review. Comb Chem High Throughput Screen 2019; 22:290-306. [DOI: 10.2174/1386207322666190704094003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 04/12/2019] [Accepted: 05/15/2019] [Indexed: 11/22/2022]
Abstract
This review serves to highlight the role of chemometrics and biochemometrics in recent
literature as well as including a perspective on the current state of the field, as well as the future needs and
possible directions. Specifically examining the analytical methods and statistical tools that are available to
chemists, current applications of QTOF-MS, Orbitrap-MS, LC with PDA/UV detectors, NMR, and IMS
coupled MS are detailed. Of specific interest, these techniques can be applied to botanical dietary
supplement quality, efficacy, and safety. Application in natural products drug discovery, industrial quality
control, experimental design, and more are also discussed.
Collapse
Affiliation(s)
- Kevin M. Wyss
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, United States
| | - Graham C. Llivina
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, United States
| | - Angela I. Calderón
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, United States
| |
Collapse
|