1
|
Faúndez F, Iñiguez G, Fehrmann-Cartes K. Detection of Escherichia coli O157H7 and Campylobacter jejuni in Bovine Carcasses in Two Slaughterhouses in Bio-Bío District, Chile. Foodborne Pathog Dis 2024; 21:409-415. [PMID: 38568114 DOI: 10.1089/fpd.2023.0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Escherichia coli O157:H7 (E. coli O157:H7) and Campylobacter jejuni (C. jejuni) are pathogenic microorganisms that can cause severe clinical symptoms in humans and are associated with bovine meat consumption. Specific monitoring for E. coli O157: H7 or C. jejuni in meat is not mandatory under Chilean regulations. In this study, we analyzed 544 samples for the detection of both microorganisms, obtained from 272 bovine carcasses (280 kg average) at two slaughterhouses in the Bio-Bío District, Chile. Sampling was carried out at post-shower of carcasses and after channel passage through the cold chamber. Eleven samples were found to be positive for E. coli O157:H7 (4.0%) using microbiological and biochemical detection techniques and were subjected to a multiplex PCR to detect fliC and rfbE genes. Six samples (2.2%) were also found to be positive for the pathogenicity genes stx1, stx2, and eaeA. Twenty-two carcasses (8.0%) were found to be positive for C. jejuni using microbiological and biochemical detection techniques, but no sample with amplified mapA gene was found.
Collapse
Affiliation(s)
- Felipe Faúndez
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Concepción, Chile
| | - Gonzalo Iñiguez
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Concepción, Chile
| | - Karen Fehrmann-Cartes
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Concepción, Chile
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Universidad de Las Américas, Concepción, Chile
| |
Collapse
|
2
|
Zhuang L, Gong J, Zhao Y, Yang J, Liu G, Zhao B, Song C, Zhang Y, Shen Q. Progress in methods for the detection of viable Escherichia coli. Analyst 2024; 149:1022-1049. [PMID: 38273740 DOI: 10.1039/d3an01750h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Escherichia coli (E. coli) is a prevalent enteric bacterium and a necessary organism to monitor for food safety and environmental purposes. Developing efficient and specific methods is critical for detecting and monitoring viable E. coli due to its high prevalence. Conventional culture methods are often laborious and time-consuming, and they offer limited capability in detecting potentially harmful viable but non-culturable E. coli in the tested sample, which highlights the need for improved approaches. Hence, there is a growing demand for accurate and sensitive methods to determine the presence of viable E. coli. This paper scrutinizes various methods for detecting viable E. coli, including culture-based methods, molecular methods that target DNAs and RNAs, bacteriophage-based methods, biosensors, and other emerging technologies. The review serves as a guide for researchers seeking additional methodological options and aiding in the development of rapid and precise assays. Moving forward, it is anticipated that methods for detecting E. coli will become more stable and robust, ultimately contributing significantly to the improvement of food safety and public health.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China.
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, P. R. China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China.
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Guofang Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Bin Zhao
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Chunlei Song
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering & Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 211102, P. R. China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, P. R. China.
| |
Collapse
|
3
|
Gökmen M, İlhan Z, Tavşanlı H, Önen A, Ektik N, Göçmez EB. Prevalence and molecular characterization of shiga toxin-producing Escherichia coli in animal source foods and green leafy vegetables. FOOD SCI TECHNOL INT 2024; 30:30-36. [PMID: 36113141 DOI: 10.1177/10820132221125104] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) has emerged as important enteric foodborne zoonotic pathogens of considerable public health significance worldwide. The aim of this study was to determine the prevalence of the top seven STEC serotypes and to identify these serotypes in samples of animal source foods and vegetables. A total of 294 samples including 84 meat samples, 135 milk and dairy product samples and 75 green leafy vegetable samples were tested. The samples were harvested in mTSB-broth pre-enriched with novobiocin and then were tested by amplifying 16S shiga toxin (stx1/2), and eae genes using multiplex polymerase chain reaction (m-PCR) assay. A total of 260 (88.4%) samples were positive for E. coli and 29 (11.1%) of them were positive for shiga toxin, and eae genes. The positive samples were cultivated on CHROMAgar STEC and the colonies were evaluated for top seven STEC by m-PCR. The top seven STEC serotypes were detected in 27 (93.1%) of the samples: the STEC O111 serotype in 11 (40.7%) beef samples, STEC O45 in 3 (11.1%) chicken, STEC O145 in 6 (22.2%) parsley, 3 (11.1%) lettuce, 1 (3.7%) spinach, and 1 (3.7%) cheese, and STEC O103 in 2 (7.4%) lettuce samples. None of the samples was found positive for STEC O26, O121, and O157 serotypes. This study highlights the fact that the top seven STEC group poses a great risk in terms of food safety and public health in both animal source foods and vegetables.
Collapse
Affiliation(s)
- Mukadderat Gökmen
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Balikesir University, Balikesir, Turkey
| | - Ziya İlhan
- Department Microbiology, Faculty of Veterinary Medicine, Balikesir University, Balikesir, Turkey
| | - Hakan Tavşanlı
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Balikesir University, Balikesir, Turkey
| | - Adem Önen
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Balikesir University, Balikesir, Turkey
| | - Nisanur Ektik
- Department of Food Hygiene and Technology, Institute of Health, Balikesir University, Balikesir, Turkey
| | - Enise Begüm Göçmez
- Department of Food Hygiene and Technology, Institute of Health, Balikesir University, Balikesir, Turkey
| |
Collapse
|
4
|
Jaudou S, Deneke C, Tran ML, Salzinger C, Vorimore F, Goehler A, Schuh E, Malorny B, Fach P, Grützke J, Delannoy S. Exploring Long-Read Metagenomics for Full Characterization of Shiga Toxin-Producing Escherichia coli in Presence of Commensal E. coli. Microorganisms 2023; 11:2043. [PMID: 37630603 PMCID: PMC10458860 DOI: 10.3390/microorganisms11082043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
The characterization of Shiga toxin-producing Escherichia coli (STEC) is necessary to assess their pathogenic potential, but isolation of the strain from complex matrices such as milk remains challenging. In previous work, we have shown the potential of long-read metagenomics to characterize eae-positive STEC from artificially contaminated raw milk without isolating the strain. The presence of multiple E. coli strains in the sample was shown to potentially hinder the correct characterization of the STEC strain. Here, we aimed at determining the STEC:commensal ratio that would prevent the characterization of the STEC. We artificially contaminated pasteurized milk with different ratios of an eae-positive STEC and a commensal E. coli and applied the method previously developed. Results showed that the STEC strain growth was better than the commensal E. coli after enrichment in acriflavine-supplemented BPW. The STEC was successfully characterized in all samples with at least 10 times more STEC post-enrichment compared to the commensal E. coli. However, the presence of equivalent proportions of STEC and commensal E. coli prevented the full characterization of the STEC strain. This study confirms the potential of long-read metagenomics for STEC characterization in an isolation-free manner while refining its limit regarding the presence of background E. coli strains.
Collapse
Affiliation(s)
- Sandra Jaudou
- COLiPATH Unit, Laboratory for Food Safety, ANSES, 94700 Maisons-Alfort, France; (S.J.)
- National Study Center for Sequencing in Risk Assessment, Department of Biological Safety, German Federal Institute for Risk Assessment, 12277 Berlin, Germany
| | - Carlus Deneke
- National Study Center for Sequencing in Risk Assessment, Department of Biological Safety, German Federal Institute for Risk Assessment, 12277 Berlin, Germany
| | - Mai-Lan Tran
- COLiPATH Unit, Laboratory for Food Safety, ANSES, 94700 Maisons-Alfort, France; (S.J.)
- Genomics Platform IdentyPath, Laboratory for Food Safety, ANSES, 94700 Maisons-Alfort, France
| | - Carina Salzinger
- National Reference Laboratory for Escherichia coli Including VTEC, Department of Biological Safety, German Federal Institute for Risk Assessment, 12277 Berlin, Germany
| | - Fabien Vorimore
- Genomics Platform IdentyPath, Laboratory for Food Safety, ANSES, 94700 Maisons-Alfort, France
| | - André Goehler
- National Reference Laboratory for Escherichia coli Including VTEC, Department of Biological Safety, German Federal Institute for Risk Assessment, 12277 Berlin, Germany
| | - Elisabeth Schuh
- National Reference Laboratory for Escherichia coli Including VTEC, Department of Biological Safety, German Federal Institute for Risk Assessment, 12277 Berlin, Germany
| | - Burkhard Malorny
- National Study Center for Sequencing in Risk Assessment, Department of Biological Safety, German Federal Institute for Risk Assessment, 12277 Berlin, Germany
| | - Patrick Fach
- COLiPATH Unit, Laboratory for Food Safety, ANSES, 94700 Maisons-Alfort, France; (S.J.)
- Genomics Platform IdentyPath, Laboratory for Food Safety, ANSES, 94700 Maisons-Alfort, France
| | - Josephine Grützke
- National Study Center for Sequencing in Risk Assessment, Department of Biological Safety, German Federal Institute for Risk Assessment, 12277 Berlin, Germany
| | - Sabine Delannoy
- COLiPATH Unit, Laboratory for Food Safety, ANSES, 94700 Maisons-Alfort, France; (S.J.)
- Genomics Platform IdentyPath, Laboratory for Food Safety, ANSES, 94700 Maisons-Alfort, France
| |
Collapse
|
5
|
Jaudou S, Deneke C, Tran ML, Schuh E, Goehler A, Vorimore F, Malorny B, Fach P, Grützke J, Delannoy S. A step forward for Shiga toxin-producing Escherichia coli identification and characterization in raw milk using long-read metagenomics. Microb Genom 2022; 8:mgen000911. [PMID: 36748417 PMCID: PMC9836091 DOI: 10.1099/mgen.0.000911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/12/2022] [Indexed: 11/25/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are a cause of severe human illness and are frequently associated with haemolytic uraemic syndrome (HUS) in children. It remains difficult to identify virulence factors for STEC that absolutely predict the potential to cause human disease. In addition to the Shiga-toxin (stx genes), many additional factors have been reported, such as intimin (eae gene), which is clearly an aggravating factor for developing HUS. Current STEC detection methods classically rely on real-time PCR (qPCR) to detect the presence of the key virulence markers (stx and eae). Although qPCR gives an insight into the presence of these virulence markers, it is not appropriate for confirming their presence in the same strain. Therefore, isolation steps are necessary to confirm STEC viability and characterize STEC genomes. While STEC isolation is laborious and time-consuming, metagenomics has the potential to accelerate the STEC characterization process in an isolation-free manner. Recently, short-read sequencing metagenomics have been applied for this purpose, but assembly quality and contiguity suffer from the high proportion of mobile genetic elements occurring in STEC strains. To circumvent this problem, we used long-read sequencing metagenomics for identifying eae-positive STEC strains using raw cow's milk as a causative matrix for STEC food-borne outbreaks. By comparing enrichment conditions, optimizing library preparation for MinION sequencing and generating an easy-to-use STEC characterization pipeline, the direct identification of an eae-positive STEC strain was successful after enrichment of artificially contaminated raw cow's milk samples at a contamination level as low as 5 c.f.u. ml-1. Our newly developed method combines optimized enrichment conditions of STEC in raw milk in combination with a complete STEC analysis pipeline from long-read sequencing metagenomics data. This study shows the potential of the innovative methodology for characterizing STEC strains from complex matrices. Further developments will nonetheless be necessary for this method to be applied in STEC surveillance.
Collapse
Affiliation(s)
- Sandra Jaudou
- COLiPATH Unit, Laboratory for Food Safety, ANSES, Maisons-Alfort, France
- National Study Center for Sequencing, Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Carlus Deneke
- National Study Center for Sequencing, Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Mai-Lan Tran
- COLiPATH Unit, Laboratory for Food Safety, ANSES, Maisons-Alfort, France
- Genomics Platform IdentyPath, Laboratory for Food Safety, ANSES, Maisons-Alfort, France
| | - Elisabeth Schuh
- National Reference Laboratory for Escherichia coli including VTEC, Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - André Goehler
- National Reference Laboratory for Escherichia coli including VTEC, Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Fabien Vorimore
- Genomics Platform IdentyPath, Laboratory for Food Safety, ANSES, Maisons-Alfort, France
| | - Burkhard Malorny
- National Study Center for Sequencing, Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Patrick Fach
- COLiPATH Unit, Laboratory for Food Safety, ANSES, Maisons-Alfort, France
- Genomics Platform IdentyPath, Laboratory for Food Safety, ANSES, Maisons-Alfort, France
| | - Josephine Grützke
- National Study Center for Sequencing, Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Sabine Delannoy
- COLiPATH Unit, Laboratory for Food Safety, ANSES, Maisons-Alfort, France
- Genomics Platform IdentyPath, Laboratory for Food Safety, ANSES, Maisons-Alfort, France
| |
Collapse
|
6
|
Wang B, Park B. Microfluidic Sampling and Biosensing Systems for Foodborne Escherichia coli and Salmonella. Foodborne Pathog Dis 2022; 19:359-375. [PMID: 35713922 DOI: 10.1089/fpd.2021.0087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Developments of portable biosensors for field-deployable detections have been increasingly important to control foodborne pathogens in regulatory environment and in early stage of outbreaks. Conventional cultivation and gene amplification methods require sophisticated instruments and highly skilled professionals; while portable biosensing devices provide more freedom for rapid detections not only in research laboratories but also in the field; however, their sensitivity and specificity are limited. Microfluidic methods have the advantage of miniaturizing instrumental size while integrating multiple functions and high-throughput capability into one streamlined system at low cost. Minimal sample consumption is another advantage to detect samples in different sizes and concentrations, which is important for the close monitoring of pathogens at consumer end. They improve measurement or manipulation of bacteria by increasing the ratio of functional interface of the device to the targeted biospecies and in turn reducing background interference. This article introduces the major active and passive microfluidic devices that have been used for bacteria sampling and biosensing. The emphasis is on particle-based sorting/enrichment methods with or without external physical fields applied to the microfluidic devices and on various biosensing applications reported for bacteria sampling. Three major fabrication methods for microfluidics are briefly discussed with their advantages and limitations. The applications of these active and passive microfluidic sampling methods in the past 5 years have been summarized, with the focus on Escherichia coli and Salmonella. The current challenges to microfluidic bacteria sampling are caused by the small size and nonspherical shape of various bacterial cells, which can induce unpredictable deviations in sampling and biosensing processes. Future studies are needed to develop rapid prototyping methods for device manufacturing, which can facilitate rapid response to various foodborne pathogen outbreaks.
Collapse
Affiliation(s)
- Bin Wang
- U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| | - Bosoon Park
- U.S. National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| |
Collapse
|
7
|
OUP accepted manuscript. J AOAC Int 2022; 105:1092-1104. [DOI: 10.1093/jaoacint/qsac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/19/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022]
|
8
|
Prevalence and Whole-Genome Sequence-Based Analysis of Shiga Toxin-Producing Escherichia coli Isolates from the Recto-Anal Junction of Slaughter-Age Irish Sheep. Appl Environ Microbiol 2021; 87:e0138421. [PMID: 34644161 DOI: 10.1128/aem.01384-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) organisms are a diverse group of pathogenic bacteria capable of causing serious human illness, and serogroups O157 and O26 are frequently implicated in human disease. Ruminant hosts are the primary STEC reservoir, and small ruminants are important contributors to STEC transmission. This study investigated the prevalence, serotypes, and shedding dynamics of STEC, including the supershedding of serogroups O157 and O26, in Irish sheep. Recto-anal mucosal swab samples (n = 840) were collected over 24 months from two ovine slaughtering facilities. Samples were plated on selective agars and were quantitatively and qualitatively assessed via real-time PCR (RT-PCR) for Shiga toxin prevalence and serogroup. A subset of STEC isolates (n = 199) were selected for whole-genome sequencing and analyzed in silico. In total, 704/840 (83.8%) swab samples were Shiga toxin positive following RT-PCR screening, and 363/704 (51.6%) animals were subsequently culture positive for STEC. Five animals were shedding STEC O157, and three of these were identified as supershedders. No STEC O26 was isolated. Post hoc statistical analysis showed that younger animals are more likely to harbor STEC and that STEC carriage is most prevalent during the summer months. Following sequencing, 178/199 genomes were confirmed as STEC. Thirty-five different serotypes were identified, 15 of which were not yet reported for sheep. Serotype O91:H14 was the most frequently reported. Eight Shiga toxin gene variants were reported, two stx1 and six stx2, and three novel Shiga-toxin subunit combinations were observed. Variant stx1c was the most prevalent, while many strains also harbored stx2b. IMPORTANCE Shiga toxin-producing Escherichia coli (STEC) bacteria are foodborne, zoonotic pathogens of significant public health concern. All STEC organisms harbor stx, a critical virulence determinant, but it is not expressed in most serotypes. Sheep shed the pathogen via fecal excretion and are increasingly recognized as important contributors to the dissemination of STEC. In this study, we have found that there is high prevalence of STEC circulating within sheep and that prevalence is related to animal age and seasonality. Further, sheep harbor a variety of non-O157 STEC, whose prevalence and contribution to human disease have been underinvestigated for many years. A variety of Stx variants were also observed, some of which are of high clinical importance.
Collapse
|
9
|
Hu Y, Cui G, Fan Y, Liu Y, Zhou W, Huo S, Wu X, Song S, Cui X, Zhao L, Bai L, Cui S, He Z. Isolation and Characterization of Shiga Toxin-Producing Escherichia coli from Retail Beef Samples from Eight Provinces in China. Foodborne Pathog Dis 2021; 18:616-625. [PMID: 34403269 DOI: 10.1089/fpd.2021.0005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
While Shiga toxin-producing Escherichia coli (STEC) is a major foodborne pathogen worldwide, data on the molecular and phylogenetic properties of STEC isolates from retail beef samples in China remain scant. Fresh retail beef samples (n = 1062) were collected from eight provinces, and STEC isolates were recovered and characterized. PCR data showed that more than 50% of the samples were stx positive, and 82 STEC isolates were recovered from 14.8% (79/535) stx-positive enriched broths. In contrast, all ciprofloxacin resistant isolates (n = 19) and 13 cefotaxime (CTX) resistant isolates were eae positive and belonged to three serotypes: O111:H8, O26:H11, or O157:H7. Point mutations in quinolone resistance-determining regions and plasmid-mediated quinolone resistance determinants were identified in 16 and 20 isolates, respectively. BlaCTX-M and a point mutation (C-42T) in ampC promoter were detected in 15 and 8 of the CTX resistant isolates, respectively. In addition, macrolide resistance gene mphA was identified in eight azithromycin resistant O111:H8 isolates and one O26:H11 isolate. Single nucleotide polymorphism analysis demonstrated that the O26 and O157 isolates had multiple origins, but the O111 isolates were closely related. Taken together, our data demonstrated that several sequence types associated with hemolytic uremic syndrome from the retail beef samples in China had developed into dangerous multidrug resistant pathogens. The resistant phenotype can facilitate their transmission among the farm animals and human beings when there is an antimicrobial selective pressure.
Collapse
Affiliation(s)
- Ying Hu
- Department of Food Science, College of Food Science, Southwest University, Chongqing, China
| | - Guangqing Cui
- Department of Microbiology, Shanxi Provincial Institute for Food and Drug Control, Taiyuan, China
| | - Yiling Fan
- Department of Microbiology, NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai, China
| | - Yan Liu
- Department of Microbiology, Hubei Provincial Institute for Food Supervision and Test, Wuhan, China
| | - Wei Zhou
- Department of Microbiology, Hebei Food Inspection and Research Institute, Hebei Food Safety Key Laboratory, Zhengzhou, China
| | - Shengnan Huo
- Department of Microbiology, Shandong Institute for Food and Drug Control, Jinan, China
| | - Xin Wu
- Department of Microbiology, Jiang Xi Institute for Food Control, Nanchang, China
| | - Sheng Song
- Department of Microbiology, Hunan Provincial Key Laboratory of Food Safety Monitoring and Early Warning, Hunan Institute of Food Quality Supervision Inspection and Research, Changsha, China
| | - Xuewen Cui
- Department of Microbiology, Microbiological Inspection Center, Sichuan Institute for Food and Drug Control, Chengdu, China
| | - Linna Zhao
- Department of Food Science, The National Institutes for Food and Drug Control, Beijing, China
| | - Li Bai
- Department of Microbiology, Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, Beijing, China
| | - Shenghui Cui
- Department of Food Science, The National Institutes for Food and Drug Control, Beijing, China
| | - Zhifei He
- Department of Food Science, College of Food Science, Southwest University, Chongqing, China.,Department of Microbiology, Chongqing Engineering Research Center of Regional Food, Chongqing, China
| |
Collapse
|
10
|
Rasamsetti S, Berrang M, Cox NA, Shariat NW. Selective pre-enrichment method to lessen time needed to recover Salmonella from commercial poultry processing samples. Food Microbiol 2021; 99:103818. [PMID: 34119103 DOI: 10.1016/j.fm.2021.103818] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/08/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
Conventional Salmonella detection is time consuming, often employing a 24-h pre-enrichment step in buffered peptone water (BPW), followed by a 24-h selective enrichment in either Rappaport Vassiliadis (RV) or tetrathionate (TT) broths before streaking onto selective indicator agar. To reduce this time, we sought to optimize pre-enrichment for Salmonella recovery by evaluating the addition of selective chemicals to BPW. Duplicate samples each representative of 500 carcasses were collected by catching processing water drip under moving carcass shackle lines immediately after feather removal in each of nine commercial processing plants. Carcass drip samples were cultured under selective pre-enrichment conditions in parallel with BPW pre-enrichment followed by RV and TT selective enrichment. Addition of bile salts (1 g/L) and novobiocin (0.015 g/L) resulted in Salmonella recovery from 89% samples when plated directly after pre-enrichment compared to 67% recovery in non-selective BPW alone. Salmonella serovar identities were determined using CRISPR-SeroSeq. Overall, serovars matched between selective pre-enrichment and traditional enrichment methods. These data suggest that increasing the selectivity of Salmonella pre-enrichment step may lessen the need for a separate selective enrichment step thereby reducing time required for Salmonella isolation by 24 h.
Collapse
Affiliation(s)
- Surendra Rasamsetti
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, 30602, GA, USA
| | - Mark Berrang
- USDA-Agricultural Research Service, U.S. National Poultry Research Center, Athens, 30605, GA, USA
| | - Nelson A Cox
- USDA-Agricultural Research Service, U.S. National Poultry Research Center, Athens, 30605, GA, USA
| | - Nikki W Shariat
- Department of Population Health, Poultry Diagnostic and Research Center, University of Georgia, Athens, 30602, GA, USA.
| |
Collapse
|
11
|
Comparison of UV, Peracetic Acid and Sodium Hypochlorite Treatment in the Disinfection of Urban Wastewater. Pathogens 2021; 10:pathogens10020182. [PMID: 33572069 PMCID: PMC7914577 DOI: 10.3390/pathogens10020182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 11/16/2022] Open
Abstract
One source of water contamination is the release of wastewater that has not undergone efficient treatment. The aim of this study was to evaluate the reduction obtained with sodium hypochlorite (NaClO), UV and peracetic acid disinfection treatment of Salmonella spp., pathogenic Campylobacter, STEC and bacterial indicators in three full-scale municipal wastewater plants. A general reduction in Salmonella was observed after disinfection, but these bacteria were detected in one UV-treated sample (culture method) and in 33%, 50% and 17% of samples collected after NaClO, UV and PAA disinfection treatments, respectively (PCR method). A better reduction was also observed under NaClO disinfection for the microbial indicators. Independent of the disinfection treatment, E. coli O157:H7 was not detected in the disinfected samples, whereas some samples treated with UV and PAA showed the presence of the stx1 gene. No reduction in the presence of stx2 genes was verified for any of the disinfection treatments. Campylobacter was not detected in any of the analysed samples. The overall results highlight a better reduction in microbiological parameters with a NaClO disinfection treatment in a full-scale municipal wastewater plant compared with UV and PAA. However, the results indicate that a complete and specific monitoring program is necessary to prevent a possible risk to public health.
Collapse
|
12
|
Ali AA, Altemimi AB, Alhelfi N, Ibrahim SA. Application of Biosensors for Detection of Pathogenic Food Bacteria: A Review. BIOSENSORS 2020; 10:E58. [PMID: 32486225 PMCID: PMC7344754 DOI: 10.3390/bios10060058] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
Abstract
The use of biosensors is considered a novel approach for the rapid detection of foodborne pathogens in food products. Biosensors, which can convert biological, chemical, or biochemical signals into measurable electrical signals, are systems containing a biological detection material combined with a chemical or physical transducer. The objective of this review was to present the effectiveness of various forms of sensing technologies for the detection of foodborne pathogens in food products, as well as the criteria for industrial use of this technology. In this article, the principle components and requirements for an ideal biosensor, types, and their applications in the food industry are summarized. This review also focuses in detail on the application of the most widely used biosensor types in food safety.
Collapse
Affiliation(s)
- Athmar A. Ali
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61001, Iraq; (A.A.A.); (A.B.A.); (N.A.)
| | - Ammar B. Altemimi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61001, Iraq; (A.A.A.); (A.B.A.); (N.A.)
| | - Nawfal Alhelfi
- Department of Food Science, College of Agriculture, University of Basrah, Basrah 61001, Iraq; (A.A.A.); (A.B.A.); (N.A.)
| | - Salam A. Ibrahim
- Food and Nutritional Science Program, North Carolina A & T State University, Greensboro, NC 27411, USA
| |
Collapse
|
13
|
Macori G, McCarthy SC, Burgess CM, Fanning S, Duffy G. Investigation of the Causes of Shigatoxigenic Escherichia coli PCR Positive and Culture Negative Samples. Microorganisms 2020; 8:microorganisms8040587. [PMID: 32325659 PMCID: PMC7232186 DOI: 10.3390/microorganisms8040587] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
Molecular methods may reveal the presence of pathogens in samples through the detection of specific target gene(s) associated with microorganisms, but often, the subsequent cultural isolation of the pathogen is not possible. This discrepancy may be related to low concentration of the cells, presence of dead cells, competitive microflora, injured cells and cells in a viable but non-culturable state, free DNA and the presence of free bacteriophages which can carry the target gene causing the PCR-positive/culture-negative results. Shiga-toxigenic Escherichia coli (STEC) was used as a model for studying this phenomenon, based on the phage-encoded cytotoxins genes (Stx family) as the detection target in samples through real-time qPCR. Stx phages can be integrated in the STEC chromosome or can be isolated as free particles in the environment. In this study, a combination of PCR with culturing was used for investigating the presence of the stx1 and stx2 genes in 155 ovine recto-anal junction swab samples (method (a)-PCR). Samples which were PCR-positive and culture-negative were subjected to additional analyses including detection of dead STEC cells (method (b)-PCR-PMA dye assay), presence of Stx phages (method (c)-plaque assays) and inducible integrated phages (method (d)-phage induction). Method (a) showed that even though 121 samples gave a PCR-positive result (78%), only 68 samples yielded a culturable isolate (43.9%). Among the 53 (34.2%) PCR-positive/culture-negative samples, 21 (39.6%) samples were shown to have STEC dead cells only, eight (15.1%) had a combination of dead cells and inducible stx phage, while two samples (3.8%) had a combination of dead cells, inducible phage and free stx phage, and a further two samples had Stx1 free phages only (3.8%). It was thus possible to reduce the samples with no explanation to 20 (37.7% of 53 samples), representing a further step towards an improved understanding of the STEC PCR-positive/culture-negative phenomenon.
Collapse
Affiliation(s)
- Guerrino Macori
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; (S.C.M.); (G.D.)
- Correspondence: (G.M.); (C.M.B.)
| | - Siobhán C. McCarthy
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; (S.C.M.); (G.D.)
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland;
| | - Catherine M. Burgess
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; (S.C.M.); (G.D.)
- Correspondence: (G.M.); (C.M.B.)
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, Belfield, Dublin D04 N2E5, Ireland;
| | - Geraldine Duffy
- Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; (S.C.M.); (G.D.)
| |
Collapse
|
14
|
Rotundo L, Amagliani G, Carloni E, Omiccioli E, Magnani M, Paoli G. Evaluation of PCR-based methods for the identification of enteroaggregative hemorrhagic Escherichia coli in sprouts. Int J Food Microbiol 2019; 291:59-64. [DOI: 10.1016/j.ijfoodmicro.2018.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 11/27/2022]
|
15
|
Varcasia BM, Tomassetti F, De Santis L, Di Giamberardino F, Lovari S, Bilei S, De Santis P. Presence of Shiga Toxin-Producing Escherichia coli (STEC) in Fresh Beef Marketed in 13 Regions of ITALY (2017). Microorganisms 2018; 6:E126. [PMID: 30563244 PMCID: PMC6313577 DOI: 10.3390/microorganisms6040126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to determine the prevalence of Shiga toxin-producing Escherichia coli in fresh beef marketed in 2017 in 13 regions of Italy, to evaluate the potential risk to human health. According to the ISO/TS 13136:2012 standard, 239 samples were analysed and nine were STEC positive, from which 20 strains were isolated. The STEC-positive samples were obtained from Calabria (n = 1), Campania (n = 1), Lazio (n = 2), Liguria (n = 1), Lombardia (n = 1) and Veneto (n = 3). All STEC strains were analysed for serogroups O26, O45, O55, O91, O103, O104, O111, O113, O121, O128, O145, O146 and O157, using Real-Time PCR. Three serogroups were identified amongst the 20 strains: O91 (n = 5), O113 (n = 2), and O157 (n = 1); the O-group for each of the 12 remaining STEC strains was not identified. Six stx subtypes were detected: stx1a, stx1c, stx2a, stx2b, stx2c and stx2d. Subtype stx2c was the most common, followed by stx2d and stx2b. Subtype stx2a was identified in only one eae-negative strain and occurred in combination with stx1a, stx1c and stx2b. The presence in meat of STEC strains being potentially harmful to human health shows the importance, during harvest, of implementing additional measures to reduce contamination risk.
Collapse
Affiliation(s)
- Bianca Maria Varcasia
- Istituto Zooprofilattico Sperimentale Lazio e Toscana, "M. Aleandri", 00178 Rome, Italy.
| | - Francesco Tomassetti
- Istituto Zooprofilattico Sperimentale Lazio e Toscana, "M. Aleandri", 00178 Rome, Italy.
| | - Laura De Santis
- Istituto Zooprofilattico Sperimentale Lazio e Toscana, "M. Aleandri", 00178 Rome, Italy.
| | | | - Sarah Lovari
- Istituto Zooprofilattico Sperimentale Lazio e Toscana, "M. Aleandri", 00178 Rome, Italy.
| | - Stefano Bilei
- Istituto Zooprofilattico Sperimentale Lazio e Toscana, "M. Aleandri", 00178 Rome, Italy.
| | - Paola De Santis
- Istituto Zooprofilattico Sperimentale Lazio e Toscana, "M. Aleandri", 00178 Rome, Italy.
| |
Collapse
|
16
|
Rotundo L, Boccia F, Fratamico PM, Xu A, Sommers CH, Liu Y, Bono JL, Pepe T. Draft Genome Sequences of Seven Strains of Shiga Toxin-Producing Escherichia coli O111 with Variation in Their Sensitivity to Novobiocin. Microbiol Resour Announc 2018; 7:e01030-18. [PMID: 30533630 PMCID: PMC6256608 DOI: 10.1128/mra.01030-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 08/15/2018] [Indexed: 11/20/2022] Open
Abstract
Inclusion of novobiocin as a selective agent for enrichment media and selective agars inhibits the growth of some Shiga toxin-producing Escherichia coli (STEC) strains, particularly non-O157 STEC, which can yield false-negative detection results. Here, we report the draft genomic sequences of seven STEC O111 isolates with different sensitivities to novobiocin.
Collapse
Affiliation(s)
- Luca Rotundo
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| | - Federica Boccia
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Pina M. Fratamico
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| | - Aixia Xu
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| | - Christopher H. Sommers
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| | - Yanhong Liu
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, Pennsylvania, USA
| | - James L. Bono
- USDA, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska, USA
| | - Tiziana Pepe
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
17
|
Comparison of the Diatheva STEC FLUO with BAX System Kits for Detection of O157:H7 and Non-O157 Shiga Toxin-Producing Escherichia coli (STEC) in Ground Beef and Bean Sprout Samples Using Different Enrichment Protocols. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1269-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|