1
|
Martinez Tuppia C, Rezaei MN, Machuron F, Duysburgh C, Ghyselinck J, Marzorati M, Koper JEB, Monnet C, Bosco N. In Vitro Human Gastrointestinal Digestibility and Colonic Fermentation of Wheat Sourdough and Yeast Breads. Foods 2024; 13:3014. [PMID: 39335943 PMCID: PMC11431057 DOI: 10.3390/foods13183014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Bread can vary in textural and nutritional attributes based on differences in the bread making process (e.g., flour type, fermentation agent, fermentation time). Four bread recipes (BRs) made with sourdough preferments (BR1, white flour; BR2, whole grain flour) or regular yeast breads (BR3, white flour; BR4, whole grain flour) were evaluated for texture, digestibility, and their effect on the metabolic activity and composition of the gut microbiota using texture profile analysis (TPA) coupled with in vitro upper gastrointestinal (GIT) digestion and colonic fermentation (Colon-on-a-plate™ model), using fecal samples from eight healthy human donors. TPA revealed significantly higher values for hardness, fracturability, gumminess, and chewiness, and significantly lower values for springiness, cohesiveness, and resilience with whole grain versus white breads (all p < 0.001); values for springiness, cohesiveness, and resilience were significantly higher for sourdough versus yeast bread (p < 0.001). Nutrient composition and bioaccessibility were generally comparable between sourdough and yeast bread with similar flours. Following simulation of upper GIT digestion, all BRs demonstrated good digestibility of minerals, carbohydrates, and proteins. Colonic fermentation revealed changes in gut microbiota composition, significant increases in short-chain fatty acids, and a significant decrease in branched short-chain fatty acids with all BRs versus a blank. Overall, new insights into wheat bread digestibility and colonic fermentation were provided, which are important aspects to fully characterize bread nutritional profile and potential.
Collapse
Affiliation(s)
- Ccori Martinez Tuppia
- Lesaffre Institute of Science and Technology, 59700 Marcq-en-Barœul, France; (C.M.T.); (M.N.R.); (F.M.); (J.E.B.K.); (C.M.)
| | - Mohammad N. Rezaei
- Lesaffre Institute of Science and Technology, 59700 Marcq-en-Barœul, France; (C.M.T.); (M.N.R.); (F.M.); (J.E.B.K.); (C.M.)
| | - François Machuron
- Lesaffre Institute of Science and Technology, 59700 Marcq-en-Barœul, France; (C.M.T.); (M.N.R.); (F.M.); (J.E.B.K.); (C.M.)
| | - Cindy Duysburgh
- Prodigest, Technologiepark 82, 9052 Zwijnaarde, Belgium; (C.D.); (J.G.); (M.M.)
| | - Jonas Ghyselinck
- Prodigest, Technologiepark 82, 9052 Zwijnaarde, Belgium; (C.D.); (J.G.); (M.M.)
| | - Massimo Marzorati
- Prodigest, Technologiepark 82, 9052 Zwijnaarde, Belgium; (C.D.); (J.G.); (M.M.)
| | - Jonna E. B. Koper
- Lesaffre Institute of Science and Technology, 59700 Marcq-en-Barœul, France; (C.M.T.); (M.N.R.); (F.M.); (J.E.B.K.); (C.M.)
| | - Céline Monnet
- Lesaffre Institute of Science and Technology, 59700 Marcq-en-Barœul, France; (C.M.T.); (M.N.R.); (F.M.); (J.E.B.K.); (C.M.)
| | - Nabil Bosco
- Lesaffre Institute of Science and Technology, 59700 Marcq-en-Barœul, France; (C.M.T.); (M.N.R.); (F.M.); (J.E.B.K.); (C.M.)
| |
Collapse
|
2
|
Okelo EO, Wainaina I, Duijsens D, Onyango A, Sila D, Grauwet T, Hendrickx MEG. Targeted hydrothermally induced cell biopolymer changes explain the in vitro digestion of starch and proteins in common bean ( Phaseolus vulgaris) cotyledons. Food Funct 2024; 15:8848-8864. [PMID: 39118584 DOI: 10.1039/d4fo00734d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Digestion of macro-nutrients (protein and starch) in pulses is a consequence of the interplay of both extrinsic (process-related) and intrinsic (matrix-dependent) factors which influence their level of encapsulation and physical state, and therefore, their accessibility by the digestive enzymes. The current work aimed at understanding the consequences of hydrothermally induced changes in the physical state of cell biopolymers (cell wall, protein, and starch) in modulating the digestion kinetics of starch and proteins in common beans. The hydrothermal treatments were designed such that targeted microstructural/biopolymer changes occurred. Therefore, bean samples were processed at temperatures between 60 and 95 °C for 90 minutes. It was demonstrated that these treatments allowed the modulation of starch gelatinization, protein denaturation and cell separation. The specific role of hydrothermally induced starch gelatinization and protein denaturation, alongside enhanced cell wall permeability on the digestion kinetics of common bean starch and proteins is illustrated. For instance, bean samples processed at T > 70 °C were marked by higher levels of starch digestibility (Cf values above 47%) compared to the partially (un-)gelatinized samples (processed at T ≤ 70 °C) (Cf values below 35%). Similarly, samples processed at T > 85 °C exhibited significantly higher levels of protein digestibility (Cf values above 47%) resulting from complete protein denaturation. Moreover, increased permeability of the cell wall to digestive enzymes in these samples (T > 85 °C) increased levels of digestibility of both gelatinized starch and denatured proteins. This study provides an understanding of the potential use of hydrothermal processing to obtain pulse-based ingredients with pre-determined microstructural and nutritional characteristics.
Collapse
Affiliation(s)
- Erick O Okelo
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200, Nairobi, Kenya.
| | - Irene Wainaina
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200, Nairobi, Kenya.
| | - Dorine Duijsens
- Laboratory of Food Technology, Department of Microbial and Molecular systems, KU Leuven, Kasteelpark Arenberg 22, Box 2457, B-3001, Leuven, Belgium.
| | - Arnold Onyango
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200, Nairobi, Kenya.
| | - Daniel Sila
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000-00200, Nairobi, Kenya.
| | - Tara Grauwet
- Laboratory of Food Technology, Department of Microbial and Molecular systems, KU Leuven, Kasteelpark Arenberg 22, Box 2457, B-3001, Leuven, Belgium.
| | - Marc E G Hendrickx
- Laboratory of Food Technology, Department of Microbial and Molecular systems, KU Leuven, Kasteelpark Arenberg 22, Box 2457, B-3001, Leuven, Belgium.
| |
Collapse
|
3
|
Perucini-Avendaño M, Arzate-Vázquez I, Perea-Flores MDJ, Tapia-Maruri D, Méndez-Méndez JV, Nicolás-García M, Dávila-Ortiz G. Effect of cooking on structural changes in the common black bean ( Phaseolus vulgaris var. Jamapa). Heliyon 2024; 10:e25620. [PMID: 38380000 PMCID: PMC10877254 DOI: 10.1016/j.heliyon.2024.e25620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
The cooking process is fundamental for bean consumption and to increase the bioavailability of its nutritional components. The study aimed to determine the effect of cooking on bean seed coat through morphological analyses with different microscopy techniques and image analyses. The chemical composition and physical properties of raw black bean (RBB) and cooked black bean (CBB) seeds were determined. The surface and cross-sectional samples were studied by Optical microscopy (OM), environmental scanning electron microscopy (ESEM), atomic force microscopy (AFM) and confocal laser scanning microscopy (CLSM). The composition of samples showed significant differences after the cooking process. OM images and gray level co-occurrence matrix algorithm (GLCM) analysis indicated that cuticle-deposited minerals significantly influence texture parameters. Seed coat surface ESEM images showed cluster cracking. Texture fractal dimension and lacunarity parameters were effective in quantitatively assessing cracks on CBB. AFM results showed arithmetic average roughness (Ra) (121.67 nm) and quadratic average roughness (Rq) (149.94 nm). The cross-sectional ESEM images showed a decrease in seed coat thickness. The CLSM results showed an increased availability of lipids along the different multilayer tissues in CBB. The results generated from this research work offer a valuable potential to carry out a strict control of bean seed cooking at industrial level, since the structural changes and biochemical components (cell wall, lipids and protein bodies) that occur in the different tissues of the seed are able to migrate from the inside to the outside through the cracks generated in the multilayer structure that are evidenced by the microscopic techniques used.
Collapse
Affiliation(s)
- Madeleine Perucini-Avendaño
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, 07738, Mexico City, Mexico
| | - Israel Arzate-Vázquez
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional (IPN), Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, 07738, Mexico City, Mexico
| | - María de Jesús Perea-Flores
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional (IPN), Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, 07738, Mexico City, Mexico
| | - Daniel Tapia-Maruri
- Centro de Desarrollo de Productos Bióticos-Instituto Politécnico Nacional, Carretera Yautepec-Jojutla Km. 6, Calle CEPROBI No. 8, Col. San Isidro, Yautepec, C.P. 62731, Morelos, Mexico
| | - Juan Vicente Méndez-Méndez
- Centro de Nanociencias y Micro y Nanotecnologías, Instituto Politécnico Nacional (IPN), Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, 07738, Mexico City, Mexico
| | - Mayra Nicolás-García
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, 07738, Mexico City, Mexico
- Tecnológico Nacional de México/ITS de Teziutlán, Ingeniería en Industrias Alimentarias, Fracción I y II, Aire Libre S/N, 73960, Teziutlán, Puebla, Mexico
| | - Gloria Dávila-Ortiz
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Delegación Gustavo A. Madero, 07738, Mexico City, Mexico
| |
Collapse
|
4
|
Lin T, O'Keefe S, Duncan S, Fernández-Fraguas C. Dry beans (Phaseolus vulgaris L.) modulate the kinetics of lipid digestion in vitro: Impact of the bean matrix and processing. Food Res Int 2023; 173:113245. [PMID: 37803558 DOI: 10.1016/j.foodres.2023.113245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 10/08/2023]
Abstract
The lipid-lowering effect of dry beans and their impact on lipid and cholesterol metabolism have been established. This study investigates the underlying mechanisms of this effect and explore how the structural integrity of processed beans influences their ability to modulate lipolysis using the INFOGEST static in vitro digestion model. Dietary fiber (DF) fractions were found to decrease lipolysis by increasing the digesta viscosity, leading to depletion-flocculation and/or coalescence of lipid droplets. Bean flours exhibited a more pronounced reduction in lipolysis compared to DF. Furthermore, different levels of bean structural integrity showed varying effects on modulating lipolysis, with medium-sized bean particles demonstrating a stronger reduction. Hydrothermal treatment compromised the ability of beans to modulate lipid digestion, while hydrostatic-pressure treatment (600 MPa/5min) enhanced the effect. These findings highlight that the lipid-lowering effect of beans is not solely attributed to DF but also to the overall bean matrix, which can be manipulated through processing techniques.
Collapse
Affiliation(s)
- Tiantian Lin
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Sean O'Keefe
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Susan Duncan
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Cristina Fernández-Fraguas
- Department of Food Science and Technology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA; Macromolecules Innovation Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.
| |
Collapse
|
5
|
Wu C, Dhital S, Mo Y, Fu X, Huang Q, Zhang B. Salt adopted in soaking solution controls the yield and starch digestion kinetics of intact pulse cotyledon cells. Carbohydr Polym 2023; 314:120949. [PMID: 37173051 DOI: 10.1016/j.carbpol.2023.120949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/27/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
Intact cellular powders have gained attention as a functional ingredient due to their lower glycemic response and potential benefits in colon. The isolation of intact cells in the laboratory and pilot plant settings is mainly achieved through thermal treatment with or without the use of limited salts. However, the effects of salt type and concentration on cell porosity, and their impact on the enzymic hydrolysis of encapsulated macro-nutrients such as starch, have been overlooked. In this study, different salt-soaking solutions were used to isolate intact cotyledon cells from white kidney beans. The use of Na2CO3 and Na3PO4 soaking treatments, with high pH (11.5-12.7) and high amount of Na ion (0.1, 0.5 M), greatly improved the yield of cellular powder (49.6-55.5 %), due to the solubilization of pectin through β-elimination and ion exchange. Intact cell walls serve as a physical barrier, significantly reducing the susceptibility of cell to amylolysis when compared to white kidney bean flour and starch counterparts. However, the solubilization of pectin may facilitate enzyme access into the cells by enlarging cell wall permeability. These findings provide new insights into the processing optimization to improve the yield and nutritional value of intact pulse cotyledon cells as a functional food ingredient.
Collapse
Affiliation(s)
- Chumin Wu
- South China University of Technology, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Sushil Dhital
- Monash University, Department of Chemical and Biological Engineering, Clayton Campus, VIC 3800, Australia
| | - Yongyi Mo
- South China University of Technology, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Xiong Fu
- South China University of Technology, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, Guangzhou 510640, China
| | - Qiang Huang
- South China University of Technology, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, Guangzhou 510640, China
| | - Bin Zhang
- South China University of Technology, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health, Guangzhou 510640, China.
| |
Collapse
|
6
|
Variation in structural and in vitro starch digestion of pulse cotyledon cells imposed by temperature-pressure-moisture combinations. Food Chem X 2023; 18:100625. [PMID: 36926311 PMCID: PMC10010977 DOI: 10.1016/j.fochx.2023.100625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023] Open
Abstract
Starch digestibility in whole pulses is affected by food structural characteristics, which in turn can be modulated by processing methods. In present study, high-pressure steam (HPS) and hydrothermal treatment (HT) with different moisture content were applied to clarify the mechanisms of processing variables affecting in vitro starch digestibility in pulse cells. Based on thermal and X-ray results, the relative crystallinity of cells decreased after HPS and HT treatments. However, HPS-treated cells under higher (>50%) moisture content showed insignificant discrepancies in crystallinity than HT samples. Starch digestion in HPS-treated cells increased with higher moisture content but was still lower than in HT samples. Results of FITC-dextran diffusion and methyl esterification of cell walls indicated that cells with higher wall permeability exhibited relatively higher starch digestibility. This study suggests that the enzyme susceptibility to starch in cells is dominantly influenced by cell wall structure, which could be optimized through processing variables.
Collapse
|
7
|
Insights into the relations between cell wall integrity and in vitro digestion properties of granular starches in pulse cotyledon cells after dry heat treatment. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
How Cooking Time Affects In Vitro Starch and Protein Digestibility of Whole Cooked Lentil Seeds versus Isolated Cotyledon Cells. Foods 2023; 12:foods12030525. [PMID: 36766054 PMCID: PMC9914867 DOI: 10.3390/foods12030525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/13/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Lentils are sustainable sources of bioencapsulated macronutrients, meaning physical barriers hinder the permeation of digestive enzymes into cotyledon cells, slowing down macronutrient digestion. While lentils are typically consumed as cooked seeds, insights into the effect of cooking time on microstructural and related digestive properties are lacking. Therefore, the effect of cooking time (15, 30, or 60 min) on in vitro amylolysis and proteolysis kinetics of lentil seeds (CL) and an important microstructural fraction, i.e., cotyledon cells isolated thereof (ICC), were studied. For ICC, cooking time had no significant effect on amylolysis kinetics, while small but significant differences in proteolysis were observed (p < 0.05). In contrast, cooking time importantly affected the microstructure obtained upon the mechanical disintegration of whole lentils, resulting in significantly different digestion kinetics. Upon long cooking times (60 min), digestion kinetics approached those of ICC since mechanical disintegration yielded a high fraction of individual cotyledon cells (67 g/100 g dry matter). However, cooked lentils with a short cooking time (15 min) showed significantly slower amylolysis with a lower final extent (~30%), due to the presence of more cell clusters upon disintegration. In conclusion, cooking time can be used to obtain distinct microstructures and digestive functionalities with perspectives for household and industrial preparation.
Collapse
|
9
|
Ajala A, Kaur L, Lee SJ, Singh J. Native and processed legume seed microstructure and its influence on starch digestion and glycaemic features: A review. Trends Food Sci Technol 2023. [DOI: 10.1016/j.tifs.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Probing the Double-Layered Cotyledon Cell Structure of Navy Beans: Barrier Effect of the Protein Matrix on In Vitro Starch Digestion. Nutrients 2022; 15:nu15010105. [PMID: 36615763 PMCID: PMC9824682 DOI: 10.3390/nu15010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
The microstructure of legumes plays a crucial role in regulating starch digestion and postprandial glycemic responses. Starch granules are double encapsulated within the outer cell wall and the inner protein matrix of legume cotyledon cells. Despite progress in understanding the role of cell walls in delaying starch digestion, the role of the protein matrix has received little research attention. The aim of this study was to evaluate if the protein matrix and cell wall may present combined physical barriers retarding enzyme hydrolysis of intracellular starch. Intact cotyledon cells were isolated from navy beans and used to assess the barrier effect of the protein matrix on the digestion of starch under conditions simulating the upper gastrointestinal tract. The cells were pretreated with pepsin at 37 °C and pH 2.0 for 1, 4, or 24 h and without pepsin for 24 h (control) to facilitate removal of the intracellular protein matrix prior to cooking and simulated in vitro digestion. A longer pretreatment time resulted in a lower protein content of the cells and a higher initial rate and extent of starch hydrolysis. We suggest that in addition to the primary cell wall barrier, the protein matrix provides a secondary barrier restricting the accessibility of α-amylase to starch. This study provides a new fundamental understanding of the relationship between the structural organization of legume cotyledon cells and starch digestion that could inform the design of novel low glycemic index foods.
Collapse
|
11
|
Duijsens D, Pälchen K, De Coster A, Verkempinck S, Hendrickx M, Grauwet T. Effect of manufacturing conditions on in vitro starch and protein digestibility of (cellular) lentil-based ingredients. Food Res Int 2022; 158:111546. [DOI: 10.1016/j.foodres.2022.111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/07/2022] [Accepted: 06/18/2022] [Indexed: 11/04/2022]
|
12
|
Pälchen K, Bredie WLP, Duijsens D, Isaac Alfie Castillo A, Hendrickx M, Van Loey A, Raben A, Grauwet T. Effect of processing and microstructural properties of chickpea-flours on in vitro digestion and appetite sensations. Food Res Int 2022; 157:111245. [PMID: 35761557 DOI: 10.1016/j.foodres.2022.111245] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 11/16/2022]
Abstract
Nowadays, pulse flours are ingredients that are more and more used as substitutes in traditional staples (i.e., pasta, bread). In this study, cellular chickpea-flour was used as an ingredient to replace conventional raw-milled chickpea-flour in suspensions and semi-solid purees. The contribution of cellular integrity on in vitro macronutrient digestion and the subsequent effect on in vivo appetite sensations were investigated. Alternating the flour preparation sequence by interchanging hydrothermal treatment and mechanical disintegration (thermo-mechanical treatment) resulted in three chickpea-flours with distinct levels of cellular integrity, and thus nutrient accessibility. The study showed that cellular integrity in chickpea-flours was preserved upon secondary hydrothermal treatment and led to significant attenuation of in vitro macronutrient digestion as compared to conventional chickpea-flour. In a randomized crossover design, significant increase of mean in vivo subjective appetite sensations satiety and fullness along with decreases in hunger, desire to eat, and prospective food consumption were achieved when cellular integrity was kept without an effect on palatability and appearance of the purees (n = 22). In vitro digestion along with microstructural assessment confirmed the importance of cellular integrity for attenuating macronutrient digestion and thereby contributing to enhanced subjective satiety and fullness in pulses. Overall, this study highlights the promising potential of altarenating the flour preparation sequence resulting in macronutrient and energy-matched flours with different nutrient encapsulation which lead to different in vitro digestion kinetics and in vivo appetite sensations.
Collapse
Affiliation(s)
- Katharina Pälchen
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Wender L P Bredie
- Department of Food Science, Section for Food Design and Consumer Behaviour, Faculty of Science, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg, Denmark.
| | - Dorine Duijsens
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Alan Isaac Alfie Castillo
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Marc Hendrickx
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Ann Van Loey
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Anne Raben
- Department of Nutrition, Exercise, and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 30, DK-1958 Frederiksberg, Denmark; Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, DK-2730 Herlev, Denmark.
| | - Tara Grauwet
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| |
Collapse
|
13
|
Utilizing Hydrothermal Processing to Align Structure and In Vitro Digestion Kinetics between Three Different Pulse Types. Foods 2022; 11:foods11020206. [PMID: 35053939 PMCID: PMC8775171 DOI: 10.3390/foods11020206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/28/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023] Open
Abstract
Processing results in the transformation of pulses’ structural architecture. Consequently, digestion is anticipated to emerge from the combined effect of intrinsic (matrix-dependent) and extrinsic (processed-induced) factors. In this work, we aimed to investigate the interrelated effect of intrinsic and extrinsic factors on pulses’ structural architecture and resulting digestive consequences. Three commercially relevant pulses (chickpea, pea, black bean) were selected based on reported differences in macronutrient and cell wall composition. Starch and protein digestion kinetics of hydrothermally processed whole pulses were assessed along with microstructural and physicochemical characteristics and compared to the digestion behavior of individual cotyledon cells isolated thereof. Despite different rates of hardness decay upon hydrothermal processing, the pulses reached similar residual hardness values (40 N). Aligning the pulses at the level of this macrostructural property translated into similar microstructural characteristics after mechanical disintegration (isolated cotyledon cells) with comparable yields of cotyledon cells for all pulses (41–62%). We observed that processing to equivalent microstructural properties resulted in similar starch and protein digestion kinetics, regardless of the pulse type and (prolonged) processing times. This demonstrated the capacity of (residual) hardness as a food structuring parameter in pulses. Furthermore, we illustrated that the digestive behavior of isolated cotyledon cells was representative of the digestion behavior of corresponding whole pulses, opening up perspectives for the incorporation of complete hydrothermally processed pulses as food ingredients.
Collapse
|
14
|
Alpos M, Leong SY, Liesaputra V, Oey I. Influence of pulsed electric fields (PEF) with calcium addition on the texture profile of cooked black beans (Phaseolus vulgaris) and their particle breakdown during in vivo oral processing. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2021.102892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Li HT, Chen SQ, Bui AT, Xu B, Dhital S. Natural ‘capsule’ in food plants: Cell wall porosity controls starch digestion and fermentation. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106657] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Pälchen K, Michels D, Duijsens D, Gwala S, Pallares Pallares A, Hendrickx M, Van Loey A, Grauwet T. In vitro protein and starch digestion kinetics of individual chickpea cells: from static to more complex in vitro digestion approaches. Food Funct 2021; 12:7787-7804. [PMID: 34231615 DOI: 10.1039/d1fo01123e] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Attention has been given to more (semi-)dynamic in vitro digestion approaches ascertaining the consequences of dynamic in vivo aspects on in vitro digestion kinetics. As these often come with time and economical constraints, evaluating the consequence of stepwise increasing the complexity of static in vitro approaches using easy-to-handle digestion set-ups has been the center of our interest. Starting from the INFOGEST static in vitro protocol, we studied the influence of static gastric pH versus gradual gastric pH change (pH 6.3 to pH 2.5 in 2 h) on macronutrient digestion in individual cotyledon cells derived from chickpeas. Little effect on small intestinal proteolysis was observed comparing the applied digestion conditions. Contrary, the implementation of a gradual gastric pH change, with and without the addition of salivary α-amylase, altered starch digestion kinetics rates, and extents by 25%. The evaluation of starch and protein digestion, being co-embedded in cotyledon cells, did not only confirm but account for the interdependent digestion behavior. The insights generated in this study demonstrate the possibility of using a hypothesis-based approach to introduce dynamic factors to in vitro models while sticking to simple and cost-efficient set-ups.
Collapse
Affiliation(s)
- Katharina Pälchen
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Khrisanapant P, Leong SY, Kebede B, Oey I. Effects of Hydrothermal Processing Duration on the Texture, Starch and Protein In Vitro Digestibility of Cowpeas, Chickpeas and Kidney Beans. Foods 2021; 10:1415. [PMID: 34207291 PMCID: PMC8234845 DOI: 10.3390/foods10061415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
Legumes are a vital candidate in the fight for food security as a sustainable and nutritious food source. The current study systematically investigated the effects of hydrothermal processing of varying durations (15-120 min) on the texture, starch and protein digestibility of cowpeas (Vigna unguiculata), chickpeas (Cicer arietinum) and kidney beans (Phaseolus vulgaris). Texture analysis and in vitro oral-gastro-intestinal digestion of each legume was combined with kinetic modelling to explore the rate and extent of their changes observed during hydrothermal processing. All three legumes showed rapid initial texture decay in the first 30 min of processing. Chickpeas showed the fastest rate of texture degradation with processing duration, whereas texture degradation of kidney bean was slower but reached the lowest hardness value among all beans when processed up to 120 min. The rate of starch and protein digestion increased with prolonged processing duration, whilst showing an inverse relationship with texture values. The extent of starch digestion continually increased with processing duration for all three legumes, whereas the extent of protein digestion decreased after 60 min in cowpeas. This study systematically demonstrated how choosing different processing times can modulate the rate of texture degradation, starch and protein digestion in legumes. The findings of this study can aid consumers and manufacturers on optimal processing to achieve the desired texture or modulate starch and protein digestibility.
Collapse
Affiliation(s)
- Prit Khrisanapant
- Department of Food Science, Division of Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (P.K.); (S.Y.L.); (B.K.)
- Riddet Institute, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Sze Ying Leong
- Department of Food Science, Division of Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (P.K.); (S.Y.L.); (B.K.)
- Riddet Institute, Private Bag 11 222, Palmerston North 4442, New Zealand
| | - Biniam Kebede
- Department of Food Science, Division of Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (P.K.); (S.Y.L.); (B.K.)
| | - Indrawati Oey
- Department of Food Science, Division of Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand; (P.K.); (S.Y.L.); (B.K.)
- Riddet Institute, Private Bag 11 222, Palmerston North 4442, New Zealand
| |
Collapse
|
18
|
Alpos M, Leong SY, Oey I. Combined Effects of Calcium Addition and Thermal Processing on the Texture and In Vitro Digestibility of Starch and Protein of Black Beans ( Phaseolus vulgaris). Foods 2021; 10:foods10061368. [PMID: 34199236 PMCID: PMC8231884 DOI: 10.3390/foods10061368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 11/16/2022] Open
Abstract
Legumes are typically soaked overnight to reduce antinutrients and then cooked prior to consumption. However, thermal processing can cause over-softening of legumes. This study aimed to determine the effect of calcium addition (0, 100, 300, and 500 ppm in the form of calcium chloride, CaCl2), starting from the overnight soaking step, in reducing the loss of firmness of black beans during thermal processing for up to 2 h. The impact of calcium addition on the in vitro starch and protein digestibility of cooked beans was also assessed. Two strategies of calcium addition were employed in this study: (Strategy 1/S1) beans were soaked and then cooked in the same CaCl2 solution, or (Strategy 2/S2) cooked in a freshly prepared CaCl2 solution after the calcium-containing soaking medium was discarded. Despite the texture degradation of black beans brought about by increasing the cooking time, texture profile analysis (TPA) revealed that their hardness, cohesiveness, springiness, chewiness, and resilience improved significantly (p < 0.05) with increasing calcium concentration. Interestingly, beans cooked for 2 h with 300 ppm CaCl2 shared similar hardness with beans cooked for 1 h without calcium addition. Starch and protein digestibility of calcium-treated beans generally improved with prolonged cooking. However, calcium-treated beans cooked for 1 h under S2 achieved a reduced texture loss and a lower starch digestibility than those beans treated in S1. A lower starch digestion could be desired as this reflects a slow rise in blood glucose levels. Findings from this result also showed that treating black beans with high level of CaCl2 (i.e., 500 ppm) was not necessary, otherwise this would limit protein digestibility of cooked black beans.
Collapse
Affiliation(s)
- Marbie Alpos
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (M.A.); (S.Y.L.)
- Riddet Institute, Palmerston North 4442, New Zealand
| | - Sze Ying Leong
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (M.A.); (S.Y.L.)
- Riddet Institute, Palmerston North 4442, New Zealand
| | - Indrawati Oey
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand; (M.A.); (S.Y.L.)
- Riddet Institute, Palmerston North 4442, New Zealand
- Correspondence: ; Tel.: +64-347-98-735
| |
Collapse
|
19
|
Wainaina I, Wafula E, Sila D, Kyomugasho C, Grauwet T, Van Loey A, Hendrickx M. Thermal treatment of common beans (Phaseolus vulgaris L.): Factors determining cooking time and its consequences for sensory and nutritional quality. Compr Rev Food Sci Food Saf 2021; 20:3690-3718. [PMID: 34056842 DOI: 10.1111/1541-4337.12770] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/30/2021] [Accepted: 04/20/2021] [Indexed: 11/26/2022]
Abstract
Over the past years, the shift toward plant-based foods has largely increased the global awareness of the nutritional importance of legumes (common beans (Phaseolus vulgaris L.) in particular) and their potential role in sustainable food systems. Nevertheless, the many benefits of bean consumption may not be realized in large parts of the world, since long cooking time (lack of convenience) limits their utilization. This review focuses on the current insights in the cooking behavior (cookability) of common beans and the variables that have a direct and/or indirect impact on cooking time. The review includes the various methods to evaluate textural changes and the effect of cooking on sensory attributes and nutritional quality of beans. In this review, it is revealed that the factors involved in cooking time of beans are diverse and complex and thus necessitate a careful consideration of the choice of (pre)processing conditions to conveniently achieve palatability while ensuring maximum nutrient retention in beans. In order to harness the full potential of beans, there is a need for a multisectoral collaboration between breeders, processors, and nutritionists.
Collapse
Affiliation(s)
- Irene Wainaina
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium
| | - Elizabeth Wafula
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium.,Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Daniel Sila
- Department of Food Science and Technology, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Clare Kyomugasho
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium
| | - Tara Grauwet
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium
| | - Ann Van Loey
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium
| | - Marc Hendrickx
- KU Leuven, Department of Microbial and Molecular Systems (M2S), Laboratory of Food Technology, Leuven, Belgium
| |
Collapse
|
20
|
Byars JA, Singh M, Kenar JA, Felker FC, Winkler‐Moser JK. Effect of particle size and processing method on starch and protein digestibility of navy bean flour. Cereal Chem 2021. [DOI: 10.1002/cche.10422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jeffrey A. Byars
- Functional Foods Research Unit USDAAgricultural Research ServiceNational Center for Agricultural Utilization Research Peoria IL USA
| | - Mukti Singh
- Functional Foods Research Unit USDAAgricultural Research ServiceNational Center for Agricultural Utilization Research Peoria IL USA
| | - James A. Kenar
- Functional Foods Research Unit USDAAgricultural Research ServiceNational Center for Agricultural Utilization Research Peoria IL USA
| | - Frederick C. Felker
- Functional Foods Research Unit USDAAgricultural Research ServiceNational Center for Agricultural Utilization Research Peoria IL USA
| | - Jill K. Winkler‐Moser
- Functional Foods Research Unit USDAAgricultural Research ServiceNational Center for Agricultural Utilization Research Peoria IL USA
| |
Collapse
|
21
|
Alsalman FB, Ramaswamy HS. Changes in carbohydrate quality of high-pressure treated aqueous aquafaba. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
22
|
Pallares Pallares A, Gwala S, Pälchen K, Duijsens D, Hendrickx M, Grauwet T. Pulse seeds as promising and sustainable source of ingredients with naturally bioencapsulated nutrients: Literature review and outlook. Compr Rev Food Sci Food Saf 2021; 20:1524-1553. [DOI: 10.1111/1541-4337.12692] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/24/2020] [Accepted: 11/30/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Andrea Pallares Pallares
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| | - Shannon Gwala
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| | - Katharina Pälchen
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| | - Dorine Duijsens
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| | - Marc Hendrickx
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| | - Tara Grauwet
- Laboratory of Food Technology, Centre for Food and Microbial Technology, Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering KU Leuven Heverlee Belgium
| |
Collapse
|
23
|
Verkempinck S, Pallares Pallares A, Hendrickx M, Grauwet T. Processing as a tool to manage digestive barriers in plant-based foods: recent advances. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2019.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
24
|
Balakrishna AK, Wazed MA, Farid M. A Review on the Effect of High Pressure Processing (HPP) on Gelatinization and Infusion of Nutrients. Molecules 2020; 25:E2369. [PMID: 32443759 PMCID: PMC7287844 DOI: 10.3390/molecules25102369] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/13/2020] [Accepted: 05/18/2020] [Indexed: 12/29/2022] Open
Abstract
High pressure processing (HPP) is a novel technology that involves subjecting foods to high hydrostatic pressures of the order of 100-600 MPa. This technology has been proven successful for inactivation of numerous microorganisms, spores and enzymes in foods, leading to increased shelf life. HPP is not limited to cold pasteurization, but has many other applications. The focus of this paper is to explore other applications of HPP, such as gelatinization, forced water absorption and infusion of nutrients. The use of high pressure in producing cold gelatinizing effects, imparting unique properties to food and improving food quality will be also discussed, highlighting the latest published studies and the innovative methods adopted.
Collapse
Affiliation(s)
| | | | - Mohammed Farid
- Department of Chemical and Materials Engineering, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; (A.K.B.); (M.A.W.)
| |
Collapse
|
25
|
Pellegrini N, Vittadini E, Fogliano V. Designing food structure to slow down digestion in starch-rich products. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.01.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Zahir M, Fogliano V, Capuano E. Effect of soybean processing on cell wall porosity and protein digestibility. Food Funct 2020; 11:285-296. [PMID: 31825419 DOI: 10.1039/c9fo02167a] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Apart from the presence of antinutritional factors, digestibility of soybean proteins is limited in intact cells by cell wall permeability to proteolitic enzymes. Food processing may modulate cell wall permeability and hence the accessibility of protease enzymes to intracellular proteins. In this study, soybeans were processed in various ways, e.g. cooking applied alone or with either germination or fermentation processes, and the modification in cell wall permeability was investigated using confocal microscopy to visualize the penetration of FITC-dextran probes into isolated cells/cell clusters. Diffusion of fluorescently labelled trypsin into cells and cell clusters was also monitored. Microscopy observations showed that fermentation and germination as well as proteolitic enzymes increase the permeability of boiled soybean cotyledon cells. The diffusion of trypsin into all the isolated cells was observed at an early stage of simulated in vitro digestion, whereas diffusion into cell clusters was delayed due to a bigger size and limited permeability of cell clusters. A modest, although significant, increase in protein digestibility was observed when boiling was combined with fermentation or germination likely due to pre-digestion of storage proteins and inactivation of trypsin inhibitors. This study highlights the positive role of fermentation and germination in improving protein digestibility in soybeans but overall suggests that cell wall permeability to trypsin plays a minor role in the extent of protein digestion of intact soybean cells.
Collapse
Affiliation(s)
- Mostafa Zahir
- Food Quality and Design Group, Wageningen University and Research, Wageningen, The Netherlands.
| | | | | |
Collapse
|
27
|
Belmiro RH, Tribst AAL, Cristianini M. Effects of High Pressure Processing on Common Beans (
Phaseolus Vulgaris
L.): Cotyledon Structure, Starch Characteristics, and Phytates and Tannins Contents. STARCH-STARKE 2020. [DOI: 10.1002/star.201900212] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ricardo Henrique Belmiro
- Department of Food Technology (DTA)School of Food Engineering (FEA)University of Campinas (UNICAMP) Monteiro Lobato, 80, P.O. Box 6121 13083‐862 Campinas São Paulo Brazil
| | - Alline Artigiani Lima Tribst
- Center for Food Studies (NEPA)University of Campinas (UNICAMP) Albert Einstein, 291 13083‐852 Campinas São Paulo Brazil
| | - Marcelo Cristianini
- Department of Food Technology (DTA)School of Food Engineering (FEA)University of Campinas (UNICAMP) Monteiro Lobato, 80, P.O. Box 6121 13083‐862 Campinas São Paulo Brazil
- Center for Food Studies (NEPA)University of Campinas (UNICAMP) Albert Einstein, 291 13083‐852 Campinas São Paulo Brazil
| |
Collapse
|
28
|
Effect of process-induced common bean hardness on structural properties of in vivo generated boluses and consequences for in vitro starch digestion kinetics. Br J Nutr 2019; 122:388-399. [PMID: 31266547 DOI: 10.1017/s0007114519001624] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the present study, we evaluated the effect of process-induced common bean hardness on structural properties of in vivo generated boluses and the consequences for in vitro starch digestion. Initially, the impact of human mastication on the particle size distribution (PSD) of oral boluses from common beans with different process-induced hardness levels was investigated through a mastication study. Then the effect of structural properties of selected boluses on in vitro starch digestion kinetics was assessed. For a particular process-induced hardness level, oral boluses had similar PSD despite differences in masticatory parameters between participants of the mastication study. At different hardness levels, a clear effect of processing (P<0·0001) was observed. However, the effect of mastication behaviour (P=0·1141) was not significant. Two distinctive fractions were present in all boluses. The first one was a cotyledon-rich fraction consisting of majorly small particles (40-125 µm), which could be described as individual cells based on microscopic observations. This fraction increased with a decrease in process-induced hardness. The second fraction (>2000 µm) mostly contained seed coat material and did not change based on hardness levels. The in vitro starch digestion kinetics of common bean boluses was only affected by process-induced hardness. After kinetic modelling, significant differences were observed between the reaction rate constant of boluses generated from the hardest beans and those obtained from softer ones. Overall this work demonstrated that the in vitro nutritional functionality of common beans is affected to a greater extent by structural properties induced by processing than by mechanical degradation in the mouth.
Collapse
|
29
|
Chigwedere CM, Njoroge DM, Van Loey AM, Hendrickx ME. Understanding the Relations Among the Storage, Soaking, and Cooking Behavior of Pulses: A Scientific Basis for Innovations in Sustainable Foods for the Future. Compr Rev Food Sci Food Saf 2019; 18:1135-1165. [PMID: 33337000 DOI: 10.1111/1541-4337.12461] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/18/2022]
Abstract
The world faces challenges that require sustainable solutions: food and nutrition insecurity; replacement of animal-based protein sources; and increasing demand for convenient, nutritious, and health-beneficial foods; as well as functional ingredients. The irrefutable potential of pulses as future sustainable food systems is undermined by the hardening phenomenon that develops upon their storage under adverse conditions of temperature and relative humidity. Occurrence of this phenomenon indicates storage instability. In this review, the application of a material science approach, in particular the glass transition temperature concept, is presented to explain phenomena of storage instability such as the occurrence of hardening and loss of viability under adverse storage conditions. In addition to storage (in)stability, application of this concept during processing of pulses is discussed. The state-of-the-art on how hardening occurs, that is, mechanistic insights, is provided, including a critical evaluation of some of the existing postulations using recent research findings. Moreover, the influence of hardening on the properties and processing of pulses is included. Prevention of hardening and curative actions for pulses affected by the hardening phenomenon are described in addition to the current trends on uses of pulses and pulse-derived products. Based on the knowledge progress presented in this review, suggestions for the future include: first, the need for innovation toward implementation of recommended solutions for the prevention of hardening; second, the optimization of the identified most effective and efficient curative action against hardening; and third, areas to focus on for elucidation of mechanisms of hardening, although existing analytical methods require advancement.
Collapse
Affiliation(s)
- Claire M Chigwedere
- Laboratory of Food Technology, Dept. of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Center (LFoRCe), KU Leuven, Kasteelpark Arenberg 22, Box 2457, 3001, Heverlee, Belgium
| | - Daniel M Njoroge
- Inst. of Food Bioresources Technology, Dedan Kimathi Univ. of Technology, Private Bag, Dedan Kimathi, Nyeri, Kenya
| | - Ann M Van Loey
- Laboratory of Food Technology, Dept. of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Center (LFoRCe), KU Leuven, Kasteelpark Arenberg 22, Box 2457, 3001, Heverlee, Belgium
| | - Marc E Hendrickx
- Laboratory of Food Technology, Dept. of Microbial and Molecular Systems (M2S), Leuven Food Science and Nutrition Research Center (LFoRCe), KU Leuven, Kasteelpark Arenberg 22, Box 2457, 3001, Heverlee, Belgium
| |
Collapse
|
30
|
Gwala S, Wainana I, Pallares Pallares A, Kyomugasho C, Hendrickx M, Grauwet T. Texture and interlinked post-process microstructures determine the in vitro starch digestibility of Bambara groundnuts with distinct hard-to-cook levels. Food Res Int 2019; 120:1-11. [PMID: 31000218 DOI: 10.1016/j.foodres.2019.02.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 02/05/2023]
Abstract
Particular storage conditions are described to promote the development of the hard-to-cook (HTC) phenomenon for most legumes. However, it is not clearly established whether the HTC phenomenon influences starch digestion kinetics. Therefore, this study explored how the HTC phenomenon influences in vitro starch digestion of Bambara groundnuts, taking into account three distinct HTC levels. Stored Bambara groundnuts required prolonged cooking times. Increasing storage time led to a decrease in the rate constant of texture degradation, signifying the development of the HTC phenomenon. For cooking times of 60 min and 120 min, high HTC level samples exhibited higher rate constants and extents of starch digestion compared to the fresh sample. The higher rate of digestion was attributed to the high hardness that resulted in greater cell rupture and faster access of amylase to starch. Adapting cooking times of Bambara groundnuts with distinct HTC levels to obtain equivalent hardness values and microstructures resulted in comparable starch digestion kinetics. Spectrophotometric analysis overestimated the amount of digested starch, in contrast to the more accurate HPLC analysis, which further provided more insight by quantifying multiple digestion products. This work demonstrates that it is the hardness and interlinked pattern of cell failure (microstructure) that determines starch digestion of Bambara groundnuts with distinct HTC levels.
Collapse
Affiliation(s)
- Shannon Gwala
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Irene Wainana
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Andrea Pallares Pallares
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Clare Kyomugasho
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Marc Hendrickx
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| | - Tara Grauwet
- KU Leuven, Department of Microbial and Molecular Systems (M(2)S), Leuven Food Science and Nutrition Research Centre (LFoRCe), Laboratory of Food Technology, Kasteelpark Arenberg 22, PB 2457, 3001 Leuven, Belgium.
| |
Collapse
|
31
|
Rousseau S, Kyomugasho C, Celus M, Hendrickx MEG, Grauwet T. Barriers impairing mineral bioaccessibility and bioavailability in plant-based foods and the perspectives for food processing. Crit Rev Food Sci Nutr 2019; 60:826-843. [PMID: 30632768 DOI: 10.1080/10408398.2018.1552243] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Plant-based foods gain more importance since they play a key role in sustainable, low-meat and healthy diets. In developing countries, these food products, especially legumes and cereals, are important staple foods. Nevertheless, the question arises on how efficient they are to deliver minerals and if it is useful to encourage their consumption to reduce the prevalence of mineral deficiencies? This review paper focuses on the discrepancy between the mineral content and the amount of minerals that can be released and absorbed from plant-based foods during human digestion which can be attributed to several inherent factors such as the presence of mineral antinutrients (phytic acid, polyphenols and dietary fiber) and physical barriers (surrounding macronutrients and cell wall). Further, this review paper summarizes the effects of different processing techniques (milling, soaking, dehulling, fermentation, germination and thermal processing) on mineral bioaccessibility and bioavailability of plant-based foods. The positive impact of these techniques mostly relies on the fact that antinutrients levels are reduced due to removal of fractions rich in antinutrients and/or due to their leaching into the processing liquid. Although processing can have a positive effect, it also can induce leaching out of minerals and a reduced mineral bioaccessibility and bioavailability.
Collapse
Affiliation(s)
- Sofie Rousseau
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Clare Kyomugasho
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Miete Celus
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Marc E G Hendrickx
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| | - Tara Grauwet
- Laboratory of Food Technology, Leuven Food Science and Nutrition Research Centre (LFoRCe), Department of Microbial and Molecular Systems (M2S), KU Leuven, Leuven, Belgium
| |
Collapse
|
32
|
Ding L, Huang Q, Li H, Wang Z, Fu X, Zhang B. Controlled gelatinization of potato parenchyma cells under excess water condition: structural and in vitro digestion properties of starch. Food Funct 2019; 10:5312-5322. [DOI: 10.1039/c9fo00928k] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The starch digestion rate and extent of potato-based food were modulated through controlled gelatinization.
Collapse
Affiliation(s)
- Li Ding
- School of Food Science and Engineering
- National Joint Research Center for Tropical Health Food
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
- South China University of Technology
- Guangzhou 510640
| | - Qiang Huang
- School of Food Science and Engineering
- National Joint Research Center for Tropical Health Food
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
- South China University of Technology
- Guangzhou 510640
| | - Haiteng Li
- Center for Nutrition and Food Sciences
- the University of Queensland
- St Lucia
- Australia
| | - Zhigang Wang
- Guangzhou Lonkey Industrial Co. Ltd
- Guangzhou
- China
| | - Xiong Fu
- School of Food Science and Engineering
- National Joint Research Center for Tropical Health Food
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
- South China University of Technology
- Guangzhou 510640
| | - Bin Zhang
- School of Food Science and Engineering
- National Joint Research Center for Tropical Health Food
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety
- South China University of Technology
- Guangzhou 510640
| |
Collapse
|
33
|
Pallares Pallares A, Alvarez Miranda B, Truong NQA, Kyomugasho C, Chigwedere CM, Hendrickx M, Grauwet T. Process-induced cell wall permeability modulates the in vitro starch digestion kinetics of common bean cotyledon cells. Food Funct 2018; 9:6544-6554. [DOI: 10.1039/c8fo01619d] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cell wall barrier role during in vitro simulated digestion of starch in common bean cotyledon cells can be modified through variation of thermal processing intensity.
Collapse
Affiliation(s)
- Andrea Pallares Pallares
- Laboratory of Food Technology
- member of Leuven Food Science and Nutrition Research Center (LFoRCe)
- Department of Microbial and Molecular Systems (M2S)
- KU Leuven
- 3001 Heverlee
| | - Beatriz Alvarez Miranda
- Laboratory of Food Technology
- member of Leuven Food Science and Nutrition Research Center (LFoRCe)
- Department of Microbial and Molecular Systems (M2S)
- KU Leuven
- 3001 Heverlee
| | - Ngoc Quynh Anh Truong
- Laboratory of Food Technology
- member of Leuven Food Science and Nutrition Research Center (LFoRCe)
- Department of Microbial and Molecular Systems (M2S)
- KU Leuven
- 3001 Heverlee
| | - Clare Kyomugasho
- Laboratory of Food Technology
- member of Leuven Food Science and Nutrition Research Center (LFoRCe)
- Department of Microbial and Molecular Systems (M2S)
- KU Leuven
- 3001 Heverlee
| | - Claire Maria Chigwedere
- Laboratory of Food Technology
- member of Leuven Food Science and Nutrition Research Center (LFoRCe)
- Department of Microbial and Molecular Systems (M2S)
- KU Leuven
- 3001 Heverlee
| | - Marc Hendrickx
- Laboratory of Food Technology
- member of Leuven Food Science and Nutrition Research Center (LFoRCe)
- Department of Microbial and Molecular Systems (M2S)
- KU Leuven
- 3001 Heverlee
| | - Tara Grauwet
- Laboratory of Food Technology
- member of Leuven Food Science and Nutrition Research Center (LFoRCe)
- Department of Microbial and Molecular Systems (M2S)
- KU Leuven
- 3001 Heverlee
| |
Collapse
|