1
|
Franchin M, Saliba ASMC, Giovanini de Oliveira Sartori A, Orestes Pereira Neto S, Benso B, Ikegaki M, Wang K, Matias de Alencar S, Granato D. Food-grade delivery systems of Brazilian propolis from Apis mellifera: From chemical composition to bioactivities in vivo. Food Chem 2024; 432:137175. [PMID: 37633143 DOI: 10.1016/j.foodchem.2023.137175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
Brazilian propolis from Apis mellifera is widely studied worldwide due to its unique chemical composition and biological properties, such as antioxidant, antimicrobial, and anti-inflammatory. However, although many countries produce honey, another bee product, the consumption of propolis as a functional ingredient is linked to hydroethanolic extract. Hence, other food uses of propolis still have to be incorporated into food systems. Assuming that propolis is a rich source of flavonoids and is regarded as a food-grade ingredient for food and pharmaceutical applications, this review provides a theoretical and practical basis for optimising the bioactive properties of Brazilian propolis, encompassing the extraction processes and incorporating its bioactive compounds in the delivery systems for food applications. Overall, pharmacotechnical resources can optimise the extraction and enhance the chemical stability of phenolic compounds to ensure the bioactivity of food formulations.
Collapse
Affiliation(s)
- Marcelo Franchin
- Bioactivity and Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, Limerick, Ireland; School of Dentistry, Federal University of Alfenas (Unifal-MG), Alfenas, MG, Brazil.
| | | | - Alan Giovanini de Oliveira Sartori
- Department of Agri-Food Industry, Food, and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, SP, Brazil
| | | | - Bruna Benso
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Masaharu Ikegaki
- Faculty of Pharmaceutical Sciences, Federal University of Alfenas - UNIFAL-MG, Alfenas, MG, Brazil
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Severino Matias de Alencar
- Department of Agri-Food Industry, Food, and Nutrition, Luiz de Queiroz College of Agriculture, University of São Paulo (USP), Piracicaba, SP, Brazil; Center for Nuclear Energy in Agriculture, University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Daniel Granato
- Bioactivity and Applications Lab, Department of Biological Sciences, Faculty of Science and Engineering, School of Natural Sciences, University of Limerick, Limerick, Ireland.
| |
Collapse
|
2
|
Cea-Pavez I, Manteca-Bautista D, Morillo-Gomar A, Quirantes-Piné R, Quiles JL. Influence of the Encapsulating Agent on the Bioaccessibility of Phenolic Compounds from Microencapsulated Propolis Extract during In Vitro Gastrointestinal Digestion. Foods 2024; 13:425. [PMID: 38338558 PMCID: PMC10855809 DOI: 10.3390/foods13030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The aim of this work is to develop different encapsulated propolis ingredients by spray-drying and to evaluate their bioaccessibility using simulated in vitro digestion. To achieve these goals, first, microparticles of a propolis extract with inulin as the coating polymer were prepared under the optimal conditions previously determined. Then, a fraction of inulin was replaced with other encapsulating agents, namely sodium alginate, pectin, and chitosan, to obtain different ingredients with controlled release properties in the gastrointestinal tract. The analysis of the phenolic profile in the propolis extract and microparticles showed 58 compounds tentatively identified, belonging mainly to phenolic acid derivatives and flavonoids. Then, the behavior of the free extract and the formulated microparticles under gastrointestinal conditions was studied through an in vitro gastrointestinal digestion process using the INFOGEST protocol. Digestion of the free extract resulted in the degradation of most compounds, which was minimized in the encapsulated formulations. Thus, all developed microparticles could be promising strategies for improving the stability of this bioactive extract under gastrointestinal conditions, thereby enhancing its beneficial effect.
Collapse
Affiliation(s)
- Inés Cea-Pavez
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain; (I.C.-P.); (D.M.-B.); (A.M.-G.); (J.L.Q.)
| | - David Manteca-Bautista
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain; (I.C.-P.); (D.M.-B.); (A.M.-G.); (J.L.Q.)
| | - Alejandro Morillo-Gomar
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain; (I.C.-P.); (D.M.-B.); (A.M.-G.); (J.L.Q.)
- Faculty of Pharmacy, University of Granada, Cartuja Campus, 18071 Granada, Spain
| | - Rosa Quirantes-Piné
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain; (I.C.-P.); (D.M.-B.); (A.M.-G.); (J.L.Q.)
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda Fuentenueva s/n, 18071 Granada, Spain
| | - José L. Quiles
- Research and Development Functional Food Centre (CIDAF), Health Science Technological Park, Avenida del Conocimiento 37, 18016 Granada, Spain; (I.C.-P.); (D.M.-B.); (A.M.-G.); (J.L.Q.)
- Department of Physiology, Institute of Nutrition and Food Technology “José Mataix Verdú”, Biomedical Research Centre, University of Granada, 18016 Armilla, Spain
- Research Group on Foods, Nutritional Biochemistry and Health, Departamento de Ciencia de los Alimentos y Tecnología Química, Facultad de Ciencias, Universidad Europea del Atlántico, Isabel Torres 21, 39011 Santander, Spain
| |
Collapse
|
3
|
Laureanti EJG, Paiva TS, de Matos Jorge LM, Jorge RMM. Microencapsulation of bioactive compound extracts using maltodextrin and gum arabic by spray and freeze-drying techniques. Int J Biol Macromol 2023; 253:126969. [PMID: 37730006 DOI: 10.1016/j.ijbiomac.2023.126969] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 09/03/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Microencapsulation techniques establish a protective barrier around a sensitive compound, reducing vulnerability to external influences and offering controlled release. This work evaluates microencapsulation of Brazilian seed known as pink pepper (Schinus terebinthifolius) extract incorporated with green propolis extract, (main propolis font from the South America native plant Baccharis dracunculifolia DC) to enhancement antioxidant activity through synergic interaction, comparing to the extracts individually. Four treatments were produced using maltodextrin and combined with gum arabic as encapsulating agent, employing two different microencapsulation technique applied (spray drying and freeze drying) to assess their impact on physicochemical properties. The incorporation of gum arabic into matrix yielded higher encapsulation efficiency values, exhibiting significant differences for both encapsulation techniques. Combining the two encapsulation agents afforded greater protection of the bioactive compounds, resulting in an increase of approximately 31 % in the inhibition of the DPPH● radical. In controlled release analysis, maltodextrin exhibits the best protective effect on total phenolic compounds during intestinal release, whereas combining maltodextrin and gum arabic enhanced protection during gastric phase. Microcapsules may contribute to the protection of important bioactive compound, possessing a wide range of applications such as flavors encapsulation in food industry, lipids, antioxidants and pharmaceutical industry for controlled drug release.
Collapse
Affiliation(s)
- Emanuele Joana Gbur Laureanti
- Graduate Program in Chemical Engineering, Department of Chemical Engineering, Federal University of Paraná, Coronel Francisco Heráclito dos Santos Avenue, Curitiba 81531-980, Brazil
| | - Thainnane Silva Paiva
- Graduate Program in Food Engineering, Department of Chemical Engineering, Federal University of Paraná, Coronel Francisco Heráclito dos Santos Avenue, Curitiba 81531-980, Brazil
| | - Luiz Mário de Matos Jorge
- Graduate Program in Chemical Engineering, Department of Chemical Engineering, Federal University of Paraná, Coronel Francisco Heráclito dos Santos Avenue, Curitiba 81531-980, Brazil; Graduate Program in Food Engineering, Department of Chemical Engineering, Federal University of Paraná, Coronel Francisco Heráclito dos Santos Avenue, Curitiba 81531-980, Brazil; Chemical Engineering Department, State University of Maringá (UEM), Colombo Avenue, 5790, CEP, 87020-900, Maringá, PR, Brazil
| | - Regina Maria Matos Jorge
- Graduate Program in Chemical Engineering, Department of Chemical Engineering, Federal University of Paraná, Coronel Francisco Heráclito dos Santos Avenue, Curitiba 81531-980, Brazil; Graduate Program in Food Engineering, Department of Chemical Engineering, Federal University of Paraná, Coronel Francisco Heráclito dos Santos Avenue, Curitiba 81531-980, Brazil.
| |
Collapse
|
4
|
Jansen-Alves C, Martins Fonseca L, Doring Krumreich F, Zavareze EDR. Applications of propolis encapsulation in food products. J Microencapsul 2023; 40:567-586. [PMID: 37867427 DOI: 10.1080/02652048.2023.2274059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Propolis has beneficial health properties attributed to of phenolic compounds. However, its application is limited. Thus, encapsulation protects the bioactive compounds of propolis from degradation, allowing their release under controlled and specific conditions and increasing their solubility. In addition to protecting flavonoids, encapsulation also minimises the undesirable characteristics of propolis, such as strong odour. We brought attention to the high antioxidant and antimicrobial activities of encapsulated propolis, and its maintained biological activity enables more uses in different areas. Encapsulated propolis can be applied in food products as an ingredient. This review describes recent advances in improving the bioactivity of propolis extracts by using encapsulation techniques, and biopolymer research strategies, focusing on applications in food products. Encapsulated propolis has a promising market perspective due to the industrial and scientific-technological advancement, the increase in the amount of research, the improvement of propolis extraction techniques, and the need of consumers for innovative products.
Collapse
Affiliation(s)
- Cristina Jansen-Alves
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Postgraduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | - Laura Martins Fonseca
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Postgraduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| | | | - Elessandra Da Rosa Zavareze
- Laboratory of Biopolymers and Nanotechnology in Food (BioNano), Postgraduate Program in Food Science and Technology, Department of Agroindustrial Science and Technology, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
5
|
Berretta AA, De Lima JA, Falcão SI, Calhelha R, Amorim NA, Gonçalves IS, Zamarrenho LG, Barud HDS, Bastos JK, De Jong D, Vilas-Boas M. Development and Characterization of High-Absorption Microencapsulated Organic Propolis EPP-AF ® Extract (i-CAPs). Molecules 2023; 28:7128. [PMID: 37894606 PMCID: PMC10609166 DOI: 10.3390/molecules28207128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
The demand for organic and functional food continues to increase yearly. Among the available functional foods, propolis is a bee product that has various beneficial properties, including antimicrobial, antioxidant, and anti-inflammatory activities. However, it generally is only available in ethanol solution, which has poor bioavailability, as it is relatively insoluble in water. The use of such ethanol extracts is often objectionable because of the alcohol content and because they have a strong and striking taste. Development of alternatives that can efficiently and safely increase solubility in water, and that meet organic production specifications, has been a challenge. To address these concerns, microcapsules were developed using spray-dryer technology from an emulsion based on EPP-AF® propolis and gum arabic (i-CAPS). These propolis-loaded microcapsules were characterized using FT-IR, SEM, TGA, HPLC, and spectrophotometric techniques, along with determination of antimicrobial, antioxidant, antitumor, anti-inflammatory, and antihypercholesterolemic activities, as well as permeability in in vitro models. The production system resulted in microcapsules with a spherical shape and an encapsulation efficiency of 93.7 ± 0.7%. They had IC50s of 2.654 ± 0.062 and 7.342 ± 0.058 µg/mL by FRAP and DPPH antioxidant methods, respectively. The EPP-AF® i-CAPS also had superior antimicrobial activity against Gram-positive bacteria. Antitumor activity was calculated based on the concentration that inhibited 50% of growth of AGS, Caco-2, and MCF-7 cell strains, giving results of 154.0 ± 1.0, 117 ± 1.0, and 271.0 ± 25 µg/mL, respectively. The microcapsule presentation reduced the permeation of cholesterol by 53.7%, demonstrating antihypercholesterolemic activity, and it improved the permeability of p-coumaric acid and artepillin C. The IC50 for NO production in RAW 264.7 cells was 59.0 ± 0.1 µg/mL. These findings demonstrate the potential of this new propolis product as a food and pharmaceutical ingredient, though additional studies are recommended to validate the safety of proposed dosages.
Collapse
Affiliation(s)
- Andresa A Berretta
- Department of Research, Development & Innovation, Apis Flora Indl. Coml. Ltd.a., Ribeirão Preto 14020-670, Brazil
| | - Jéssica A De Lima
- Department of Research, Development & Innovation, Apis Flora Indl. Coml. Ltd.a., Ribeirão Preto 14020-670, Brazil
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil
| | - Soraia I Falcão
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo Calhelha
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Nathaly Alcazar Amorim
- Department of Research, Development & Innovation, Apis Flora Indl. Coml. Ltd.a., Ribeirão Preto 14020-670, Brazil
| | | | - Luana Gonçalves Zamarrenho
- Department of Research, Development & Innovation, Apis Flora Indl. Coml. Ltd.a., Ribeirão Preto 14020-670, Brazil
- Department of Neuroscience and Behavior, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirão Preto 14049-900, Brazil
| | - Hernane da Silva Barud
- Biopolymers and Biomaterials Group, University of Araraquara, UNIARA, Araraquara 14801-320, Brazil
| | - Jairo Kenupp Bastos
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil
| | - David De Jong
- Genetics Department, Ribeirão Preto Medical School, University of São Paulo (FMRP/USP), Ribeirão Preto 14049-900, Brazil
| | - Miguel Vilas-Boas
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
6
|
Vieira ALS, Correia VTDV, Ramos ALCC, da Silva NHA, Jaymes LAC, Melo JOF, de Paula ACCFF, Garcia MAVT, de Araújo RLB. Evaluation of the Chemical Profile and Antioxidant Capacity of Green, Brown, and Dark Propolis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3204. [PMID: 37765368 PMCID: PMC10537587 DOI: 10.3390/plants12183204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 09/29/2023]
Abstract
The chemical composition of propolis varies between different types, due to the specific vegetation found near the hives and the climatic and soil conditions worldwide. Green propolis is exclusive to Brazil, produced by bees, with the resin of the plant Baccharis dracunculifolia. Brown propolis is a specific variety produced mainly in Northeast Brazil from the plant Hyptis divaricata, also known as "maria miraculosa". Dark propolis is a variety of propolis produced by bees from the resin of the plant known as Jurema Preta (Mimosa hostilis benth). In this study, the aqueous extracts of green, brown, and dark propolis were analyzed for their antioxidant capacity using ABTS, FRAP, and DPPH, and their chemical profiles were determined using paper spray mass spectrometry. Among the three extracts, green propolis had the highest content of total phenolic compounds (2741.71 ± 49.53 mg GAE. 100 g-1), followed by brown propolis (1191.55 ± 36.79 mg GAE. 100 g-1), and dark propolis had the lowest content (901.79 ± 27.80 mg GAE. 100 g-1). The three types of propolis showed high antioxidant capacity, with green showing the highest antioxidant capacity for the three methods used. Using paper spray mass spectrometry, it was possible to suggest the presence of 116 substances, including flavonoids (56), phenylpropanoids (30), terpenes (25), carboxylic acids (1), benzoic acid derivatives (1), fatty acids (1), amino acids (1) and alkaloids (1). The compounds in the green, brown, and dark propolis extracts reinforce the bioactive potential for application in these tree extracts' food and pharmaceutical products.
Collapse
Affiliation(s)
- Ana Luiza Santos Vieira
- Department of Food, Faculty of Pharmacy, Campus Belo Horizonte, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.S.V.); (V.T.d.V.C.); (A.L.C.C.R.); (N.H.A.d.S.); (L.A.C.J.); (M.A.V.T.G.); (R.L.B.d.A.)
| | - Vinícius Tadeu da Veiga Correia
- Department of Food, Faculty of Pharmacy, Campus Belo Horizonte, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.S.V.); (V.T.d.V.C.); (A.L.C.C.R.); (N.H.A.d.S.); (L.A.C.J.); (M.A.V.T.G.); (R.L.B.d.A.)
| | - Ana Luiza Coeli Cruz Ramos
- Department of Food, Faculty of Pharmacy, Campus Belo Horizonte, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.S.V.); (V.T.d.V.C.); (A.L.C.C.R.); (N.H.A.d.S.); (L.A.C.J.); (M.A.V.T.G.); (R.L.B.d.A.)
| | - Nayana Hayss Araújo da Silva
- Department of Food, Faculty of Pharmacy, Campus Belo Horizonte, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.S.V.); (V.T.d.V.C.); (A.L.C.C.R.); (N.H.A.d.S.); (L.A.C.J.); (M.A.V.T.G.); (R.L.B.d.A.)
| | - Leonardo Assis Campos Jaymes
- Department of Food, Faculty of Pharmacy, Campus Belo Horizonte, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.S.V.); (V.T.d.V.C.); (A.L.C.C.R.); (N.H.A.d.S.); (L.A.C.J.); (M.A.V.T.G.); (R.L.B.d.A.)
| | - Julio Onésio Ferreira Melo
- Department of Exact and Biological Sciences, Campus Sete Lagoas, Federal University of São João del-Rei, Sete Lagoas 36307-352, MG, Brazil
| | | | - Maria Aparecida Vieira Teixeira Garcia
- Department of Food, Faculty of Pharmacy, Campus Belo Horizonte, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.S.V.); (V.T.d.V.C.); (A.L.C.C.R.); (N.H.A.d.S.); (L.A.C.J.); (M.A.V.T.G.); (R.L.B.d.A.)
| | - Raquel Linhares Bello de Araújo
- Department of Food, Faculty of Pharmacy, Campus Belo Horizonte, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil; (A.L.S.V.); (V.T.d.V.C.); (A.L.C.C.R.); (N.H.A.d.S.); (L.A.C.J.); (M.A.V.T.G.); (R.L.B.d.A.)
| |
Collapse
|
7
|
Ligarda-Samanez CA, Choque-Quispe D, Moscoso-Moscoso E, Huamán-Carrión ML, Ramos-Pacheco BS, De la Cruz G, Arévalo-Quijano JC, Muñoz-Saenz JC, Muñoz-Melgarejo M, Quispe-Quezada UR, Gutiérrez-Gómez E, Luciano-Alipio R, Zamalloa-Puma MM, Álvarez-López GJ, Sucari-León R. Microencapsulation of Propolis and Honey Using Mixtures of Maltodextrin/Tara Gum and Modified Native Potato Starch/Tara Gum. Foods 2023; 12:1873. [PMID: 37174411 PMCID: PMC10177773 DOI: 10.3390/foods12091873] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/22/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Ethanolic extracts of propolis and bee honey contain substances beneficial to human health. Mixtures of wall materials were compared in spray-drying microencapsulation of ethanolic extracts of propolis and bee honey rich in bioactive compounds. Maltodextrin and tara gum were used to obtain microencapsulates A, and modified native potato starch and tara gum were used for microencapsulates B. High values of phenolic compounds, flavonoids, and antioxidant capacity were obtained in microcapsules A and B, and the results obtained in terms of encapsulation efficiency, yield, hygroscopicity, solubility, moisture, Aw, bulk density, and color were typical of the spray-drying process. On the other hand, spherical and elliptical microparticles of sizes between 7.83 and 53.7 µm with light and medium stability were observed. Thermogravimetric properties were similar in both microencapsulates; total organic carbon, SEM-EDS, and FTIR analyses corroborated the encapsulation. X-ray diffractogram exhibited amorphous structures, and the release kinetics of phenolic compounds presented high values from 8.13 to 12.58 mg GAE/g between 7 and 13 h. Finally, modified potato starch is a better encapsulant than maltodextrin because it has better core protection and controlled release of the encapsulated bioactive compounds.
Collapse
Affiliation(s)
- Carlos A. Ligarda-Samanez
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - David Choque-Quispe
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Elibet Moscoso-Moscoso
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Mary L. Huamán-Carrión
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Betsy S. Ramos-Pacheco
- Nutraceuticals and Biomaterials Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Germán De la Cruz
- Agricultural Science Faculty, Universidad Nacional de San Cristobal de Huamanga, Ayacucho 05000, Peru
| | - José C. Arévalo-Quijano
- Department of Education and Humanities, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | | | | | - Uriel R. Quispe-Quezada
- Agricultural and Forestry Business Engineering, Universidad Nacional Autónoma de Huanta, Ayacucho 05000, Peru
| | - Edgar Gutiérrez-Gómez
- Engineering and Management Faculty, Universidad Nacional Autónoma de Huanta, Ayacucho 05000, Peru
| | - Rober Luciano-Alipio
- Administrative Sciences Faculty, Universidad Nacional Autónoma Altoandina de Tarma, Junín 12731, Peru
| | | | | | - Reynaldo Sucari-León
- Engineering and Management Faculty, Universidad Nacional Autónoma de Huanta, Ayacucho 05000, Peru
| |
Collapse
|
8
|
Non-Lactic Probiotic Beverage Enriched with Microencapsulated Red Propolis: Microorganism Viability, Physicochemical Characteristics, and Sensory Perception. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
This work aimed to develop a non-dairy functional beverage fermented with probiotic strains and fortified with Brazilian red propolis (microencapsulated and extracted). The non-dairy matrix consisted of oats (75 g), sunflower seeds (175 g), and almonds (75 g). It was fermented by a starter co-culture composed of Lactiplantibacillus plantarum CCMA 0743 and Debaryomyces hansenii CCMA 176. Scanning electron microscopy analysis was initially performed to verify the integrity of the microcapsules. The viability of the microorganisms after fermentation and storage, chemical composition (high performance liquid chromatography (HPLC) and gas chromatography coupled to mass spectrometry (GC-MS) analyses), rheology, antioxidant activity, and sensory profile of the beverages were determined. After fermentation and storage, the starter cultures were well adapted to the substrate, reducing the pH (6.50 to 4) and cell count above 7.0 log CFU/mL. Lactic acid was the main organic acid produced during fermentation and storage. In addition, 39 volatile compounds were detected by gas chromatography coupled to mass spectrometry (GC-MS), including acids, alcohols, aldehydes, alkanes, alkenes, esters, ethers, phenols, terpenes, and others. The addition of propolis extract increased the antioxidant and phenolic activity and the presence of volatile esters but reduced the beverage’s acceptability. The addition of microencapsulated propolis was more associated with the presence of higher alcohols and had similar acceptance to the control beverage. The combination of a non-dairy substrate, a starter co-culture, and the addition of propolis led to the development of a probiotic beverage with great potential for health benefits.
Collapse
|
9
|
Evaluation of the release, stability and antioxidant activity of Brazilian red propolis extract encapsulated by spray-drying, spray-chilling and using the combination of both techniques. Food Res Int 2023; 164:112423. [PMID: 36737998 DOI: 10.1016/j.foodres.2022.112423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 11/08/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Red propolis, originary from Northeast Brazil, has a unique composition and a great commercial interest. However, due to the presence of ethanol and its remarkable sensory characteristic, its application in food products is challenging. Thus, the aim of this work was to microencapsulate the red propolis extract by spray-drying, spray-chilling, and combining both techniques. The particles loaded with propolis extracts were characterised and evaluated according to the stability of phenolic compounds, flavonoids and formononetin, during 60 days of storage. In addition, the formononetin release was also monitored during the oral, gastric, and intestinal phases in the in vitro digestion process. All produced particles presented matrix-type with size, distribution, shape, hygroscopicity, and dispersibility parameters that varied according to the carrier and encapsulation process applied. The techniques used to fabricate the particles efficiently obtained powdered propolis extract and protected the extract's bioactive compounds, total flavonoids and formononetin throughout the analysed period. The gastrointestinal release study presented distinctive releases in all phases (oral, gastric, and intestinal). The spray-dried particles, for example, released formononetin mainly in the oral stage. While the spray-chilled particles were primarily released in the intestinal phase, and coated particles were released gradually throughout the assay, reaching maximum relief in the intestinal phase. In conclusion, using microencapsulation techniques by spray-drying, spray-chilling, and their combination developed particles with different levels of protection during storage, releases and characteristics, which resulted in a range of possible applications in the food, feed, cosmetic, and pharmaceutical industries.
Collapse
|
10
|
Rajan M, Santana Andrade JK, Chagas Barros RG, Farias Lima Guedes TJ, Narain N. Enhancement of polyphenolics and antioxidant activities of jambolan (Syzygium cumini) fruit pulp using solid state fermentation by Aspergillus niger and A. flavus. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
11
|
Ligarda-Samanez CA, Choque-Quispe D, Moscoso-Moscoso E, Huamán-Carrión ML, Ramos-Pacheco BS, Peralta-Guevara DE, De la Cruz G, Martínez-Huamán EL, Arévalo-Quijano JC, Muñoz-Saenz JC, Muñoz-Melgarejo M, Muñoz-Saenz DM, Aroni-Huamán J. Obtaining and Characterizing Andean Multi-Floral Propolis Nanoencapsulates in Polymeric Matrices. Foods 2022. [PMCID: PMC9602112 DOI: 10.3390/foods11203153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Propolis is a substance with significant anti-inflammatory, anticancer, and antiviral activity, which could be used more efficiently at the nano level as an additive in the food industry. The aim was to obtain and characterize nanoencapsulated multi-floral propolis from the agro-ecological region of Apurimac, Peru. For nanoencapsulation, 5% ethanolic extracts propolis with 0.3% gum arabic and 30% maltodextrin were prepared. Then, the mixtures were dried by nano spraying at 120 °C using the smallest nebulizer. The flavonoid content was between 1.81 and 6.66 mg quercetin/g, the phenolic compounds were between 1.76 and 6.13 mg GAE/g, and a high antioxidant capacity was observed. The results of moisture, water activity, bulk density, color, hygroscopicity, solubility, yield, and encapsulation efficiency were typical of the nano spray drying process. The total organic carbon content was around 24%, heterogeneous spherical particles were observed at nanometer level (between 11.1 and 562.6 nm), with different behaviors in colloidal solution, the thermal gravimetric properties were similar in all the encapsulates, the FTIR and EDS analysis confirmed the encapsulation and the X-ray diffraction showed amorphous characteristics in the obtained material; stability and phenolic compound release studies indicated high values of 8.25–12.50 mg GAE/g between 8 and 12 h, the principal component analysis confirmed that the flora, altitude, and climate of the propolis location influenced the content of bioactive compounds, antioxidant capacity, and other properties studied. The nanoencapsulate from the district of Huancaray was the one with the best results, allowing its future use as a natural ingredient in functional foods. Nevertheless, technological, sensory, and economic studies should still be carried out.
Collapse
Affiliation(s)
- Carlos A. Ligarda-Samanez
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Correspondence:
| | - David Choque-Quispe
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Elibet Moscoso-Moscoso
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Mary L. Huamán-Carrión
- Food Nanotechnology Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Betsy S. Ramos-Pacheco
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Diego E. Peralta-Guevara
- Nutraceuticals and Biopolymers Research Group, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Research Group in the Development of Advanced Materials for Water and Food Treatment, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
- Water Analysis and Control Research Laboratory, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Germán De la Cruz
- Agricultural Science Faculty, Universidad Nacional de San Cristobal de Huamanga, Ayacucho 05000, Peru
| | - Edgar L. Martínez-Huamán
- Department of Education and Humanities, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - José C. Arévalo-Quijano
- Department of Education and Humanities, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| | - Jenny C. Muñoz-Saenz
- Department of Human Medicine, Universidad Peruana los Andes, Huancayo 12006, Peru
| | | | - Doris M. Muñoz-Saenz
- Social Sciences and Humanities Faculty, Universidad Nacional Enrique Guzman y Valle, Lima 15011, Peru
| | - Jimmy Aroni-Huamán
- Agroindustrial Engineering, Universidad Nacional José María Arguedas, Andahuaylas 03701, Peru
| |
Collapse
|
12
|
Vázquez-Rodríguez B, Gutiérrez-Uribe JA, Guajardo-Flores D, Santos-Zea L. Microencapsulation of steroidal saponins from agave sap concentrate using different carriers in spray drying. FOOD SCI TECHNOL INT 2022; 28:622-633. [PMID: 34747254 DOI: 10.1177/10820132211049949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Concentrated agave sap is a product with in vivo proven hypocholesterolemic and hypoglycemic activities, as well as in vitro anticancer potential. In the present work, a factorial design was used to determine the suitable drying conditions of concentrated agave by studying the effect of inlet temperature (150 °C, 180 °C and 210 °C) and the type of carrier agent (maltodextrin, hydroxypropyl methylcellulose, guar gum and xanthan gum). The response variables for each treatment were the product recovery and microencapsulated saponins. Further characterization of concentrated agave powders was performed: solubility in water, hygroscopicity, moisture content, tap density, bulk density, Carr's index followability and morphology by scanning electron microscopy analysis. The hydroxypropyl methylcellulose proved to improve physicochemical properties and enhance product yield, using 210 °C inlet temperature and a mix of carrier agents of maltodextrin/hydroxypropyl methylcellulose/xanthan gum at 50/48.5/1.5 (w/w/w) proportion exhibited the highest saponin recovery of 53.81%. Moreover, different carrier agents in powders revealed two shapes, regular spherical shape with smooth surface and collapsed shapes. The use of polymers excipients helped to decrease the stickiness of the desired product and enhanced the powder stability and microencapsulation of the steroidal saponins.
Collapse
Affiliation(s)
| | | | | | - Liliana Santos-Zea
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Monterrey, México
| |
Collapse
|
13
|
Segueni N, Akkal S, Benlabed K, Nieto G. Potential Use of Propolis in Phytocosmetic as Phytotherapeutic Constituent. Molecules 2022; 27:molecules27185833. [PMID: 36144568 PMCID: PMC9502464 DOI: 10.3390/molecules27185833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Phytocosmetic is an important aspect of traditional medicine in several cultures. Researchers are now focusing to find new and effective ingredients of natural origin. Propolis is a natural beehive product extensively used in traditional medicine. We aimed in the present study to investigate the potential use of propolis as an aesthetic and phytotherapeutic constituent in phytocosmetics. Propolis was extracted using 80% ethanol. Total phenolic and flavonoid contents were determined calorimetrically. Free radical scavenging ability and reducing capacity were evaluated using four assays and expressed as IC50 values. Antibacterial activity was evaluated by the determination of minimum inhibitory concentration (MIC) on 11 Gram-positive and Gram-negative bacteria. The wound healing activity of 30% ethanolic extract and propolis ointment was studied using excision wounds in the anterio-dorsal side of the rats. The phenolic acid composition of the tested propolis was investigated using UFLC/MS-MS analysis. The tested propolis was rich in phenolic and flavonoid content and demonstrated an interesting antibacterial and antioxidant activity. Wounds treated with propolis appear to display a lesser degree of inflammation. Chemical analysis led to the identification of 11 phenolics. Among them, five are considered as main compounds: Chlorogenic acid (48.79 ± 5.01 ng/mL), Gallic acid (44.25 ± 6.40 ng/mL), Rutin (21.12 ± 3.57 ng/mL), Caffeic acid (28.19 ± 4.95 ng/mL), and trans-cinnamic acid (20.10 ± 6.51 ng/mL). Our results indicated that propolis can not only be used as a cosmetic ingredient but also be used as a preventative and curative constituent, which might be used as a barrier when applied externally on infected and non-infected skin.
Collapse
Affiliation(s)
- Narimane Segueni
- Laboratory of Natural Products and Organic Synthesis Campus Chaabat Ersas, Faculty of Science, Department of Chemistry, University Mentouri-Constantine 1, Constantine 25000, Algeria or or
- Faculty of Medicine, University Salah Boubnider Constantine 3, Constantine 25000, Algeria
| | - Salah Akkal
- Unit of Recherche Valorisation of Natural Resources, Bioactive Molecules and Analyses Physicochemical and Biological (VARENBIOMOL), Faculty of Science, Department of Chemistry, University Mentouri-Constantine 1, Constantine 25000, Algeria
| | - Kadour Benlabed
- Faculty of Medicine, University Salah Boubnider Constantine 3, Constantine 25000, Algeria
| | - Gema Nieto
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, 30071 Murcia, Spain
- Correspondence: ; Tel.: +34-86-888-9624; Fax: +34-86-888-4147
| |
Collapse
|
14
|
Konuk Takma D, Ülkeryıldız Balçık E, Baysan U, Zungur Bastıoğlu A, Çoşkun NÖ, Şahin Nadeem H, Koç M. Encapsulation and
in vitro
evaluation of phenolic compounds of propolis by spray and freeze drying. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dilara Konuk Takma
- Aydın Adnan Menderes University Faculty of Engineering, Department of Food Engineering Aydın Turkey
| | - Eda Ülkeryıldız Balçık
- Aydın Adnan Menderes University Faculty of Engineering, Department of Food Engineering Aydın Turkey
| | - Ulaş Baysan
- Aydın Adnan Menderes University Faculty of Engineering, Department of Food Engineering Aydın Turkey
| | - Aslı Zungur Bastıoğlu
- Aydın Adnan Menderes University Faculty of Engineering, Department of Food Engineering Aydın Turkey
| | - Necmiye Öznur Çoşkun
- Aydın Adnan Menderes University Faculty of Engineering, Department of Food Engineering Aydın Turkey
| | - Hilal Şahin Nadeem
- Aydın Adnan Menderes University Faculty of Engineering, Department of Food Engineering Aydın Turkey
| | - Mehmet Koç
- Aydın Adnan Menderes University Faculty of Engineering, Department of Food Engineering Aydın Turkey
| |
Collapse
|
15
|
Microencapsulation by Spray Drying and Antioxidant Activity of Phenolic Compounds from Tucuma Coproduct (Astrocaryum vulgare Mart.) Almonds. Polymers (Basel) 2022; 14:polym14142905. [PMID: 35890687 PMCID: PMC9317265 DOI: 10.3390/polym14142905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022] Open
Abstract
The industrial processing of fruits in the Amazon region, such as tucuma, generates a large amount of coproducts with great nutritional potential. In this work, phenolic compounds from tucuma coproduct almonds were extracted and microencapsulated by spray drying using maltodextrin as the encapsulating agent and verified its antioxidant activity. Phenolic compounds were determined by UV spectroscopy and identified by Ultraefficiency Liquid Chromatography. Antioxidant activity was measured by ABTS and DPPH assay. Thermogravimetric techniques, infrared spectroscopy, scanning electron microscopy, moisture content and water activity were applied to characterize the microparticle. The crude extract and microparticle had total polyphenols of 135.1 mg/g ± 0.078 and 130.5 mg/g ± 0.024, respectively. Caffeic and gallic acids were identified. The crude extract and the microparticle showed good antioxidant activity by ABTS and DPPH assay, justified by the presence of the phenolic compounds found. The microparticle showed spherical and heterogeneous structures and good encapsulation efficiency from the spray drying process using maltodextrin. The results show that the extract of the tucuma almond coproduct can be used as a phenolic compound-rich source and microencapsulated with possible application for functional food production.
Collapse
|
16
|
Propolis: Encapsulation and application in the food and pharmaceutical industries. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
17
|
da Silva Anthero AG, Maria Tomazini Munhoz Moya A, Souza Torsoni A, Baú Betim Cazarin C, Dupas Hubinger M. Characterization of Capsicum oleoresin microparticles and in vivo evaluation of short-term capsaicin intake. Food Chem X 2022; 13:100179. [PMID: 34917929 PMCID: PMC8666524 DOI: 10.1016/j.fochx.2021.100179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022] Open
Abstract
Modified malt was successfully used in Capsicum oleoresin microencapsulation. High antioxidant activities by ORAC and FRAP were observed for all microparticles. Diet containing Capsicum oleoresin microparticles can promote weight gain control. Liver damage caused by obesity was prevented by high doses of Capsicum's oleoresin.
Gum arabic, modified corn starch (EMCAP), modified malt (MALT), either blended or isolated, were assessed as encapsulating agents for Capsicum oleoresin. Capsicum oleoresin microparticles were obtained by spray drying and analysed for physicochemical properties and in vivo. Obtained powders were adequate for storage, given their low water activity (<0.150), hygroscopicity (<11.43 g/100 g), moisture (<4.76%) and high glass transition temperature (<98.3 °C). FT-IR analysis concluded that carbohydrates matrices were loaded after spray drying, with peaks around 2850 cm –1 for aromatic compounds, and bands around 1760 cm−1, pointing to the presence of capsaicin inside the microparticles. All formulations exhibited high antioxidant activity, low contact angles and great solubility in water. Any adverse effect was observed in the experimental assay, neither change on the level of hepatic aminotransferases. The intake of a High-Fat Diet (HFD) supplemented with Capsicum oleoresin microparticles decreased weight gain when compared to the HFD control.
Collapse
Affiliation(s)
| | | | - Adriana Souza Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas, Limeira, Brazil
| | - Cinthia Baú Betim Cazarin
- Food Science and Nutrition Department, School of Food Engineering, University of Campinas, Campinas, Sao Paulo, Brazil
| | - Miriam Dupas Hubinger
- Food Engineering Department, School of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| |
Collapse
|
18
|
Pant K, Thakur M, Chopra HK, Nanda V. Encapsulated bee propolis powder: Drying process optimization and physicochemical characterization. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
19
|
OLIVEIRA CSD, ANDRADE JKS, RAJAN M, NARAIN N. Influence of the phytochemical profile on the peel, seed and pulp of margarida, breda and geada varieties of avocado (Persea Americana Mill) associated with their antioxidant potential. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.25822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Santana Andrade JK, Chagas Barros RG, Pereira UC, Nogueira JP, Gualberto NC, Santos de Oliveira C, Shanmugam S, Narain N. Bioaccessibility of bioactive compounds after in vitro gastrointestinal digestion and probiotics fermentation of Brazilian fruits residues with antioxidant and antidiabetic potential. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112469] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
21
|
Santana Andrade JK, Chagas Barros RG, Gualberto NC, Santos de Oliveira C, Shanmugam S, Narain N. Influence of in vitro gastrointestinal digestion and probiotic fermentation on the bioaccessibility of gallic acid and on the antioxidant potential of Brazilian fruit residues. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
22
|
Carmo EL, Teixeira MA, Souza IS, Figueiredo JDA, Fernandes RVDB, Botrel DA, Borges SV. Co‐encapsulation of anthocyanins extracted from grape skins (
Vitis vinifera
var. Syrah) and α‐tocopherol via spray drying. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Andrade JKS, Barros RGC, Pereira UC, Gualberto NC, de Oliveira CS, Shanmugam S, Narain N. α-Amylase inhibition, cytotoxicity and influence of the in vitro gastrointestinal digestion on the bioaccessibility of phenolic compounds in the peel and seed of Theobroma grandiflorum. Food Chem 2021; 373:131494. [PMID: 34753077 DOI: 10.1016/j.foodchem.2021.131494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 11/18/2022]
Abstract
The aim of this work was to evaluate the bioaccessibility, cytotoxicity, antioxidant and antidiabetic potential of peel and seeds of cupuassu (Theobroma grandiflorum). Thus, the extracts of cupuassu were evaluated for inhibition of α-amylase, cytotoxicity, and bioaccessibility after gastrointestinal digestion and probiotic fermentation (Lactobacillus delbrueckii, Lactobacillus jhonsoni, Lactobacillus rhamus and Bifidobacterium longum). Digestion increased concentrations of phenolics, showing bioaccessibility of up to 274.13% (total phenolics) and 1105.15% (ORAC). β-carotene, quinic, tartaric, malic, citric, epicatechin, ethyl gallate, epigallocatechin gallate, gallic acid, pyrocatechol, vanillin, ramnetine were the main compounds while the epicatechin, ethyl gallate, gallic acid and pyrocatechol were the major effective phenolic compounds. The extracts did not show toxic effects and the cupuassu seeds showed 97% inhibition of α-amylase and 47.91% bioaccessibility of pyrocatechol. This study suggests that cupuassu extracts are sources of natural antioxidants with promising antidiabetic potential, and probiotics are able to increase phenolic compounds, responsible for health benefits.
Collapse
Affiliation(s)
| | - Romy Gleyse Chagas Barros
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Ubatã Corrêa Pereira
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Nayjara Carvalho Gualberto
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Christean Santos de Oliveira
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Saravanan Shanmugam
- Department of Pharmacy, Federal University of Sergipe, Av. Marechal Rondon, Jardim Rosa Elze, CEP 49100-000, São Cristóvão, SE, Brazil
| | - Narendra Narain
- Laboratory of Flavor and Chromatographic Analysis, PROCTA, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
24
|
Microencapsulated and Lyophilized Propolis Co-Product Extract as Antioxidant Synthetic Replacer on Traditional Brazilian Starch Biscuit. Molecules 2021; 26:molecules26216400. [PMID: 34770809 PMCID: PMC8587645 DOI: 10.3390/molecules26216400] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/10/2021] [Accepted: 10/17/2021] [Indexed: 12/18/2022] Open
Abstract
The residue from commercial propolis extraction may have significant antioxidant power in food technology. However, among the challenges for using the propolis co-product as an inhibitor of lipid oxidation (LO) in baked goods is maintaining its bioactive compounds. Therefore, this study aimed to determine the propolis co-product extracts’ capability to reduce LO in starch biscuit formulated with canola oil and stored for 45 days at 25 °C. Two co-product extracts were prepared: microencapsulated propolis co-product (MECP) (with maltodextrin) and lyophilized propolis co-product (LFCP), which were subjected to analysis of their total phenolic content and antioxidant activity (AA). Relevant antioxidant activity was observed using the methods of analysis employed. The spray-drying microencapsulation process showed an efficiency of 63%. The LO in the biscuits was determined by the thiobarbituric acid reactive substances (TBARS) test and fatty acid composition by gas chromatography analysis. Palmitic, stearic, oleic, linoelaidic, linoleic, and α-linolenic acids were found in biscuits at constant concentrations throughout the storage period. In addition, there was a reduction in malondialdehyde values with the addition of both propolis co-product extracts. Therefore, the propolis co-product extracts could be utilized as a natural antioxidant to reduce lipid oxidation in fatty starch biscuit.
Collapse
|
25
|
Vélez-Erazo EM, Silva IL, Comunian T, Kurozawa LE, Hubinger MD. Effect of chia oil and pea protein content on stability of emulsions obtained by ultrasound and powder production by spray drying. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2021; 58:3765-3779. [PMID: 34471300 DOI: 10.1007/s13197-020-04834-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 09/10/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
Chia oil is susceptible to oxidation and to make this oil application into foodstuffs possible, chia-oil based microparticles were produced. Oil-in-water emulsions were produced by ultrasound and their stability was maximized using a central composite rotational design (X1: pea protein X2: oil concentration). Hi-Cap® 100 (HC) or maltodextrin (MD) were used as carrier agents in spray drying. The validated formulation with 13.50% (w/w) oil and 3.87% (w/w) pea protein presented the best stability conditions (no phase separation for 7 days, monomodal size distribution, and 1.59 μm of moda diameter). Particles showed high encapsulation efficiency (87.71 and 91.97% for MD and HC, respectively) and low water activity and moisture values (0.114-0.150% and 2.64-3.41%, respectively). HC particles exhibited better physicochemical and structural characteristics, apart from their good reconstitution, which shows the potential of this approach as a viable alternative for the use of rich-plant ingredients, such as chia oil and pea protein.
Collapse
Affiliation(s)
- Eliana M Vélez-Erazo
- Department of Food Engineering, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP 13083-862 Brazil
| | - Isabela Lima Silva
- Department of Food Engineering, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP 13083-862 Brazil
| | - Talita Comunian
- Department of Food Engineering, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP 13083-862 Brazil
| | - Louise E Kurozawa
- Department of Food Engineering, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP 13083-862 Brazil
| | - Miriam Dupas Hubinger
- Department of Food Engineering, School of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80, Campinas, SP 13083-862 Brazil
| |
Collapse
|
26
|
Mendez-Pfeiffer P, Juarez J, Hernandez J, Taboada P, Virués C, Valencia D, Velazquez C. Nanocarriers as drug delivery systems for propolis: A therapeutic approach. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
27
|
Irigoiti Y, Navarro A, Yamul D, Libonatti C, Tabera A, Basualdo M. The use of propolis as a functional food ingredient: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
28
|
Soleimanifard M, Feizy J, Maestrelli F. Nanoencapsulation of propolis extract by sodium caseinate-maltodextrin complexes. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2021.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Baysan U, Zungur Bastıoğlu A, Coşkun NÖ, Konuk Takma D, Ülkeryıldız Balçık E, Sahin-Nadeem H, Koç M. The effect of coating material combination and encapsulation method on propolis powder properties. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
30
|
Co-crystallized sucrose with propolis extract as a food ingredient: Powder characterization and antioxidant stability. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Spanidi E, Karapetsas A, Voulgaridou GP, Letsiou S, Aligiannis N, Tsochantaridis I, Kynigopoulos S, Lambropoulou M, Mourtzinos I, Pappa A, Gardikis K. A New Controlled Release System for Propolis Polyphenols and Its Biochemical Activity for Skin Applications. PLANTS 2021; 10:plants10020420. [PMID: 33672417 PMCID: PMC7927051 DOI: 10.3390/plants10020420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/17/2021] [Accepted: 02/19/2021] [Indexed: 01/05/2023]
Abstract
Propolis is a resinous substance produced by bees that exhibits antimicrobial, immunostimulatory and antioxidant activity. Its use is common in functional foods, cosmetics and traditional medicine despite the fact that it demonstrates low extraction yields and inconsistency in non-toxic solvents. In this work, a new encapsulation and delivery system consisting of liposomes and cyclodextrins incorporating propolis polyphenols has been developed and characterized. The antioxidant, antimutagenic and antiaging properties of the system under normal and UVB-induced oxidative stress conditions were investigated in cultured skin cells and/or reconstituted skin model. Furthermore, the transcript accumulation for an array of genes involved in many skin-related processes was studied. The system exhibits significant polyphenol encapsulation efficiency, physicochemical stability as well as controlled release rate in appropriate conditions. The delivery system can retain the anti-mutagenic, anti-oxidative and anti-ageing effects of propolis polyphenols to levels similar and comparable to those of propolis methanolic extracts, making the system ideal for applications where non-toxic solvents are required and controlled release of the polyphenol content is desired.
Collapse
Affiliation(s)
- Eleni Spanidi
- Research and Development Department, APIVITA SA, Industrial Park Markopoulo Mesogaias, 19003 Athens, Greece; (E.S.); (S.L.)
| | - Athanasios Karapetsas
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.K.); (G.-P.V.); (I.T.); (A.P.)
| | - Georgia-Persephoni Voulgaridou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.K.); (G.-P.V.); (I.T.); (A.P.)
| | - Sophia Letsiou
- Research and Development Department, APIVITA SA, Industrial Park Markopoulo Mesogaias, 19003 Athens, Greece; (E.S.); (S.L.)
| | - Nektarios Aligiannis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 11527 Athens, Greece;
| | - Ilias Tsochantaridis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.K.); (G.-P.V.); (I.T.); (A.P.)
| | - Spyridon Kynigopoulos
- Laboratory of Histology and Embryology, Faculty of Health Sciences, School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (S.K.); (M.L.)
| | - Maria Lambropoulou
- Laboratory of Histology and Embryology, Faculty of Health Sciences, School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (S.K.); (M.L.)
| | - Ioannis Mourtzinos
- Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (A.K.); (G.-P.V.); (I.T.); (A.P.)
| | - Konstantinos Gardikis
- Research and Development Department, APIVITA SA, Industrial Park Markopoulo Mesogaias, 19003 Athens, Greece; (E.S.); (S.L.)
- Correspondence: ; Tel.: +30-6974899959
| |
Collapse
|
32
|
Chang X, Feng W, He L, Chen X, Liang L. Fabrication and characterisation of whey protein isolate–propolis–alginate complex particles for stabilising α-tocopherol-contained emulsions. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104756] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Extraction, Antioxidant Capacity, 5-Lipoxygenase Inhibition, and Phytochemical Composition of Propolis from Eastern Canada. Molecules 2020; 25:molecules25102397. [PMID: 32455632 PMCID: PMC7287732 DOI: 10.3390/molecules25102397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/08/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Soxhlet (SE), microwave-assisted (MAE) and ultrasound-assisted (UAE) extraction were compared using ten extraction solvents for their efficiency to extract phenolic and flavonoid antioxidants from Eastern Canada propolis. Extracts were compared for total phenolic (TPC) and total flavonoid (TFC) content, and radical scavenging activities. Anti-inflammatory activity through inhibition of 5-lipoxygenase (5-LO) products biosynthesis in HEK293 cells was also evaluated. The results showed that SE extracts using polar solvents had the highest TPC and TFC. Extracts obtained with ethanol, methanol and acetone were effective free radical scavengers, and showed 5-LO inhibition similar to zileuton. UAE was an effective extraction method since the extracts obtained were comparable to those using SE and the MAE while being done at room temperature. With UAE, extracts of less polar solvents showed similar free radical scavenging and 5-LO inhibition to extracts of much more polar solvents such as methanol or ethanol. Reversed-phase liquid chromatography tandem mass spectrometry confirmed the presence of 21 natural compounds in the propolis extracts based on the comparison of intact mass, chromatographic retention time and fragmentation patterns derived from commercial analytical standards. The current study is the first of its kind to concurrently investigate solvent polarity as well as extraction techniques of propolis.
Collapse
|
34
|
Gargouri W, Osés SM, Fernández-Muiño MA, Sancho MT, Kechaou N. Evaluation of bioactive compounds and biological activities of Tunisian propolis. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Reis JHDO, Barreto GDA, Cerqueira JC, dos Anjos JP, Andrade LN, Padilha FF, Druzian JI, Machado BAS. Evaluation of the antioxidant profile and cytotoxic activity of red propolis extracts from different regions of northeastern Brazil obtained by conventional and ultrasound-assisted extraction. PLoS One 2019; 14:e0219063. [PMID: 31276476 PMCID: PMC6611595 DOI: 10.1371/journal.pone.0219063] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 06/16/2019] [Indexed: 12/20/2022] Open
Abstract
Propolis is a complex mixture of resinous and balsamic material collected from the exudates of plants, shoots, and leaves by bees. This study evaluated red propolis extracts obtained by conventional (ethanolic) extraction and ultrasound-assisted extraction of six samples from different regions of northeastern Brazil. The total phenolic compounds and flavonoids, in vitro antioxidant activity, concentration of formononetin and kaempferol and the cytotoxicity against four human tumor cell lines were determined for all twelve obtained extracts. Significant variations in the levels of the investigated compounds were identified in the red propolis extracts, confirming that the chemical composition varied according to the sampling region. The extraction method used also influenced the resulting propolis compounds. The highest concentration of the compounds of interest and the highest in vitro antioxidant activity were exhibited by the extracts obtained from samples from state of Alagoas. Formononetin and kaempferol were identified in all samples. The highest formononetin concentrations were identified in extracts obtained by ultrasound, thus indicating a greater selectivity for the extraction of this compound by this method. Regarding cytotoxic activity, for the HCT-116 line, all of the extracts showed an inhibition of greater than 90%, whereas for the HL-60 and PC3 lines, the minimum identified was 80%. In general, there was no significant difference (p>0.05) in the antiproliferative potential when comparing the extraction methods. The results showed that the composition of Brazilian red propolis varies significantly depending on the geographical origin and that the method used influences the resulting compounds that are present in propolis. However, regardless of the geographical origin and the extraction method used, all the red propolis samples studied presented great biological potential and high antioxidant activity. Furthermore, the ultrasound-assisted method can be efficiently applied to obtain extracts of red propolis more quickly and with high concentration of biomarkers of interest.
Collapse
Affiliation(s)
| | - Gabriele de Abreu Barreto
- University Center SENAI/CIMATEC, National Service of Industrial Learning – SENAI, Heath Institute of Technology (ITS CIMATEC), Salvador, Bahia, Brazil
| | - Jamile Costa Cerqueira
- University Center SENAI/CIMATEC, National Service of Industrial Learning – SENAI, Heath Institute of Technology (ITS CIMATEC), Salvador, Bahia, Brazil
| | - Jeancarlo Pereira dos Anjos
- University Center SENAI/CIMATEC, National Service of Industrial Learning – SENAI, Heath Institute of Technology (ITS CIMATEC), Salvador, Bahia, Brazil
| | | | | | | | - Bruna Aparecida Souza Machado
- University Center SENAI/CIMATEC, National Service of Industrial Learning – SENAI, Heath Institute of Technology (ITS CIMATEC), Salvador, Bahia, Brazil
- * E-mail:
| |
Collapse
|
36
|
Olegário LS, Andrade JKS, Andrade GRS, Denadai M, Cavalcanti RL, da Silva MAAP, Narain N. Chemical characterization of four Brazilian brown propolis: An insight in tracking of its geographical location of production and quality control. Food Res Int 2019; 123:481-502. [PMID: 31284998 DOI: 10.1016/j.foodres.2019.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 12/01/2022]
Abstract
The aim of this work was to undertake a detailed analysis on chemical constituents of brown propolis, originating from four different states (Bahia, Minas Gerais, Paraná and Sergipe) of Brazil. The volatile profile was determined by using HS-SPME-GC-MS along with the determination of total phenolic compounds content, flavonoids and antioxidant activity. A total of 315 volatile compounds were identified, however, several of them have not been reported so far in the Brazilian brown propolis. The terpenes represented the major class with 40.92-84.66% of the total area in the chromatograms. PCA analysis of the majority of compounds successfully indicated the volatile profile of each propolis sample according to their geographical origin. The analysis of volatile compounds and its characterization also varied significantly and confirmed that these depended on the geographical area of collection of propolis. The data generated in this work may help in establishing criteria for quality control and tracking the specific region of propolis production in different states of Brazil.
Collapse
Affiliation(s)
- Lary Souza Olegário
- Federal University of Paraíba, Laboratory of Flavor Analyzes, João Pessoa, Paraíba, Brazil
| | | | | | - Marina Denadai
- Federal University of Sergipe, Laboratory of Flavor and Chromatographic Analyzes, São Cristóvão, Sergipe, Brazil
| | - Ranielly Lira Cavalcanti
- Federal University of Sergipe, Laboratory of Flavor and Chromatographic Analyzes, São Cristóvão, Sergipe, Brazil
| | | | - Narendra Narain
- Federal University of Sergipe, Laboratory of Flavor and Chromatographic Analyzes, São Cristóvão, Sergipe, Brazil.
| |
Collapse
|
37
|
Liu J, Mu T, Sun H, Fauconnier ML. Optimization of ultrasonic–microwave synergistic extraction of flavonoids from sweet potato leaves by response surface methodology. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.13928] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiang Liu
- Key Laboratory of Agro‐Products Processing, Ministry of Agriculture; Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing P.R. China
- Laboratory of General and Organic Chemistry University of Liege, Gembloux Agro‐Bio Tech Gembloux Belgium
| | - Taihua Mu
- Key Laboratory of Agro‐Products Processing, Ministry of Agriculture; Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing P.R. China
| | - Hongnan Sun
- Key Laboratory of Agro‐Products Processing, Ministry of Agriculture; Institute of Food Science and Technology Chinese Academy of Agricultural Sciences Beijing P.R. China
| | - Marie Laure Fauconnier
- Laboratory of General and Organic Chemistry University of Liege, Gembloux Agro‐Bio Tech Gembloux Belgium
| |
Collapse
|
38
|
Jansen-Alves C, Maia DS, Krumreich FD, Crizel-Cardoso MM, Fioravante JB, da Silva WP, Borges CD, Zambiazi RC. Propolis microparticles produced with pea protein: Characterization and evaluation of antioxidant and antimicrobial activities. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.09.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|