1
|
Zhang G, Liu Y, Luo Y, Zhang C, Li S, Zheng H, Jiang X, Hu F. Comparison of the Physicochemical Properties, Microbial Communities, and Hydrocarbon Composition of Honeys Produced by Different Apis Species. Foods 2024; 13:3753. [PMID: 39682825 DOI: 10.3390/foods13233753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The chemical composition and quality of honey are influenced by its botanical, geographic, and entomological origins, as well as climatic conditions. In this study, the physicochemical characteristics, microbial communities, and hydrocarbon compounds of honey produced by Apis mellifera, Apis cerana, Apis laboriosa, Apis dorsata, and Apis florea were elucidated. The physicochemical profile of the honey exhibited significant differences across species, including moisture content (18.27-23.66%), fructose (33.79-38.70%), maltose (1.10-1.93%), electrical conductivity (0.37-0.74 mS/cm), pH (3.36-3.72), diastase activity (4.50-29.97 diastase number), and color (37.90-102.47 mm). Microbial analysis revealed a significant abundance of lactic acid bacteria, particularly the Apilactobacillus genus in A. laboriosa honey and the Lactobacillus in A. florea honey, indicating significant probiotic potential. Chemometric methods, principal component analysis, hierarchical cluster analysis, and orthogonal partial least squares discriminant analysis (OPLS-DA) were used to classify the honey samples based on the 12 beeswax-derived hydrocarbons. The OPLS-DA model demonstrated 100% accuracy in predicting the entomological origin of honey, indicating that specific hydrocarbons are reliable markers for honey classification.
Collapse
Affiliation(s)
- Guozhi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yao Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yaling Luo
- Engineering Technology Research Center of Anti-Aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236000, China
| | - Cuiping Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shanshan Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huoqing Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiasen Jiang
- Engineering Technology Research Center of Anti-Aging Chinese Herbal Medicine of Anhui Province, Biology and Food Engineering School, Fuyang Normal University, Fuyang 236000, China
| | - Fuliang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Wang Y, Wu J, Wang G, Tang W, Wu F, Zhao H, Cao W. Hydroxy Fatty Acid Synthesis-Related mRNA as the Biomarker for Detecting Mislabeling of Honey Entomological Origin. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18283-18293. [PMID: 39082820 DOI: 10.1021/acs.jafc.4c03934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
The authentication of the entomological origin of honey is a widespread concern, necessitating the prompt establishment of an effective approach for distinguishing between Apis cerana cerana honey (ACH) and Apis mellifera ligustica honey (AMH). Hydroxy fatty acids (HFAs) found in honey are bee-derived components synthesized by the mandibular glands of worker bees. We previously discovered significant variations in the hydroxy fatty acid composition between ACH and AMH, suggesting their potential as indicators for identifying the authenticity of the entomological origin of honey. Herein, we identified differentially expressed genes associated with HFA synthesis by conducting transcriptome sequencing of the mandibular glands of AC and AM honeybees. Subsequently, we proposed a method for the relative quantitative analysis of bee-derived RNA components using real-time fluorescence quantitative polymerase chain reaction, which was supplemented by multivariate statistical analysis to further discern differences in HFA synthesis-related mRNA between ACH and AMH. The results showed that the mRNAs of FAXDC2 (fatty acid hydroxylase domain-containing protein 2) and FAS (fatty acid synthase) may serve as indicators to discern the entomological origin of honey. This study presents two novel biomarkers for detecting mislabeling of the entomological origin in ACH and AMH based on variations in bee-derived components.
Collapse
Affiliation(s)
- Yan Wang
- College of Food Science and Technology, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Jinkui Wu
- College of Food Science and Technology, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Guiling Wang
- College of Food Science and Technology, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Wenxuan Tang
- College of Food Science and Technology, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Fanhua Wu
- College of Food Science and Technology, Northwest University, 229 North Taibai Road, Xi'an 710069, China
| | - Haoan Zhao
- College of Food Science and Technology, Northwest University, 229 North Taibai Road, Xi'an 710069, China
- Bee Product Research Center of Shaanxi Province, Xi'an 710065, China
| | - Wei Cao
- College of Food Science and Technology, Northwest University, 229 North Taibai Road, Xi'an 710069, China
- Bee Product Research Center of Shaanxi Province, Xi'an 710065, China
| |
Collapse
|
3
|
Chien HJ, Zheng YF, Wang WC, Kuo CY, Hsu YM, Lai CC. Determination of adulteration, geographical origins, and species of food by mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:2273-2323. [PMID: 35652168 DOI: 10.1002/mas.21780] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Food adulteration, mislabeling, and fraud, are rising global issues. Therefore, a number of precise and reliable analytical instruments and approaches have been proposed to ensure the authenticity and accurate labeling of food and food products by confirming that the constituents of foodstuffs are of the kind and quality claimed by the seller and manufacturer. Traditional techniques (e.g., genomics-based methods) are still in use; however, emerging approaches like mass spectrometry (MS)-based technologies are being actively developed to supplement or supersede current methods for authentication of a variety of food commodities and products. This review provides a critical assessment of recent advances in food authentication, including MS-based metabolomics, proteomics and other approaches.
Collapse
Affiliation(s)
- Han-Ju Chien
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Feng Zheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Chen Wang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Yu Kuo
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yu-Ming Hsu
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
- Rong Hsing Research Center For Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
4
|
Mohamadzade Namin S, Ghosh S, Jung C. Honey Quality Control: Review of Methodologies for Determining Entomological Origin. Molecules 2023; 28:4232. [PMID: 37241972 PMCID: PMC10223528 DOI: 10.3390/molecules28104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Honey is a widely consumed natural product, and its entomological origin can significantly influence its market value. Therefore, traceability of the entomological origin of honey should also be considered in honey quality control protocols. Although several methods exist, such as physicochemical characterization and bioactivity profiling of honey of different entomological origins, the most promising three methods for entomological authentication of honey include protein-based identification, chemical profiling, and a DNA-based method. All of these methods can be applied for reliable identification of the entomological origin of honey. However, as the honey is a complex matrix, the inconsistency of the results obtained by these methods is a pragmatic challenge, and therefore, the use of each method in all the cases is questionable. Most of these methodologies can be used for authentication of newly harvested honey and it is worth understanding the possibility of using these methods for authentication of relatively old samples. Most probably, using DNA-based methods targeting small fragments of DNA can provide the best result in old samples, however, the species-specific primers targeting short fragments are limited and not available for all species. Therefore, using universal primers in combination with a DNA metabarcoding approach can be a good solution that requires further investigation. This present article describes the applications of different methods, their pros, and their cons to identify honey based on entomological origin.
Collapse
Affiliation(s)
- Saeed Mohamadzade Namin
- Agricultural Science and Technology Institute, Andong National University, Andong 36729, Republic of Korea
| | - Sampat Ghosh
- Agricultural Science and Technology Institute, Andong National University, Andong 36729, Republic of Korea
| | - Chuleui Jung
- Agricultural Science and Technology Institute, Andong National University, Andong 36729, Republic of Korea
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
5
|
Liu X, Sun J, Ji P, Yang C, Wu F, Cheng N, El-Seedi HR, Zhao H, Cao W. Hydroxy Fatty Acids as Novel Markers for Authenticity Identification of the Honey Entomological Origin Based on the GC-MS Method. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7163-7173. [PMID: 37096970 DOI: 10.1021/acs.jafc.3c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The authenticity of honey is generally a worldwide concern, and there is a pressing need to establish a suitable entomological method to identify the authenticity of Apis cerana cerana (A. cerana) and Apis mellifera ligustica (A. mellifera) honey. Hydroxy fatty acids as bee-derived components are known to widely exist in honey and other biosamples. Herein, we present an identification strategy for hydroxy fatty acids based on the relative quantification with reference to royal jelly and targeted quantification combined with multivariate statistical analysis to identify the honey entomological origin. Multivariate statistical analysis was used to further determine differential hydroxy fatty acids between A. cerana honey and A. mellifera honey. Results showed that 8-hydroxyoctanoic acid (96.20-253.34 versus 0-32.46 mg kg-1) and 3,10-dihydroxydecanoic acid (1.96-6.56 versus 0-0.35 mg kg-1) could be used as markers for accurate identification of the honey entomological origin, while the three fraud honey samples were recognized using this method. This study provides the novel marker hydroxy fatty acids to identify A. cerana honey and A. mellifera honey from the perspective of bee-derived component differences.
Collapse
Affiliation(s)
- Xiaotong Liu
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Jing Sun
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Peirong Ji
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Chenchen Yang
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Fanhua Wu
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
| | - Ni Cheng
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
- Bee Product Research Center of Shaanxi Province, Xi'an 710065, China
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, SE-751 23 Uppsala, Sweden
| | - Haoan Zhao
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
- Bee Product Research Center of Shaanxi Province, Xi'an 710065, China
| | - Wei Cao
- College of Food Science and Technology, Northwest University, 229 North TaiBai Road, Xi'an 710069, China
- Bee Product Research Center of Shaanxi Province, Xi'an 710065, China
| |
Collapse
|
6
|
Identification of insect sources of honey in China based on real-time fluorescent LAMP technology. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2022.104875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Honrado M, Lopes AR, Alice Pinto M, Amaral JS. A novel real-time PCR coupled with high resolution melting analysis as a simple and fast tool for the entomological authentication of honey by targeting Apis mellifera mitochondrial DNA. Food Res Int 2022; 161:111761. [DOI: 10.1016/j.foodres.2022.111761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/04/2022]
|
8
|
Utzeri VJ, Ribani A, Taurisano V, Fontanesi L. Entomological authentication of honey based on a DNA method that distinguishes Apis mellifera mitochondrial C mitotypes: Application to honey produced by A. m. ligustica and A. m. carnica. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Mohamadzade Namin S, Yeasmin F, Choi HW, Jung C. DNA-Based Method for Traceability and Authentication of Apis cerana and A. dorsata Honey (Hymenoptera: Apidae), Using the NADH dehydrogenase 2 Gene. Foods 2022; 11:928. [PMID: 35407015 PMCID: PMC8997381 DOI: 10.3390/foods11070928] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/01/2023] Open
Abstract
Honey is a widely used natural product and the price of honey from Apis cerana (ACH) and A. dorsata (ADH) is several times more expensive than the one from A. mellifera (AMH), thus there are increasing fraud issues reported in the market by mislabeling or mixing honeys with different entomological origins. In this study, three species-specific primers, targeting the NADH dehydrogenase 2 (ND2) region of honeybee mitochondrial DNA, were designed and tested to distinguish the entomological origin of ACH, ADH, and AMH. Molecular analysis showed that each primer set can specifically detect the ND2 region from the targeted honeybee DNA, but not from the others. The amplicon size for A. cerana, A. dorsata and A. mellifera were 224, 302, and 377 bp, respectively. Importantly, each primer set also specifically produced amplicons with expected size from the DNA prepared from honey samples with different entomological origins. The PCR adulteration test allowed detection of 1% of AMH in the mixture with either ACH or ADH. Furthermore, real-time PCR and melting curve analysis indicated the possible discrimination of origin of honey samples. Therefore, we provide the newly developed PCR-based method that can be used to determine the entomological origin of the three kinds of honey.
Collapse
Affiliation(s)
- Saeed Mohamadzade Namin
- Agricultural Science and Technology Institute, Andong National University, Andong 36729, Korea
- Department of Plant Protection, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin 3381774895, Iran
| | - Fatema Yeasmin
- Department of Plant Medicals, Andong National University, Andong 36729, Korea
| | - Hyong Woo Choi
- Department of Plant Medicals, Andong National University, Andong 36729, Korea
| | - Chuleui Jung
- Agricultural Science and Technology Institute, Andong National University, Andong 36729, Korea
- Department of Plant Medicals, Andong National University, Andong 36729, Korea
| |
Collapse
|
10
|
Wang X, Li Y, Chen L, Zhou J. Analytical Strategies for LC-MS-Based Untargeted and Targeted Metabolomics Approaches Reveal the Entomological Origins of Honey. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1358-1366. [PMID: 35023735 DOI: 10.1021/acs.jafc.1c07153] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A comprehensive liquid chromatography-mass spectrometry (LC-MS)-based metabolomics approach was developed to discriminate honey harvested from Apis mellifera ligustica Spinola (A. mellifera) and Apis cerana cerana Fabricius (A. cerana). Based on an untargeted strategy, ultrahigh-performance liquid chromatography electrospray ionization quadrupole orbitrap high-resolution mass spectrometry (UPLC Q-Orbitrap) was combined with chemometrics techniques to screen and identify tentative markers from A. mellifera and A. cerana honey. In targeted metabolomics analysis, a sensitive method of solid-phase extraction followed by ultrahigh-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry (UPLC-MS/MS) was established for quantifying three markers, and the results showed that 3-amino-2-naphthoic acid and methyl indole-3-acetate could be considered markers of A. cerana honey, as they were present in higher amounts in A. cerana honey than in A. mellifera honey, whereas kynurenic acid was determined to be a marker of A. mellifera honey. This work highlights critical information for the authentication of A. cerana and A. mellifera honey.
Collapse
Affiliation(s)
- Xinran Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, P. R. China
| | - Yi Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Lanzhen Chen
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, P. R. China
- Laboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture and Rural Affairs, Beijing 100093, P. R. China
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, P. R. China
| | - Jinhui Zhou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, P. R. China
- Laboratory of Risk Assessment for Quality and Safety of Bee Products, Ministry of Agriculture and Rural Affairs, Beijing 100093, P. R. China
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, P. R. China
| |
Collapse
|
11
|
Zhang GZ, Tian J, Zhang YZ, Li SS, Zheng HQ, Hu FL. Investigation of the Maturity Evaluation Indicator of Honey in Natural Ripening Process: The Case of Rape Honey. Foods 2021; 10:2882. [PMID: 34829164 PMCID: PMC8623990 DOI: 10.3390/foods10112882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/21/2022] Open
Abstract
Honey maturity, a critical factor for quality evaluation, is difficult to detect in the current industry research. The objective of this study was to explore the changes in the composition and find potential maturity indicators of rape honey at different maturity stages through evaluating physicochemical parameters (moisture, sugars, pH, electrical conductivity, total protein, total phenols, total flavonoids, proline, and enzyme activity), the antioxidant capacity, and volatile components. The relevant results are as follows: 1. As the maturity increased, the moisture, sucrose, and maltose content of rape honey gradually decreased, while the glucose, fructose, and total protein content gradually increased. The activities of diastase, invertase, and β-glucosidase showed a significant increase with the elevation of ripening days, and the activity of glucose oxidase reached the highest before completely capping. 2. The antioxidant capacity of honey increased with the increase in honey maturity. There is a significant and strong correlation between the bioactive components of rape honey and antioxidant capacity (p < 0.01, |r| > 0.857). 3. Thirty-five volatile components have been identified. Nonanal, benzaldehyde monomer, and benzaldehyde dimer can be used as potential indicators for the identification of honey maturity stages. Principal component analysis (PCA) based on antioxidant parameters and volatile components can identify the maturity of honey.
Collapse
Affiliation(s)
- Guo-Zhi Zhang
- College of Animal Sciences, Zhejiang University, No. 866, Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Jing Tian
- College of Animal Sciences, Zhejiang University, No. 866, Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Yan-Zheng Zhang
- College of Animal Sciences, Zhejiang University, No. 866, Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Shan-Shan Li
- College of Animal Sciences, Zhejiang University, No. 866, Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Huo-Qing Zheng
- College of Animal Sciences, Zhejiang University, No. 866, Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Fu-Liang Hu
- College of Animal Sciences, Zhejiang University, No. 866, Yuhangtang Road, Xihu District, Hangzhou 310058, China
| |
Collapse
|
12
|
Quantification of major royal jelly proteins using ultra performance liquid chromatography tandem triple quadrupole mass spectrometry and application in honey authenticity. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.103801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Seraglio SKT, Schulz M, Brugnerotto P, Silva B, Gonzaga LV, Fett R, Costa ACO. Quality, composition and health-protective properties of citrus honey: A review. Food Res Int 2021; 143:110268. [PMID: 33992369 DOI: 10.1016/j.foodres.2021.110268] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 11/16/2022]
Abstract
Citrus honey is one of the most important monofloral honeys produced and consumed worldwide. This honey has pleasant sensorial characteristics, which include light color and typical aroma and flavor. Besides that, several constituents such as minerals, phenolic and volatile compounds, amino acids, sugars, enzymes, vitamins, methylglyoxal and organic acids are found in citrus honey. Moreover, potential biological properties have been associated with citrus honey. All these factors make it highly desired by consumers, increasing its market value, which can stimulates the practice of fraud. Also, citrus honey is susceptible to contamination and to inadequate processing. All these factors can compromise the quality, safety and authenticity of citrus honey. In this sense, this review aims to update and to discuss, for the first time, the data available in the literature about the physicochemical and the sensorial characteristics, composition, health properties, contamination, authenticity and adulteration of citrus honey. With this background, we aim to provide data that can guide future researches related to this honey.
Collapse
Affiliation(s)
| | - Mayara Schulz
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Patricia Brugnerotto
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Bibiana Silva
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil
| | - Ana Carolina Oliveira Costa
- Department of Food Science and Technology, Federal University of Santa Catarina, 88034-001 Florianópolis, SC, Brazil.
| |
Collapse
|
14
|
Silva B, Costa ACO, Tchewonpi SS, Bönick J, Huschek G, Gonzaga LV, Fett R, Baldermann S, Rawel HM. Comparative quantification and differentiation of bracatinga (Mimosa scabrella Bentham) honeydew honey proteins using targeted peptide markers identified by high-resolution mass spectrometry. Food Res Int 2021; 141:109991. [PMID: 33641949 DOI: 10.1016/j.foodres.2020.109991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 10/22/2022]
Abstract
Honey traceability is an important topic, especially for honeydew honeys, due to the increased incidence of adulteration. This study aimed to establish specific markers to quantify proteins in honey. A proteomics strategy to identify marker peptides from bracatinga honeydew honey was therefore developed. The proteomics approach was based on initial untargeted identification of honey proteins and peptides by LC-ESI-Triple-TOF-MS/MS, which identified the major royal jelly proteins (MRJP) presence. Afterwards, the peptides were selected by the in silico digestion. The marker peptides were quantified by the developed targeted LC-QqQ-MS/MS method, which provided good linearity and specificity, besides recoveries between 92 and 100% to quantify peptides from bracatinga honeydew honey. The uniqueness and high response in mass spectrometry were backed by further complementary protein analysis (SDS-PAGE). The selected marker peptides EALPHVPIFDR (MRJP 1), ILGANVK (MRJP 2), TFVTIER (MRJP 3), QNIDVVAR (MRJP 4), FINNDYNFNEVNFR (MRJP 5) and LLQPYPDWSWTK (MRJP 7), quantified by LC-QqQ-MS/MS, highlighted that the content of QNIDVVAR from MRJP 4 could be used to differentiate bracatinga honeydew honey from floral honeys (p < 0.05) as a potential marker for its authentication. Finally, principal components analysis highlighted the QNIDVVAR content as a good descriptor of the analyzed bracatinga honeydew honey samples.
Collapse
Affiliation(s)
- Bibiana Silva
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil; Institute of Nutritional Science, University of Potsdam, Nuthetal OT Bergholz-Rehbrücke, Germany
| | | | - Sorel Sagu Tchewonpi
- Institute of Nutritional Science, University of Potsdam, Nuthetal OT Bergholz-Rehbrücke, Germany
| | - Josephine Bönick
- IGV - Institut für Getreideverarbeitung GmbH, Nuthetal OT Bergholz-Rehbrücke, Germany
| | - Gerd Huschek
- IGV - Institut für Getreideverarbeitung GmbH, Nuthetal OT Bergholz-Rehbrücke, Germany
| | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Susanne Baldermann
- Institute of Nutritional Science, University of Potsdam, Nuthetal OT Bergholz-Rehbrücke, Germany; Leibniz Institute of Vegetable and Ornamental Crops, Grossbeeren, Germany
| | - Harshadrai M Rawel
- Institute of Nutritional Science, University of Potsdam, Nuthetal OT Bergholz-Rehbrücke, Germany.
| |
Collapse
|
15
|
Erban T, Shcherbachenko E, Talacko P, Harant K. A single honey proteome dataset for identifying adulteration by foreign amylases and mining various protein markers natural to honey. J Proteomics 2021; 239:104157. [PMID: 33631366 DOI: 10.1016/j.jprot.2021.104157] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 11/18/2022]
Abstract
Honey adulteration is a common practice that deceives consumers and devalues the unique curative and food properties of honey. For marketing, each honey must satisfy an internationally valid Codex standard. One of the quality parameters is diastase/amylase activity, which, if lowered, may be compensated for by the addition of foreign amylases. However, the estimation of enzyme activity does not enable identification of artificially added amylases. 45 honey samples were analyzed using label-free nanoLC-MS/MS proteomics. Four honeys were found to contain the foreign amylases from Aspergillus niger, Bacillus amyloliquefaciens and/or Bacillus licheniformis. This result was confirmed via proof of specificity at multiple levels. Furthermore, we identified a series of plant-related protein groups. Despite plant-related proteins constituting a significant portion of honey proteins, they were minor components compared to the major honey bee-derived proteins. Bioinformatic analysis also provided evidence for aphid and catalase proteins in honey, but the limited specificity of the MS/MS identified peptides must be considered. Overall, we demonstrate a proteomics approach employing LC-MS/MS that is useful for proving adulteration and assessing honey quality. As an resource useful for reference, we provide curated sequence databases. In addition, we provide many markers that are naturally found in honey for future studies. SIGNIFICANCE: Honey is unique natural product used since ancient times as a food and natural medicine. Humans strive to understand honey components because they can characterize different types of honey and be used for authentication and origin assessment. One of the important honey components are proteins. The proteins present in honey can naturally occur in honey, but some of them can be used to mask deficiencies in some honey quality properties. Diastases/amylases are such proteins, and their activity, a measure of honey freshness, can decrease in time or due to processing. To our knowledge, we for the first time specifically identify foreign amylases in honey. However, this study provided new information on other non-honey bee proteins in honey. Thus, this study is also of importance due to its identification of plant and aphid proteins and catalase-related proteins. This study provides a clue explaining the controversial presence of catalase in honey, since catalases can be identified and their origin determined via proteomics.
Collapse
Affiliation(s)
- Tomas Erban
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Drnovska 507/73, Prague, CZ-16106, Czechia.
| | - Elena Shcherbachenko
- Proteomics and Metabolomics Laboratory, Crop Research Institute, Drnovska 507/73, Prague, CZ-16106, Czechia
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV, Prumyslova 595, Vestec CZ-25242, Czechia
| | - Karel Harant
- Proteomics Core Facility, Faculty of Science, Charles University, BIOCEV, Prumyslova 595, Vestec CZ-25242, Czechia
| |
Collapse
|
16
|
The botanical sources, entomological proteome and antibiotic properties of wild honey. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2020.102589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
17
|
Sommano SR, Bhat FM, Wongkeaw M, Sriwichai T, Sunanta P, Chuttong B, Burgett M. Amino Acid Profiling and Chemometric Relations of Black Dwarf Honey and Bee Pollen. Front Nutr 2020; 7:558579. [PMID: 33365324 PMCID: PMC7750629 DOI: 10.3389/fnut.2020.558579] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/05/2020] [Indexed: 11/18/2022] Open
Abstract
This research reports the characterization of bee pollen of Apis andreniformis colonies on the basis of morphology, proximate composition, the amino acid, and nutritive patterns in relation with their honey. The pollen gains of the sampling colonies revealed variations in their structure, symmetry, and sculpture. The exile surfaces of the pollens showed psilate, scabrate, clavate, and echinate types of morphology. Total amino acid content of black dwarf honeybee collected pollen (150 mg/g) was found significantly higher than that of honey (15 mg/g) from the same colony. Threonine, phenylalanine, and leucine were among the highest essential amino acid types found in the analyzed pollen and honey samples. The proline content in both products was found the lowest comparing to other amino acid types. The moisture content of the honey samples were found to exceed the limit as prescribed by Codex Alimentarius Commission (<20%). The ash content of the analyzed samples was mostly within the limits (<0.6%) prescribed by international norms. The fat content of the pollens varied from 5.01 to 5.05%, and the honey showed zero fat content. The carbohydrate content in the honey samples was found to differ significantly from each other with a maximum content (73.16%), and the lowest carbohydrate content was 67.80%. The pollen and honey samples were found to have positive effect on in vitro digestibility of proteins.
Collapse
Affiliation(s)
- Sarana Rose Sommano
- Plant Bioactive Compound Laboratory, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand.,Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai, Thailand
| | - Farhan M Bhat
- Plant Bioactive Compound Laboratory, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Malaiporn Wongkeaw
- Plant Bioactive Compound Laboratory, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand.,Programme of Food Production and Innovation, Faculty of Integrated of Science and Technology, Rajamangala University of Technology Lanna, Chiang Mai, Thailand
| | - Trid Sriwichai
- Plant Bioactive Compound Laboratory, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Piyachat Sunanta
- Plant Bioactive Compound Laboratory, Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Bajaree Chuttong
- Meliponini and Apini Research Laboratory, Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Michael Burgett
- Department of Horticulture, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
18
|
Khansaritoreh E, Salmaki Y, Ramezani E, Akbari Azirani T, Keller A, Neumann K, Alizadeh K, Zarre S, Beckh G, Behling H. Employing DNA metabarcoding to determine the geographical origin of honey. Heliyon 2020; 6:e05596. [PMID: 33294716 PMCID: PMC7701183 DOI: 10.1016/j.heliyon.2020.e05596] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/19/2020] [Accepted: 11/20/2020] [Indexed: 01/14/2023] Open
Abstract
Unfavourable climatic conditions force Iranian beekeepers to translocate over large distances in the course of the year. However, irrespective of the main place of production, the honey is always labeled with the name of the beekeepers' hometown, which leads consequently to mislabeled products. The present study investigates the capability of DNA metabarcoding to locate the geographical origin of honey. The molecular markers (ITS2 and rbcL) allowed identification of 926 plant species in studied samples. A comprehensive review of floristic reference books specified 34 key species that could be used to successfully determine the geographical origin in 91.4% of samples. These key species were usually present in honey with tiny amounts and thus, conventional palynology might not be able to detect them. The present investigation indicates that although ITS2 is able to detect more species than rbcL, utilizing a combination of both markers provides more robust evidence of geographical origin.
Collapse
Affiliation(s)
- Elmira Khansaritoreh
- University of Goettingen, Department of Palynology and Climate Dynamics, Untere Karspüle 2, 37073, Goettingen, Germany
| | - Yasaman Salmaki
- Department of Plant Science, Center of Excellence in Phylogeny, School of Biology, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Elias Ramezani
- Department of Forestry, Faculty of Natural Resources, Urmia University, Urmia, Iran
| | - Tayebeh Akbari Azirani
- Department of Physical Geography, School of Earth Sciences, Shahid Beheshti University (S.B.U), Tehran, Iran
| | - Alexander Keller
- Center for Computational and Theoretical Biology & Department of Bioinformatics, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Katrin Neumann
- Lifeprint GmbH, Industriestrasse 12, 89257, Illertissen, Germany
| | - Kamaleddin Alizadeh
- University of Goettingen, Department of Palynology and Climate Dynamics, Untere Karspüle 2, 37073, Goettingen, Germany
- Quality Service International GmbH, Flughafendamm 9, 28199, Bremen, Germany
| | - Shahin Zarre
- Department of Plant Science, Center of Excellence in Phylogeny, School of Biology, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Gudrun Beckh
- Quality Service International GmbH, Flughafendamm 9, 28199, Bremen, Germany
| | - Hermann Behling
- University of Goettingen, Department of Palynology and Climate Dynamics, Untere Karspüle 2, 37073, Goettingen, Germany
| |
Collapse
|
19
|
Kafantaris I, Amoutzias GD, Mossialos D. Foodomics in bee product research: a systematic literature review. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03634-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
You MM, Liu YC, Chen YF, Pan YM, Miao ZN, Shi YZ, Si JJ, Chen ML, Hu FL. Royal jelly attenuates nonalcoholic fatty liver disease by inhibiting oxidative stress and regulating the expression of circadian genes in ovariectomized rats. J Food Biochem 2020; 44:e13138. [PMID: 31894585 DOI: 10.1111/jfbc.13138] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/12/2019] [Accepted: 12/15/2019] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has a high incidence in postmenopausal women and is accompanied by insulin resistance, obesity, and dyslipidemia. Royal jelly (RJ), a natural substance derived from hive, possesses numerous health-beneficial properties. Here, we evaluated the effects of RJ (150, 300, and 450 mg kg-1 day-1 , 8 weeks) on NAFLD in ovariectomized (OVX) rats. Based on the results, RJ ameliorated the degree of anxiety, improved serum lipid profile, and attenuated the hepatic steatosis and liver injury in OVX rats. Furthermore, the protective effects of RJ could be attributed to its antioxidant properties, which enhance the levels of hepatic antioxidant enzymes. The qRT-PCR results also suggest that RJ improves the disturbances of circadian genes by downregulating their expression, including that of Per1 and Per 2, in the liver of OVX rats. Altogether, our findings suggest that RJ may be a promising agent for the treatment of NAFLD. PRACTICAL APPLICATIONS: Postmenopausal women are at an increased risk of NAFLD. Currently, there are no licensed therapies for NAFLD. Although hormone replacement therapy (HRT) is reported to inhibit the development of NAFLD, it causes unexpected adverse effects. As HRT is controversial, the use of natural supplements to counteract the detrimental effects of menopause has recently attracted more attention. RJ is a natural product secreted from the hypopharyngeal and mandibular glands of worker bees. The present study illustrates the protective effect of the natural product, RJ, and its underlying mechanisms on NAFLD. This is the first study to assess the effect of RJ on NAFLD under estrogen deficiency. Such findings contribute to the further utilization of RJ, which might serve as a promising therapeutic option and natural food for the treatment of NAFLD.
Collapse
Affiliation(s)
- Meng-Meng You
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yi-Chen Liu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yi-Fan Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yong-Ming Pan
- Experimental Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhuo-Ning Miao
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yi-Zhen Shi
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Juan-Juan Si
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Min-Li Chen
- Experimental Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fu-Liang Hu
- College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Wang X, Rogers KM, Li Y, Yang S, Chen L, Zhou J. Untargeted and Targeted Discrimination of Honey Collected by Apis cerana and Apis mellifera Based on Volatiles Using HS-GC-IMS and HS-SPME-GC-MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12144-12152. [PMID: 31587558 DOI: 10.1021/acs.jafc.9b04438] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Fraudulent acts regarding honey authenticity that use Apis mellifera honey as a substitute for Apis cerana honey have garnered considerable concern in China and triggered a trust crisis from consumers. In this study, untargeted metabolomics analysis was carried out based on volatile fractions in honey from A. cerana and A. mellifera using headspace gas chromatography-ion mobility spectrometry (HS-GC-IMS). Honey from A. cerana and A. mellifera was discriminated by HS-GC-IMS profiling, principal component analysis, and orthogonal partial least-squares discrimination analysis. Tentative markers were identified from p-values and the variable importance in projection analysis and confirmed using the retention index, mass fragments, and reference standards by gas chromatography-mass spectrometry (GC-MS). A targeted method was established using the headspace solid phase coupled with microextraction GC-MS (HS-SPME-GC-MS) to quantitate the markers. The results demonstrated that the developed untargeted and targeted metabolomics approach performed well when discriminating honey from A. cerana and A. mellifera.
Collapse
Affiliation(s)
- Xinran Wang
- Institute of Apicultural Research , Chinese Academy of Agricultural Sciences , Beijing 100093 , PR China
| | - Karyne M Rogers
- National Isotope Centre , GNS Science , 30 Gracefield Road , Lower Hutt 5040 , New Zealand
| | - Yi Li
- Institute of Apicultural Research , Chinese Academy of Agricultural Sciences , Beijing 100093 , PR China
| | - Shupeng Yang
- Institute of Apicultural Research , Chinese Academy of Agricultural Sciences , Beijing 100093 , PR China
| | - Lanzhen Chen
- Institute of Apicultural Research , Chinese Academy of Agricultural Sciences , Beijing 100093 , PR China
| | - Jinhui Zhou
- Institute of Apicultural Research , Chinese Academy of Agricultural Sciences , Beijing 100093 , PR China
| |
Collapse
|
22
|
Lewkowski O, Mureșan CI, Dobritzsch D, Fuszard M, Erler S. The Effect of Diet on the Composition and Stability of Proteins Secreted by Honey Bees in Honey. INSECTS 2019; 10:E282. [PMID: 31480801 PMCID: PMC6780080 DOI: 10.3390/insects10090282] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 01/10/2023]
Abstract
Honey proteins are essential bee nutrients and antimicrobials that protect honey from microbial spoilage. The majority of the honey proteome includes bee-secreted peptides and proteins, produced in specialised glands; however, bees need to forage actively for nitrogen sources and other basic elements of protein synthesis. Nectar and pollen of different origins can vary significantly in their nutritional composition and other compounds such as plant secondary metabolites. Worker bees producing and ripening honey from nectar might therefore need to adjust protein secretions depending on the quality and specific contents of the starting material. Here, we assessed the impact of different food sources (sugar solutions with different additives) on honey proteome composition and stability, using controlled cage experiments. Honey-like products generated from sugar solution with or without additional protein, or plant secondary metabolites, differed neither in protein quality nor in protein quantity among samples. Storage for 4 weeks prevented protein degradation in most cases, without differences between food sources. The honey-like product proteome included several major royal jelly proteins, alpha-glucosidase and glucose oxidase. As none of the feeding regimes resulted in different protein profiles, we can conclude that worker bees may secrete a constant amount of each bee-specific protein into honey to preserve this highly valuable hive product.
Collapse
Affiliation(s)
- Oleg Lewkowski
- Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany.
| | - Carmen I Mureșan
- Institutul de Științele Vieții "Regele Mihai I al României", Nutriție moleculară (Genomică și Proteomică), Universitatea de Științe Agricole și Medicină Veterinară, Calea Mănăștur 3-5, 400372 Cluj-Napoca, Romania
| | - Dirk Dobritzsch
- Proteinzentrum Charles Tanford, Core Facility-Proteomic Mass Spectrometry, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany
- Institut für Biochemie und Biotechnologie, Pflanzenbiochemie, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany
| | - Matthew Fuszard
- Proteinzentrum Charles Tanford, Core Facility-Proteomic Mass Spectrometry, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Straße 3a, 06120 Halle (Saale), Germany
- Zentrum für Medizinische Grundlagenforschung (ZMG), Medizinische Fakultät der Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube-Str. 40, 06120 Halle (Saale), Germany
| | - Silvio Erler
- Institut für Biologie, Molekulare Ökologie, Martin-Luther-Universität Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany.
| |
Collapse
|
23
|
Erban T, Shcherbachenko E, Talacko P, Harant K. The Unique Protein Composition of Honey Revealed by Comprehensive Proteomic Analysis: Allergens, Venom-like Proteins, Antibacterial Properties, Royal Jelly Proteins, Serine Proteases, and Their Inhibitors. JOURNAL OF NATURAL PRODUCTS 2019; 82:1217-1226. [PMID: 30995037 DOI: 10.1021/acs.jnatprod.8b00968] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Honey is a unique natural product produced by European honeybees. Due to its high economic value, honey is considered to be well characterized chemically, and it is often discovered to be an adulterated commodity. However, this study shows that our knowledge of honey protein composition, which is of high medical and pharmaceutical importance, is incomplete. In this in-depth proteomic study of 13 honeys, we identified a number of proteins that are important for an understanding of honey properties and merit additional pharmaceutical research. Our major result is an expanded understanding of the proteins underlying honey's antimicrobial properties, such as hymenoptaecin and defensin-1, glucose dehydrogenase isoforms, venom allergens and other venom-like proteins, serine proteases and serine protease inhibitors, and a series of royal jelly proteins. In addition, we performed quantitative comparisons of all of the proteins previously known or newly identified. The honey proteins, determined using label-free nLC-MS/MS in which the same protein quantity was analyzed in one series, were found in relatively similar proportions, although eucalyptus honey differed most widely from the remaining honeys. Overall, the proteome analysis indicated that honeybees supply proteins to honey in a relatively stable ratio within each proteome, but total protein quantity can differ by approximately an order of magnitude in different honeys.
Collapse
Affiliation(s)
- Tomas Erban
- Proteomics and Metabolomics Laboratory , Crop Research Institute , Drnovska 507/73 , Prague 6-Ruzyne , CZ-16106 , Czechia
| | - Elena Shcherbachenko
- Proteomics and Metabolomics Laboratory , Crop Research Institute , Drnovska 507/73 , Prague 6-Ruzyne , CZ-16106 , Czechia
| | - Pavel Talacko
- Proteomics Core Facility, Faculty of Science , Charles University , BIOCEV, Prumyslova 595 , Vestec , CZ-25242 , Czechia
| | - Karel Harant
- Proteomics Core Facility, Faculty of Science , Charles University , BIOCEV, Prumyslova 595 , Vestec , CZ-25242 , Czechia
| |
Collapse
|
24
|
Zhang YZ, Wang S, Chen YF, Wu YQ, Tian J, Si JJ, Zhang CP, Zheng HQ, Hu FL. Authentication of Apis cerana Honey and Apis mellifera Honey Based on Major Royal Jelly Protein 2 Gene. Molecules 2019; 24:E289. [PMID: 30646615 PMCID: PMC6358987 DOI: 10.3390/molecules24020289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 11/16/2022] Open
Abstract
In Asia, honey is mainly produced by Apis mellifera and Apis cerana. However, the price of A. cerana honey is usually much higher than A. mellifera honey. Seeing considerable profits, some dishonest companies and beekeepers mislabel A. mellifera honey as A. cerana honey or incorporate A. mellifera honey into A. cerana honey. In the present study, we developed methods to discriminate A. cerana honey from A. mellifera honey based on the MRJP2 (major royal jelly protein 2) gene. Two pairs of species-specific primers were designed. The amplification products of A. cerana and A. mellifera were 212 and 560 bp, respectively. As little as one percent incorporation of A. mellifera honey in the mixture can be detected by duplex PCR. Additionally, another method based on the melt curve analysis using the same primers was also developed, allowing a rapid discrimination of real-time PCR product of different species. Our study shows that the entomological authentication of honey samples can be identified by nuclear genes other than mitochondrial genes and this extends the possibility of gene selection in identification. The authentication system we proposed could be a useful tool for discriminating A. cerana honey from A. mellifera honey.
Collapse
Affiliation(s)
- Yan-Zheng Zhang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| | - Shuai Wang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| | - Yi-Fan Chen
- College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| | - Yu-Qi Wu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| | - Jing Tian
- College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| | - Juan-Juan Si
- College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| | - Cui-Ping Zhang
- College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| | - Huo-Qing Zheng
- College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| | - Fu-Liang Hu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|