1
|
Li D, Li H, Tao Y, Li G, Xu E, Han Y, Ding Y. Static magnetic field improvement of the quality of rice dumpling subjected to freeze-thaw cycles: Roles of phase transition of water and changes in structural and physicochemical properties of glutinous rice flour. Food Res Int 2023; 174:113663. [PMID: 37981365 DOI: 10.1016/j.foodres.2023.113663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023]
Abstract
This study aimed to investigate the effect of static magnetic field (SMF, 0-10 mT) on the quality of rice dumplings subjected to 7, 14, 21, and 28 freeze-thaw cycles. The underlying mechanism was explored by monitoring changes in water phase transition, water distribution, and structural and physicochemical properties of rice flour. Results suggested that SMF enables the formation of small ice crystals by accelerating freezing rate, shortening phase transition time, and increasing bound water content, which attributes to reducing the mechanical damage on starch granules and thus improves the quality of frozen rice dumpling. After 7-28 freeze-thaw cycles, SMF treatment increased the whiteness by 0.08-1.58, reduced the cracking ratio by 1.67 %-8.34 %, decreased the water loss ratio by 0-0.75 %, and significantly improved the texture of cooked rice dumplings. This study confirmed the feasibility of SMF in improving the quality of rice dumpling, which contributes to expanding the applications of magnetic freezer in the preservation of starch-based foods.
Collapse
Affiliation(s)
- Dandan Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| | - Haifei Li
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Yang Tao
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Ganghua Li
- National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Enbo Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang University, China
| | - Yongbin Han
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| | - Yanfeng Ding
- National Engineering and Technology Center for Information Agriculture/Key Laboratory of Crop Physiology and Ecology in Southern China/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China.
| |
Collapse
|
2
|
Bian X, Chen JR, Yang Y, Yu DH, Ma ZQ, Ren LK, Wu N, Chen FL, Liu XF, Wang B, Zhang N. Effects of fermentation on the structure and physical properties of glutinous proso millet starch. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107144] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
FUENTES-ARISMENDY F, RODRIGUEZ-SANDOVAL E, MEJIA-VILLOTA A, VELEZ-URIBE T, HERNANDEZ V. Development of baked snack with fats and proteins powder mixtures as a fresh cheese substitute. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.53120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Qi Q, Hong Y, Zhang Y, Gu Z, Cheng L, Li Z, Li C. Effect of cassava starch structure on scalding of dough and baking expansion ability. Food Chem 2021; 352:129350. [PMID: 33657481 DOI: 10.1016/j.foodchem.2021.129350] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/24/2020] [Accepted: 01/23/2021] [Indexed: 01/26/2023]
Abstract
Fermented cassava products are important starchy food staples in South America. The quality of the products is affected by the baking expansion ability of the dough, which is in turn influenced by the starch fermentation process and drying method employed. We investigated the structural properties of cassava starch after different fermentation and drying treatments, and the effect of starch structure on scalding of dough and baking expansion ability. Fermentation combined with either exposure to sunlight or UV light treatment resulted in high cassava starch baking expansion. Moreover, we observed decreased crystallinity and increased disordered crystalline regions with lower molecular weight in the two types of starch-fermented combined with sunlight or UV light treatment-and both appeared to have a continuous network structure and polarized cross in scalded dough, which are conducive to holding gas and losing water, thus promoting high baking expansibility.
Collapse
Affiliation(s)
- Qiaoting Qi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China.
| | - Yayuan Zhang
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Science, Nanning, 530007, Guangxi Province, People's Republic of China.
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| | - Caiming Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, Jiangsu Province, People's Republic of China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, Jiangsu Province, People's Republic of China
| |
Collapse
|
7
|
Malgor M, Viña SZ, Dini C. Root starches enriched with proteins and phenolics from
Pachyrhizus ahipa
roots as gluten‐free ingredients for baked goods. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Martina Malgor
- Facultad de Ciencias Exactas UNLP CIDCA Centro de Investigación y Desarrollo en Criotecnología de Alimentos CONICET La Plata CICPBA 47 y 116 S/N°, La Plata 1900 Buenos Aires Argentina
| | - Sonia Zulma Viña
- Facultad de Ciencias Exactas UNLP CIDCA Centro de Investigación y Desarrollo en Criotecnología de Alimentos CONICET La Plata CICPBA 47 y 116 S/N°, La Plata 1900 Buenos Aires Argentina
- FCAyF‐UNLP Curso Bioquímica y Fitoquímica 60 y 119 S/N° La Plata1900 Argentina
| | - Cecilia Dini
- Facultad de Ciencias Exactas UNLP CIDCA Centro de Investigación y Desarrollo en Criotecnología de Alimentos CONICET La Plata CICPBA 47 y 116 S/N°, La Plata 1900 Buenos Aires Argentina
| |
Collapse
|
8
|
Teixeira CS, Neves GADR, Caliari M, Soares Júnior MS. Waxy maize starch modified by sun-drying after spontaneous or backslopping fermentation. Int J Biol Macromol 2019; 135:553-559. [DOI: 10.1016/j.ijbiomac.2019.05.126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 01/24/2023]
|