1
|
Jeong SH, Lee HB, Lee DU. Effects of Pulsed Electric Field on Meat Tenderization and Microbial Decontamination: A Review. Food Sci Anim Resour 2024; 44:239-254. [PMID: 38764506 PMCID: PMC11097037 DOI: 10.5851/kosfa.2023.e82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/23/2023] [Accepted: 12/19/2023] [Indexed: 05/21/2024] Open
Abstract
This review sought to categorize studies on meat tenderization and safety through pulsed electric field (PEF) treatment, with a particular focus on reconciling conflicting findings regarding the tenderization effect (i.e., the primary outcome of PEF treatment) and to discuss the underlying mechanisms of these effects. While the tenderization effect may vary depending on the homogeneity of PEF treatment and variations in the conditions of texture measurements, the protein associated with tenderization was degraded by PEF treatment in most studies. PEF technology enables the delivery of a high voltage for a brief duration, typically in the microsecond range, making it a non-thermal technology. One of the distinct advantages of PEF is its ability to preserve the freshness of meat due to its exceptionally short treatment time. While PEF studies have traditionally centered on pasteurizing liquid foods, research on its application to meat is steadily expanding. Therefore, this review aims to elucidate the mechanisms of PEF and provide current insights into the applications of this technology for meat tenderization and microbial inactivation.
Collapse
Affiliation(s)
- Se-Ho Jeong
- Department of Food Science and
Biotechnology, Chung-Ang University, Anseong 17546,
Korea
| | - Han-Beak Lee
- Department of Food Science and
Biotechnology, Chung-Ang University, Anseong 17546,
Korea
| | - Dong-Un Lee
- Department of Food Science and
Biotechnology, Chung-Ang University, Anseong 17546,
Korea
| |
Collapse
|
2
|
Singh S, Bhat HF, Kumar S, Muhammad Aadil R, Mohan MS, Proestos C, Bhat ZF. Storage stability of chocolate can be enhanced using locust protein-based film incorporated with E. purpurea flower extract-based nanoparticles. ULTRASONICS SONOCHEMISTRY 2023; 100:106594. [PMID: 37713960 PMCID: PMC10511807 DOI: 10.1016/j.ultsonch.2023.106594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
The study aimed to develop a locust protein (Loct-Prot)-based film to enhance the lipid oxidative and storage stability of chocolate. The E. purpurea flower extract based-nanoparticles (EFNPs) were developed using ultrasonication (500 W and 20 kHz for 10 min) following a green method of synthesis. The EFPNs were incorporated at different levels [T0 (0%), T1 (1.0%), T2 (1.5%), and T3 (2.0%)] to impart bioactive properties to the Loct-Prot-based films which were used for packaging of white chocolate during 90 days trial. The addition of EFPNs increased (P < 0.05) the density of the Loct-Prot-based film which in turn decreased (P < 0.05) the transmittance (%) and WVTR (water vapour transmission rate, mg/mt2) with increasing levels of addition. While brightness (L*) showed a decrease, redness (a*) and yellowness (b*) increased with increasing concentration of EFPNs. No significant (P > 0.05) effect was recorded on other physicomechanical parameters of the film. The addition of EFPNs (P < 0.05) increased the mean values of all the antioxidant and antimicrobial parameters (total flavonoid and phenolic contents, FRAP, DPPH, and ABTS activities, antioxidant release and inhibitory halos) of the film. The presence of Loct-Prot-based film decreased the lipid (TBARS and free fatty acids) and protein (total carbonyl content) oxidation of the chocolate samples during storage. A significant (P < 0.05) increase was observed in the antioxidant properties [FRAP (µM TE/100 g) and DPPH and ABTS activities (% inhibition)] of the chocolate samples after one month and the sensory and microbial qualities towards the end of the storage. The gastrointestinal digestion simulation showed a positive impact on the antioxidant properties of the chocolate. Based on our results, Loct-Prot-based film incorporated with EFPNs can be used to enhance the storage stability of chocolate during storage.
Collapse
Affiliation(s)
- Shubam Singh
- Division of Livestock Products Technology, SKUAST-J, India
| | - Hina F Bhat
- Division of Animal Biotechnology, SKUAST-K, India.
| | - Sunil Kumar
- Division of Livestock Products Technology, SKUAST-J, India
| | | | - Maneesha S Mohan
- Dairy and Food Science, South Dakota State University, Brookings, USA.
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Zografou 15784, Athens, Greece.
| | - Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST-J, India.
| |
Collapse
|
3
|
Wang J, Huang XH, Zhang YY, Li S, Dong X, Qin L. Effect of sodium salt on meat products and reduction sodium strategies - A review. Meat Sci 2023; 205:109296. [PMID: 37562267 DOI: 10.1016/j.meatsci.2023.109296] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/01/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Sodium salt is one of the important additives in food processing. However, excessive intake of sodium salt may cause a series of cardiovascular diseases. Nowadays, sodium intake in most countries is higher than the World Health Organization recommends maximum consumption (5 g/d). 20% of the sodium intake in diets comes from meat products. Therefore, reducing the content of sodium salt in meat products and developing sodium salt-reduction meat products have attracted more and more attention for consumers. In this paper, the roles of sodium salt in meat product processing were reviewed. At the same time, sodium salt reduction strategies and existing problems were summarized and discussed. Multiple factors need to be considered to improve the salt-reduction meat product's quality. Relying on a single technology has a narrow application area, and it is difficult to achieve salt reduction. Therefore, a combination of multiple strategies could obtain a more ideal effect.
Collapse
Affiliation(s)
- Ji Wang
- School of Food Science and Technology, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University Liaoning, Dalian 116034, PR China
| | - Xu-Hui Huang
- School of Food Science and Technology, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University Liaoning, Dalian 116034, PR China
| | - Yu-Ying Zhang
- School of Food Science and Technology, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University Liaoning, Dalian 116034, PR China
| | - Shengjie Li
- School of Food Science and Technology, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University Liaoning, Dalian 116034, PR China
| | - Xiuping Dong
- School of Food Science and Technology, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University Liaoning, Dalian 116034, PR China
| | - Lei Qin
- School of Food Science and Technology, SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Dalian Polytechnic University Liaoning, Dalian 116034, PR China.
| |
Collapse
|
4
|
Yao D, Ranadheera CS, Shen C, Wei W, Cheong LZ. Milk fat globule membrane: composition, production and its potential as encapsulant for bioactives and probiotics. Crit Rev Food Sci Nutr 2023:1-16. [PMID: 37632418 DOI: 10.1080/10408398.2023.2249992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2023]
Abstract
Milk fat globule membrane (MFGM) is a complex trilayer structure present in mammalian milk and is mainly composed of phospholipids and proteins (>90%). Many studies revealed MFGM has positive effects on the immune system, brain development, and cognitive function of infants. Probiotics are live microorganisms that have been found to improve mental health and insulin sensitivity, regulate immunity, and prevent allergies. Probiotics are unstable and prone to degradation by environmental, processing, and storage conditions. In this review, the processes used for encapsulation of probiotics particularly the potential of MFGM and its constituents as encapsulating materials for probiotics are described. This study analyzes the importance of MFGM in encapsulating bioactive substances and emphasizes the interaction with probiotics and the gut as well as its resistance to adverse environmental factors in the digestive system when used as a probiotic embedding material. MFGM can enhance the gastric acid resistance and bile resistance of probiotics, mainly manifested in the survival rate of probiotics. Due to the role of digestion, MFGM-coated probiotics can be released in the intestine, and due to the biocompatibility of the membrane, it can promote the binding of probiotics to intestinal epithelial cells, and promote the colonization of some probiotics in the intestine.
Collapse
Affiliation(s)
- Dan Yao
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo, China
| | - Chaminda Senaka Ranadheera
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Melbourne, Victoria, Australia
| | - Cai Shen
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Melbourne, Victoria, Australia
- China Beacons Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Wei Wei
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ling-Zhi Cheong
- School of Agriculture, Food and Ecosystem Sciences, Faculty of Science, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Singh S, Bhat HF, Kumar S, Manzoor M, Lone AB, Verma PK, Aadil RM, Papastavropoulou K, Proestos C, Bhat ZF. Locust protein hydrolysates have the potential to enhance the storage stability of cheese. Curr Res Food Sci 2023; 7:100561. [PMID: 37589018 PMCID: PMC10425899 DOI: 10.1016/j.crfs.2023.100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023] Open
Abstract
The study evaluated the efficacy of locust protein hydrolysates (LoPHs) to enhance the quality of Cheddar cheese (ChCh) during storage. The locust protein (LoP) was pre-treated [microwave (Mic) or ultrasonication (Ult) or no treatment (Not)] before hydrolysis using alcalase enzyme (3% w/w). The ChCh samples containing LoPHs at the maximum level of 1.5% were evaluated for quality for 3 months (4 ± 1 °C) and subjected to gastrointestinal simulation. Both pre-treatments (Mic and Ult) significantly (P < 0.05) enhanced the antimicrobial and antioxidant activities of the LoPHs (Ult > Mic > Not). The ChCh samples with LoPHs exhibited significantly (P < 0.05) lower means for lipid oxidation (TBARS and free fatty acids), protein oxidation (total-carbonyl content) and microbial counts (psychrophilic, total plate and yeast/moulds) during the storage. A positive effect was found on the sensory quality of ChCh samples after one month of storage. The gastrointestinal simulation improved the antioxidant capacity of the stored ChCh samples. LoPHs can be used as a novel bio-preservative for cheese.
Collapse
Affiliation(s)
- Shubam Singh
- Livestock Products Technology, SKUAST, Jammu, India
| | | | - Sunil Kumar
- Livestock Products Technology, SKUAST, Jammu, India
| | - Mehnaza Manzoor
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | | | | | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Konstadina Papastavropoulou
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
6
|
Lone AB, Bhat HF, Kumar S, Manzoor M, Hassoun A, Aït-Kaddour A, Mungure TE, Muhammad Aadil R, Bhat ZF. Improving microbial and lipid oxidative stability of cheddar cheese using cricket protein hydrolysates pre-treated with microwave and ultrasonication. Food Chem 2023; 423:136350. [PMID: 37196409 DOI: 10.1016/j.foodchem.2023.136350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
The study was carried out to investigate cricket protein hydrolysates' (CPH) potential to enhance the storage stability of cheddar cheese. The cricket protein (CP) samples pre-processed with microwave (T1), ultrasonication (T2) or without pre-treatment (T0) were used for developing the CPH using alcalase enzyme (3%). Freeze-dried CPH were incorporated in the cheese samples (CPH-T1, CPH-T2 and CPH-T0) at the maximum level of 1.5% and were analysed for quality during 3 months of storage (4 ± 1 °C) compared to the control samples without CPH. The pre-treatments significantly improved the antimicrobial and antioxidant potential of the CPH. The CPH exhibited a significant positive effect on antioxidant potential, lipid stability, protein oxidation, microbial growth, and sensory quality of the cheddar cheese during storage. Digestion simulation showed a significant positive impact on the antioxidant activity of the cheddar cheese. Our results indicate the potential of CPH to enhance the quality of fat-rich foods during storage.
Collapse
Affiliation(s)
- Aunzar B Lone
- Division of Livestock Products Technology, SKUAST-J, Jammu, India
| | - Hina F Bhat
- Division of Animal Biotechnology, SKUAST-K, Kashmir, India.
| | - Sunil Kumar
- Division of Livestock Products Technology, SKUAST-J, Jammu, India
| | - Mehnaza Manzoor
- Fermentation and Microbial Biotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Abdo Hassoun
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, F-62200, Boulogne-sur-Mer, France.
| | | | - Tanyaradzwa E Mungure
- School of Agriculture, Food and Ecosystems Sciences, Faculty of Sciences, University of Melbourne, Parkville, VIC 3010, Australia.
| | - Rana Muhammad Aadil
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan.
| | - Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST-J, Jammu, India.
| |
Collapse
|
7
|
Habinshuti I, Nsengumuremyi D, Muhoza B, Ebenezer F, Yinka Aregbe A, Antoine Ndisanze M. Recent and novel processing technologies coupled with enzymatic hydrolysis to enhance the production of antioxidant peptides from food proteins: A review. Food Chem 2023; 423:136313. [PMID: 37182498 DOI: 10.1016/j.foodchem.2023.136313] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/01/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023]
Abstract
Antioxidant peptides obtained through enzymatic hydrolysis of food proteins exhibit a broad range of bioactivities both in vitro and in vivo models. The antioxidant peptides showed the potential to fight against the reactive oxygen species, free radicals and other pro-oxidative substances which are considered the source of various chronic diseases for humans. Both animals and plants have been recognized as natural protein sources and attracted much research interest over the synthetic ones in terms of safety. However, the main challenge remains to increase the antioxidant peptides yield, reduce the enzyme quantity and the reaction time. Consequently, different efficient and innovative food processing technologies such as thermal, ultrasound, microwave, high hydrostatic pressure, pulsed electric field, etc. have been developed and currently used to treat food proteins before (pretreatment) or during the enzymatic hydrolysis (assisted). Those technologies were found to significantly enhance the degree of hydrolysis and the production of substantial antioxidant peptides. These emerging technologies enhance the enzymatic hydrolysis by inducing protein denaturation/unfolding, and the enzymatic activation without altering their functional and nutritional properties. This review discusses the state of the art of thermal, ultrasound, high hydrostatic pressure, microwave, and pulsed electric field techniques, their applications while coupled with enzymatic hydrolysis, their comparison and potential challenges for the production of antioxidant peptides from food proteins.
Collapse
Affiliation(s)
- Ildephonse Habinshuti
- INES-Ruhengeri, Institute of Applied Sciences, B.P. 155, Ruhengeri, Rwanda; Organization of African Academic Doctors (OAAD), Off Kamiti Road P.O. Box 25305-00100, Nairobi, Kenya; Thought For Food Foundation, 2101 Highland Ave, Birmingham, Alabama 35205, USA.
| | | | - Bertrand Muhoza
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Falade Ebenezer
- Organization of African Academic Doctors (OAAD), Off Kamiti Road P.O. Box 25305-00100, Nairobi, Kenya
| | - Afusat Yinka Aregbe
- Organization of African Academic Doctors (OAAD), Off Kamiti Road P.O. Box 25305-00100, Nairobi, Kenya
| | | |
Collapse
|
8
|
Electric field-intensified chemical processes and reaction chemistry. Curr Opin Chem Eng 2023. [DOI: 10.1016/j.coche.2022.100895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
9
|
Thongkong S, Klangpetch W, Unban K, Tangjaidee P, Phimolsiripol Y, Rachtanapun P, Jantanasakulwong K, Schönlechner R, Thipchai P, Phongthai S. Impacts of Electroextraction Using the Pulsed Electric Field on Properties of Rice Bran Protein. Foods 2023; 12:foods12040835. [PMID: 36832910 PMCID: PMC9956254 DOI: 10.3390/foods12040835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/01/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023] Open
Abstract
The pulsed electric field (PEF) was applied to improve the extraction yield and properties of rice bran proteins from two rice varieties ("Kum Chao Mor Chor 107" and "Kum Doi Saket"). As compared to the conventional alkaline extraction, PEF treatment at 2.3 kV for 25 min increased the protein extraction efficiency by 20.71-22.8% (p < 0.05). The molecular weight distribution detected by SDS-PAGE and amino acid profiles of extracted rice bran proteins was likely unchanged. The PEF treatment influenced changes in the secondary structures of rice bran proteins, especially from the β-turn to the β-sheet structure. Functional properties of rice bran protein including oil holding capacity and emulsifying properties were significantly improved by PEF treatments by about 20.29-22.64% and 3.3-12.0% (p < 0.05), respectively. Foaming ability and foam stability increased by 1.8- to 2.9-fold. Moreover, the in vitro digestibility of protein was also enhanced, which was consistent with the increment of DPPH and ABTS radical-scavenging activities of peptides generated under in vitro gastrointestinal digestion (37.84-40.45% and 28.46-37.86%, respectively). In conclusion, the PEF process could be a novel technique for assisting the extraction and modification of the protein's digestibility and functional properties.
Collapse
Affiliation(s)
- Saban Thongkong
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | | | - Kridsada Unban
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pipat Tangjaidee
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Yuthana Phimolsiripol
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pornchai Rachtanapun
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kittisak Jantanasakulwong
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Regine Schönlechner
- Institute of Food Technology, Department of Food Science and Technology, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
| | - Parichat Thipchai
- Doctor of Philosophy Program in Nanoscience and Nanotechnology (International Program/Interdisciplinary), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Suphat Phongthai
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50100, Thailand
- Correspondence:
| |
Collapse
|
10
|
Hassoun A, Anusha Siddiqui S, Smaoui S, Ucak İ, Arshad RN, Bhat ZF, Bhat HF, Carpena M, Prieto MA, Aït-Kaddour A, Pereira JA, Zacometti C, Tata A, Ibrahim SA, Ozogul F, Camara JS. Emerging Technological Advances in Improving the Safety of Muscle Foods: Framing in the Context of the Food Revolution 4.0. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2149776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Abdo Hassoun
- Univ. Littoral Côte d’Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, Boulogne-sur-Mer, France
- Sustainable AgriFoodtech Innovation & Research (SAFIR), Arras, France
| | - Shahida Anusha Siddiqui
- Department of Biotechnology and Sustainability, Technical University of Munich, Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Slim Smaoui
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax-Tunisia, Sfax, Tunisia
| | - İ̇lknur Ucak
- Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Rai Naveed Arshad
- Institute of High Voltage & High Current, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Zuhaib F. Bhat
- Division of Livestock Products Technology, SKUASTof Jammu, Jammu, Kashmir, India
| | - Hina F. Bhat
- Division of Animal Biotechnology, SKUASTof Kashmir, Kashmir, India
| | - María Carpena
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Analytical and Food Chemistry Department. Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, Bragança, Portugal
| | | | - Jorge A.M. Pereira
- CQM—Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Carmela Zacometti
- Istituto Zooprofilattico Sperimentale Delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Alessandra Tata
- Istituto Zooprofilattico Sperimentale Delle Venezie, Laboratorio di Chimica Sperimentale, Vicenza, Italy
| | - Salam A. Ibrahim
- Food and Nutritional Sciences Program, North Carolina A&T State University, Greensboro, North Carolina, USA
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - José S. Camara
- CQM—Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Campus da Penteada, Universidade da Madeira, Funchal, Portugal
| |
Collapse
|
11
|
Li H, Kong B, Liu Q, Chen Q, Sun F, Liu H, Xia X. Ultrasound pretreatment for improving the quality and protein digestibility of stir-frying chicken gizzards. Food Res Int 2022; 161:111782. [DOI: 10.1016/j.foodres.2022.111782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/24/2022] [Accepted: 08/17/2022] [Indexed: 11/04/2022]
|
12
|
Liu J, Hu Y, Wei H, Shi W. Effect of glycation on protein structure, amino acid composition and digestibility of silver carp mince. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Junya Liu
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) Shanghai 201306 China
| | - Yun Hu
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) Shanghai 201306 China
| | - Huihui Wei
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) Shanghai 201306 China
| | - Wenzheng Shi
- College of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai) Shanghai 201306 China
| |
Collapse
|
13
|
Bhat ZF, Morton JD, El-Din A. Bekhit A, Kumar S, Bhat HF. Processing technologies for improved digestibility of milk proteins. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
|
15
|
Orlien V, Aalaei K, Poojary MM, Nielsen DS, Ahrné L, Carrascal JR. Effect of processing on in vitro digestibility (IVPD) of food proteins. Crit Rev Food Sci Nutr 2021; 63:2790-2839. [PMID: 34590513 DOI: 10.1080/10408398.2021.1980763] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Proteins are important macronutrients for the human body to grow and function throughout life. Although proteins are found in most foods, their very dissimilar digestibility must be taking into consideration when addressing the nutritional composition of a diet. This review presents a comprehensive summary of the in vitro digestibility of proteins from plants, milk, muscle, and egg. It is evident from this work that protein digestibility greatly varies among foods, this variability being dependent not only upon the protein source, but also the food matrix and the molecular interactions between proteins and other food components (food formulation), as well as the conditions during food processing and storage. Different approaches have been applied to assess in vitro protein digestibility (IVPD), varying in both the enzyme assay and quantification method used. In general, animal proteins tend to show higher IVPD. Harsh technological treatments tend to reduce IVPD, except for plant proteins, in which thermal degradation of anti-nutritional compounds results in improved IVPD. However, in order to improve the current knowledge about protein digestibility there is a vital need for understanding dependency on a protein source, molecular interaction, processing and formulation and relationships between. Such knowledge can be used to develop new food products with enhanced protein bioaccessibility.
Collapse
Affiliation(s)
- Vibeke Orlien
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Kataneh Aalaei
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Mahesha M Poojary
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Dennis S Nielsen
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Lilia Ahrné
- Department of Food Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Jorge Ruiz Carrascal
- Research Institute of Meat and Meat Products (IproCar), University of Extremadura, Cáceres, Spain
| |
Collapse
|
16
|
Bhat ZF, Morton JD, Bekhit AEDA, Kumar S, Bhat HF. Effect of processing technologies on the digestibility of egg proteins. Compr Rev Food Sci Food Saf 2021; 20:4703-4738. [PMID: 34355496 DOI: 10.1111/1541-4337.12805] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/06/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023]
Abstract
Egg and egg products are a rich source of highly bioavailable animal proteins. Several processing technologies can affect the structural and functional properties of these proteins differently and can influence their fate inside the gastrointestinal tract. The present review examines some of the processing technologies for improving egg protein digestibility and discusses how different processing conditions affect the digestibility of egg proteins under gastrointestinal digestion environments. To provide up-to-date information, most of the studies included in this review have been published in the last 5 years on different aspects of egg protein digestibility. Digestibility of egg proteins can be improved by employing some processing technologies that are able to improve the susceptibility of egg proteins to gastrointestinal proteases. Processing technologies, such as pulsed electric field, high-pressure, and ultrasound, can induce conformational and microstructural changes that lead to unfolding of the polypeptides and expose active sites for further interactions. These changes can enhance the accessibility of digestive proteases to cleavage sites. Some of these technologies may inactivate some egg proteins that are enzyme inhibitors, such as trypsin inhibitors. The underlying mechanisms of how different technologies mediate the egg protein digestibility have been discussed in detail. The proteolysis patterns and digestibility of the processed egg proteins are not always predictable and depends on the processing conditions. Empirical input is required to tailor the optimization of processing conditions for favorable effects on protein digestibility.
Collapse
Affiliation(s)
- Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST of Jammu, Jammu, Jammu and Kashmir, India
| | - James D Morton
- Department of Wine Food and Molecular Biosciences, Lincoln University, Christchurch, New Zealand
| | | | - Sunil Kumar
- Division of Livestock Products Technology, SKUAST of Jammu, Jammu, Jammu and Kashmir, India
| | - Hina F Bhat
- Division of Biotechnology, SKUAST of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
17
|
Bhat ZF, Morton JD, Bekhit AEDA, Kumar S, Bhat HF. Thermal processing implications on the digestibility of meat, fish and seafood proteins. Compr Rev Food Sci Food Saf 2021; 20:4511-4548. [PMID: 34350699 DOI: 10.1111/1541-4337.12802] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/03/2021] [Accepted: 06/17/2021] [Indexed: 12/19/2022]
Abstract
Thermal processing is an inevitable part of the processing and preparation of meat and meat products for human consumption. However, thermal processing techniques, both commercial and domestic, induce modifications in muscle proteins which can have implications for their digestibility. The nutritive value of muscle proteins is closely related to their digestibility in the gastrointestinal tract and is determined by the end products that it presents in the assimilable form (amino acids and small peptides) for the absorption. The present review examines how different thermal processing techniques, such as sous-vide, microwave, stewing, roasting, boiling, frying, grilling, and steam cooking, affect the digestibility of muscle proteins in the gastrointestinal tract. By altering the functional and structural properties of muscle proteins, thermal processing has the potential to influence the digestibility negatively or positively, depending on the processing conditions. Thermal processes such as sous-vide can induce favourable changes, such as partial unfolding or exposure of cleavage sites, in muscle proteins and improve their digestibility whereas processes such as stewing and roasting can induce unfavourable changes, such as protein aggregation, severe oxidation, cross linking or increased disulfide (S-S) content and decrease the susceptibility of proteins during gastrointestinal digestion. The review examines how the underlying mechanisms of different processing conditions can be translated into higher or lower protein digestibility in detail. This review expands the current understanding of muscle protein digestion and generates knowledge that will be indispensable for optimizing the digestibility of thermally processed muscle foods for maximum nutritional benefits and optimal meal planning.
Collapse
Affiliation(s)
- Zuhaib F Bhat
- Division of Livestock Products Technology, SKUAST of Jammu, India
| | - James D Morton
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, Lincoln, New Zealand
| | | | - Sunil Kumar
- Division of Livestock Products Technology, SKUAST of Jammu, India
| | - Hina F Bhat
- Division of Biotechnology, SKUAST of Kashmir, India
| |
Collapse
|
18
|
Pinton MB, dos Santos BA, Lorenzo JM, Cichoski AJ, Boeira CP, Campagnol PCB. Green technologies as a strategy to reduce NaCl and phosphate in meat products: an overview. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.03.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
19
|
Sharma R, Bhat ZF, Kumar A, Kumar S, Bhatti MA, Jayawardena R. Rubia cordifolia
based novel edible film for improved lipid oxidative and microbial stability of meat products. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15654] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Radhika Sharma
- Division of Livestock Products Technology SKUAST‐J Jammu India
| | - Zuhaib F. Bhat
- Division of Livestock Products Technology SKUAST‐J Jammu India
| | - Arvind Kumar
- Division of Livestock Products Technology SKUAST‐J Jammu India
| | - Sunil Kumar
- Division of Livestock Products Technology SKUAST‐J Jammu India
| | - Muhammad A. Bhatti
- Department of Animal and Aquacultural Sciences Norwegian University of Life Sciences (NMBU) As Norway
| | - Reshan Jayawardena
- Department of Wine Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University Lincoln New Zealand
| |
Collapse
|
20
|
Sharma R, Bhat ZF, Kumar A, Kumar S, Bekhit AEA, Naqvi Z. Characterization of
Commiphora wightii
based bioactive edible film and its efficacy for improving the storage quality of meat products. J Food Saf 2021. [DOI: 10.1111/jfs.12909] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Radhika Sharma
- Division of Livestock Products Technology, SKUAST‐J Jammu India
| | - Zuhaib F. Bhat
- Division of Livestock Products Technology, SKUAST‐J Jammu India
| | - Arvind Kumar
- Division of Livestock Products Technology, SKUAST‐J Jammu India
| | - Sunil Kumar
- Division of Livestock Products Technology, SKUAST‐J Jammu India
| | | | - Zahra Naqvi
- Charles Sturt University Wagga Wagga New South Wales Australia
| |
Collapse
|
21
|
Bhat ZF, Morton JD, Bekhit AEDA, Kumar S, Bhat HF. Emerging processing technologies for improved digestibility of muscle proteins. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Lee S, Choi YS, Jo K, Yong HI, Jeong HG, Jung S. Improvement of meat protein digestibility in infants and the elderly. Food Chem 2021; 356:129707. [PMID: 33873143 DOI: 10.1016/j.foodchem.2021.129707] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/24/2021] [Accepted: 03/23/2021] [Indexed: 01/11/2023]
Abstract
Meat is a valuable protein source with a balanced composition of essential amino acids and various nutrients. This review aims to identify methods to improve digestion of meat proteins, as well as evaluate the digestive characteristics of infants and the elderly. Immature digestive conditions in infants, including a high gastric pH and low protease concentration, can hinder protein digestion, thus resulting in inhibited growth and development. Likewise, gastrointestinal (GI) tract aging and chronic health problems, including tooth loss and atrophic gastritis, can lead to reduction in protein digestion and absorption in the elderly compared with those in young adults. Moderate heating and several non-thermal technologies, such as aging, enzymatic hydrolysis, ultrasound, high-pressure processing, and pulsed electric field can alter protein structure and improve protein digestion in individuals with low digestive capacity.
Collapse
Affiliation(s)
- Seonmin Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, South Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, South Korea
| | - Kyung Jo
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, South Korea
| | - Hae In Yong
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, South Korea
| | - Hyun Gyung Jeong
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, South Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
23
|
Temperature-dependent in vitro digestion properties of isoelectric solubilization/precipitation (ISP)-isolated PSE-like chicken protein. Food Chem 2020; 343:128501. [PMID: 33158684 DOI: 10.1016/j.foodchem.2020.128501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/10/2020] [Accepted: 10/26/2020] [Indexed: 11/23/2022]
Abstract
The effects of various heating strategies (72 °C-20 min, 100 °C-60 min) on the digestibility of isoelectric solubilization/precipitation (ISP)-isolated pale, soft, exudative (PSE)-like chicken protein in an in vitro simulated gastrointestinal model were studied. Untreated PSE-like meat protein was used as the control. The hydrophobic groups were much more exposed in ISP-isolated protein than in the control protein, and the difference diminished after heating. The results of SDS-PAGE analyses and digestion kinetic parameters show the ISP isolates had higher digestibility than the control group when heated at 72 °C for 20 min (P < 0.05), but there was no significant difference between the 100 °C heated groups (P > 0.05). Additionally, all ISP-isolated groups showed higher peptide abundance than the control groups. In summary, heating at 72 °C for 20 min is beneficial to increase the digestion properties of ISP-isolated PSE-like chicken protein, but its gel properties are weaker than those of protein heated at 100 °C for 60 min.
Collapse
|
24
|
Dong X, Wang J, Raghavan V. Critical reviews and recent advances of novel non-thermal processing techniques on the modification of food allergens. Crit Rev Food Sci Nutr 2020; 61:196-210. [PMID: 32048519 DOI: 10.1080/10408398.2020.1722942] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Nowadays, the increasing prevalence of food allergy has become a public concern related to human health worldwide. Thus, it is imperative and necessary to provide some efficient methods for the management of food allergy. Some conventional processing methods (e.g., boiling and steaming) have been applied in the reduction of food immunoreactivity, while these treatments significantly destroy nutritional components present in food sources. Several studies have shown that novel processing techniques generally have better performance in retaining original characteristics of food and improving the efficiency of eliminating allergens. This review has focused on the recent advances of novel non-thermal processing techniques including high-pressure processing, ultrasound, pulsed light, cold plasma, fermentation, pulsed electric field, enzymatic hydrolysis, and the combination processing of them. Meanwhile, general information on global food allergy prevalence and food allergy pathology are also described. Hopefully, these findings regarding the modifications on the food allergens through various novel food processing techniques can provide an in-depth understanding in the mechanism of food allergy, which in turn possibly provides a strategy to adapt in the reduction of food immunoreactivity for the food industries.
Collapse
Affiliation(s)
- Xin Dong
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Jin Wang
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
25
|
The application of pulsed electric field as a sodium reducing strategy for meat products. Food Chem 2020; 306:125622. [DOI: 10.1016/j.foodchem.2019.125622] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 01/06/2023]
|
26
|
Gong X, Morton JD, Bhat ZF, Mason SL, Bekhit AEA. Comparative efficacy of actinidin from green and gold kiwi fruit extract onin vitrosimulated protein digestion of beefSemitendinosusand its myofibrillar protein fraction. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xi Gong
- Department of Wine Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University Lincoln 7647 Christchurch New Zealand
| | - James D. Morton
- Department of Wine Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University Lincoln 7647 Christchurch New Zealand
| | - Zuhaib F. Bhat
- Department of Wine Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University Lincoln 7647 Christchurch New Zealand
| | - Susan L. Mason
- Department of Wine Food and Molecular Biosciences Faculty of Agriculture and Life Sciences Lincoln University Lincoln 7647 Christchurch New Zealand
| | - Alaa El‐Din A. Bekhit
- Department of Food Sciences University of Otago P.O. Box 56 Dunedin 9054 New Zealand
| |
Collapse
|
27
|
Pulsed electric field operates enzymatically by causing early activation of calpains in beef during ageing. Meat Sci 2019; 153:144-151. [DOI: 10.1016/j.meatsci.2019.03.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/26/2019] [Accepted: 03/27/2019] [Indexed: 12/17/2022]
|