1
|
Angeloni G, Masella P, Spadi A, Guerrini L, Corti F, Bellumori M, Calamai L, Innocenti M, Parenti A. Using ground coffee particle size and distribution to remodel beverage properties. Eur Food Res Technol 2023. [DOI: 10.1007/s00217-023-04210-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
AbstractThis study examined the influence of ground coffee granulometry and particle distribution on extraction parameters. They have been investigated the physicochemical properties, and the bioactive and volatile compound content in coffee obtained by a conventional filter method, the French Press, as a function of particle size and distribution. Some samples have been used for the extraction the directly the grinding machine, set at different grinding grade, and other samples have been seed before the usage in order to reproduce samples at different particle size class very homogeneous. The results showed that bioactive and volatile compounds are released differently in the beverages depending on the specific particle size. The results have been demonstrated that a homogeneous grind was more deficient in bioactive compounds and total dissolved solids than a classical, bimodal grind. Moreover, extraction from a very fine homogeneous grind was poorest with respect to these compounds, despite the greater surface in contact with the solvent. Conversely, bimodal grinds obtained conventional by the grinding machine, which were more heterogeneous from a granulometric point of view, were found to be richer in volatile organic and bioactive compounds. The study highlights that the grind plays a key role in producing well-extracted coffee and, therefore, in making the most of the potential inherent in the roasted bean.
Collapse
|
2
|
Volatile compounds in espresso resulting from a refined selection of particle size of coffee powder. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
3
|
CHAVEZ SG, MENDOZA MM, CAETANO AC. Antioxidants, phenols, caffeine content and volatile compounds in coffee beverages obtained by different methods. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.47022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
4
|
Angeloni G, Guerrini L, Masella P, Dionisio A, Gatti R, Parenti A. Test of an innovative method to prepare coffee powder puck, improving espresso extraction reliability. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-021-03868-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractCoffee powder is obtained with a grinding machine. Espresso coffee is prepared when hot water is forced under pressure through the puck of coffee powder, and the optimal espresso flow rate is 1 g s−1. However, this flow rate can change for different extractions, forcing baristas to frequently change the setup of the grinder. Grinding grade is one of the most important sources of variation in the quality of espresso. This study tests an innovative method to prepare coffee powder puck, designed to reduce variability in flow rate between extractions. The method is based on stratified layers of ground coffee with different granulometry, and it was tested in three trials with different coffees and grinders. The flow rate associated with the new method (Patent WO/2020/148258- PCT/EP2020/050773) was more stable than the rate in a conventional system, reliability was optimized by placing larger coffee particles at the bottom, and finer particles at the top of the filter basket.
Collapse
|
5
|
Angeloni S, Mustafa AM, Abouelenein D, Alessandroni L, Acquaticci L, Nzekoue FK, Petrelli R, Sagratini G, Vittori S, Torregiani E, Caprioli G. Characterization of the Aroma Profile and Main Key Odorants of Espresso Coffee. Molecules 2021; 26:molecules26133856. [PMID: 34202706 PMCID: PMC8270317 DOI: 10.3390/molecules26133856] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 01/12/2023] Open
Abstract
Espresso coffee (EC) is a common coffee preparation technique that nowadays is broadly widespread all over the globe. Its popularity is in part attributed to the intense aroma and pleasant flavor. Many researchers have studied and reviewed the aroma of the coffee, but there is a lack of specific review focused on EC aroma profile even if it is intensively investigated. Thus, the objective of the current review was to summarize the aroma profile of EC and how different preparation variables can affect EC flavor. Moreover, a collection of diverse analytical procedures for volatile analysis was also reported. The findings of this survey showed that the volatile fraction of EC is extremely complex, but just some compounds are responsible for the characteristic aroma of the coffee, such as some aldehyde, ketones, furanones, furans, sulfur compounds, pyrazines, etc. In addition, during preparation, some variables, e.g., temperature and pressure of water, granulometry of the coffee particle, and brew ratio, can also modify the aroma profile of this beverage, and therefore its quality. A better understanding of the aroma fraction of EC and how the preparation variables should be adjusted according to desired EC would assist coffee workers in obtaining a higher quality product.
Collapse
Affiliation(s)
- Simone Angeloni
- School of Pharmacy, University of Camerino, via Sant Agostino 1, 62032 Camerino, Italy; (S.A.); (A.M.M.); (D.A.); (L.A.); (L.A.); (F.K.N.); (G.S.); (S.V.); (E.T.); (G.C.)
- RICH—Research and Innovation Coffee Hub, via E. Betti 1, 62020 Belforte del Chienti, Italy
| | - Ahmed M. Mustafa
- School of Pharmacy, University of Camerino, via Sant Agostino 1, 62032 Camerino, Italy; (S.A.); (A.M.M.); (D.A.); (L.A.); (L.A.); (F.K.N.); (G.S.); (S.V.); (E.T.); (G.C.)
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Doaa Abouelenein
- School of Pharmacy, University of Camerino, via Sant Agostino 1, 62032 Camerino, Italy; (S.A.); (A.M.M.); (D.A.); (L.A.); (L.A.); (F.K.N.); (G.S.); (S.V.); (E.T.); (G.C.)
- Department of Pharmacognosy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Laura Alessandroni
- School of Pharmacy, University of Camerino, via Sant Agostino 1, 62032 Camerino, Italy; (S.A.); (A.M.M.); (D.A.); (L.A.); (L.A.); (F.K.N.); (G.S.); (S.V.); (E.T.); (G.C.)
| | - Laura Acquaticci
- School of Pharmacy, University of Camerino, via Sant Agostino 1, 62032 Camerino, Italy; (S.A.); (A.M.M.); (D.A.); (L.A.); (L.A.); (F.K.N.); (G.S.); (S.V.); (E.T.); (G.C.)
| | - Franks Kamgang Nzekoue
- School of Pharmacy, University of Camerino, via Sant Agostino 1, 62032 Camerino, Italy; (S.A.); (A.M.M.); (D.A.); (L.A.); (L.A.); (F.K.N.); (G.S.); (S.V.); (E.T.); (G.C.)
| | - Riccardo Petrelli
- School of Pharmacy, University of Camerino, via Sant Agostino 1, 62032 Camerino, Italy; (S.A.); (A.M.M.); (D.A.); (L.A.); (L.A.); (F.K.N.); (G.S.); (S.V.); (E.T.); (G.C.)
- Correspondence:
| | - Gianni Sagratini
- School of Pharmacy, University of Camerino, via Sant Agostino 1, 62032 Camerino, Italy; (S.A.); (A.M.M.); (D.A.); (L.A.); (L.A.); (F.K.N.); (G.S.); (S.V.); (E.T.); (G.C.)
| | - Sauro Vittori
- School of Pharmacy, University of Camerino, via Sant Agostino 1, 62032 Camerino, Italy; (S.A.); (A.M.M.); (D.A.); (L.A.); (L.A.); (F.K.N.); (G.S.); (S.V.); (E.T.); (G.C.)
| | - Elisabetta Torregiani
- School of Pharmacy, University of Camerino, via Sant Agostino 1, 62032 Camerino, Italy; (S.A.); (A.M.M.); (D.A.); (L.A.); (L.A.); (F.K.N.); (G.S.); (S.V.); (E.T.); (G.C.)
| | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, via Sant Agostino 1, 62032 Camerino, Italy; (S.A.); (A.M.M.); (D.A.); (L.A.); (L.A.); (F.K.N.); (G.S.); (S.V.); (E.T.); (G.C.)
| |
Collapse
|
6
|
Genovese A, De Vivo A, Aprea A, Cristina Tricarico M, Sacchi R, Sarghini F. Particle size and variety of coffee used as variables in mitigation of furan and 2-methylfuran content in espresso coffee. Food Chem 2021; 361:130037. [PMID: 34029909 DOI: 10.1016/j.foodchem.2021.130037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 11/26/2022]
Abstract
In this study, the concentration of furan and 2-methylfuran in espresso coffee (EC) obtained from Arabica and Robusta coffee varieties was determined as a function of specific particle size. The particle size and coffee variety significantly influenced the level of furan and 2-methylfuran. In Arabica variety, furan and 2-methylfuran level increased with increasing particle size. Particularly, from C<200μm to C>425μm fractions, furan increased from 68.27 to 91.48 ng mL-1 while 2-methylfuran from 404.31 to 634.64 ng mL-1. In Robusta variety, the highest concentration of furan and 2-methylfuran occurred in ECs prepared using C300-425μm fraction showing values of 116.39 ng mL-1 and 845.14 ng mL-1, respectively, for furan and 2-methylfuran. On the basis of this experiment, it is possible to establish a mitigation strategy by manipulating the particle size and coffee variety in order to reduce the level of furan and 2-methylfuran in EC up to 11.4% and 18.8%, respectively.
Collapse
Affiliation(s)
- Alessandro Genovese
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, NA, Italy.
| | - Angela De Vivo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, NA, Italy
| | - Angela Aprea
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, NA, Italy
| | | | - Raffaele Sacchi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, NA, Italy
| | - Fabrizio Sarghini
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, NA, Italy
| |
Collapse
|
7
|
Vilas-Boas AA, Oliveira A, Jesus D, Rodrigues C, Figueira C, Gomes A, Pintado M. Chlorogenic acids composition and the impact of in vitro gastrointestinal digestion on espresso coffee from single-dose capsule. Food Res Int 2020; 134:109223. [DOI: 10.1016/j.foodres.2020.109223] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/18/2020] [Accepted: 04/06/2020] [Indexed: 12/21/2022]
|
8
|
Esposito F, Fasano E, De Vivo A, Velotto S, Sarghini F, Cirillo T. Processing effects on acrylamide content in roasted coffee production. Food Chem 2020; 319:126550. [PMID: 32169765 DOI: 10.1016/j.foodchem.2020.126550] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/05/2020] [Accepted: 03/01/2020] [Indexed: 12/22/2022]
Abstract
Acrylamide is a toxic compound that develops during the roasting process of coffee beans. According to literature, the levels of acrylamide in coffee vary with the percentage of Robusta type in the mix and with the time-temperature parameters during the roasting process. Therefore, this study aimed to find the best roasting conditions in order to mitigate acrylamide formation. Two types of roasted coffee (Arabica and Robusta) were analyzed through GC-MS and two clean-up methods were compared. The best roasting conditions were optimized on an industrial scale and the median levels of acrylamide decreased from the range 170-484 µg kg-1 to 159-351 µg kg-1, after the optimization of roasting parameters. Therefore, the choice of the best conditions, according to the percentage of Robusta type in the finished product, could be an efficient mitigation strategy for acrylamide formation in coffee, maintaining the manufacturer's requirements of the finished product.
Collapse
Affiliation(s)
- Francesco Esposito
- Department of Agricultural Sciences, University of Naples "Federico II", via Università, 100, 80055 Portici, Naples, Italy
| | - Evelina Fasano
- Department of Agricultural Sciences, University of Naples "Federico II", via Università, 100, 80055 Portici, Naples, Italy
| | - Angela De Vivo
- Department of Agricultural Sciences, University of Naples "Federico II", via Università, 100, 80055 Portici, Naples, Italy
| | - Salvatore Velotto
- Department of Promotion of Human Sciences and the Quality of Life, University of Study of Roma "San Raffaele", via di Val Cannuta, 247, 00166 Roma, Italy
| | - Fabrizio Sarghini
- Department of Agricultural Sciences, University of Naples "Federico II", via Università, 100, 80055 Portici, Naples, Italy
| | - Teresa Cirillo
- Department of Agricultural Sciences, University of Naples "Federico II", via Università, 100, 80055 Portici, Naples, Italy.
| |
Collapse
|