1
|
Zhao D, Fang Y, Wei Z, Duan W, Chen Y, Zhou X, Xiao C, Chen W. Proteomics reveals the mechanism of protein degradation and its relationship to sensorial and texture characteristics in dry-cured squid during processing. Food Chem X 2024; 22:101409. [PMID: 38711776 PMCID: PMC11070823 DOI: 10.1016/j.fochx.2024.101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/27/2024] [Accepted: 04/21/2024] [Indexed: 05/08/2024] Open
Abstract
Proteolysis in dry-cured squid contributes to the development of sensory and textural attributes. In this study, label-free quantitative proteomics was conducted to study the mechanism of proteolysis and its correlation with quality changes. The results showed that the protein profile of dry-cured squid changed markedly during processing, which was confirmed by the quantification of myofibrillar protein, amino nitrogen and total free acids, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis. Thirty-two key differentially abundant proteins were found to be correlated with sensory and texture characteristics, including myofibrillar protein, tubulin beta chain, collagens, heat shock proteins and cytochrome c. The correlation analysis indicated that myosin regulatory light chain and tubulin beta chain played the most important role in the development of texture and sensory attributes in squid samples during the dry-curing process. The results offered novel insights into proteolysis in dry-cured squid and its relationship to quality changes.
Collapse
Affiliation(s)
- Dandan Zhao
- Ecology and Health Institute, Hangzhou Vocational & Technical Collge, Hangzhou, China
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yizhou Fang
- College of Life Sciences, China Jiliang University, Hangzhou 322002, China
| | - Zhengxun Wei
- Ecology and Health Institute, Hangzhou Vocational & Technical Collge, Hangzhou, China
| | - Wenkai Duan
- Ecology and Health Institute, Hangzhou Vocational & Technical Collge, Hangzhou, China
| | - Yu Chen
- Ecology and Health Institute, Hangzhou Vocational & Technical Collge, Hangzhou, China
| | - Xuxia Zhou
- College of Food Science and Technology, Zhejiang University of Technology, Huzhou 313299, China
| | - Chaogeng Xiao
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenxuan Chen
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
2
|
Liu X, Zhou K, Chen B, Xie Y, Ma Y, Zhou H, Xu B. Insight into the evolution of textural properties and juiciness of ready-to-eat chicken breasts upon different thermal sterilization: From the perspective of protein degradation. J Texture Stud 2024; 55:e12835. [PMID: 38778604 DOI: 10.1111/jtxs.12835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/07/2024] [Accepted: 04/02/2024] [Indexed: 05/25/2024]
Abstract
Texture deterioration of meat products upon high-temperature sterilization is a pressing issue in the meat industry. This study evaluated the effect of different thermal sterilization temperatures on the textural and juiciness of ready-to-eat (RTE) chicken breast. In this study, by dynamically monitoring the texture and juiciness of chicken meat products during the process of thermal sterilization, it has been observed that excessively high sterilization temperatures (above 100°C) significantly diminish the shear force, springiness and water-holding capacity of the products. Furthermore, from the perspective of myofibrillar protein degradation, molecular mechanisms have been elucidated, unveiling that the thermal sterilization treatment at 121°C/10 min triggers the degradation of myosin heavy chains and F-actin, disrupting the lattice arrangement of myofilaments, compromising the integrity of sarcomeres, and resulting in an increase of approximately 40.66% in the myofibrillar fragmentation index, thus diminishing the quality characteristics of the products. This study unravels the underlying mechanisms governing the dynamic changes in quality of chicken meat products during the process of thermal sterilization, thereby providing theoretical guidance for the development of high-quality chicken products.
Collapse
Affiliation(s)
- Xiaoyan Liu
- School of Food and Biological Engineering, Hefei University of Technology, Engineering Research Center of Bio-Process, Ministry of Education, Hefei, Anhui, China
| | - Kai Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Engineering Research Center of Bio-Process, Ministry of Education, Hefei, Anhui, China
| | - Bo Chen
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei, China
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China
| | - Yong Xie
- School of Food and Biological Engineering, Hefei University of Technology, Engineering Research Center of Bio-Process, Ministry of Education, Hefei, Anhui, China
| | - Yunhao Ma
- School of Food and Biological Engineering, Hefei University of Technology, Engineering Research Center of Bio-Process, Ministry of Education, Hefei, Anhui, China
| | - Hui Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Engineering Research Center of Bio-Process, Ministry of Education, Hefei, Anhui, China
| | - Baocai Xu
- School of Food and Biological Engineering, Hefei University of Technology, Engineering Research Center of Bio-Process, Ministry of Education, Hefei, Anhui, China
- Key Laboratory for Animal Food Green Manufacturing and Resource Mining of Anhui Province, Hefei University of Technology, Hefei, China
| |
Collapse
|
3
|
Li J, Li Z, Deng S, Benjakul S, Zhang B, Huo J. Effects of Heating Treatment on the Physicochemical and Volatile Flavor Properties of Argentinian Shortfin Squid (Illex argentinus). Foods 2024; 13:1025. [PMID: 38611331 PMCID: PMC11011332 DOI: 10.3390/foods13071025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/13/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
In this study, the effect of different heating temperatures (80, 90, 100, and 121 °C) on the physicochemical and volatile flavor properties of fried mantles (Argentinian shortfin) was investigated. The squid mantles were soaked in a maltose syrup solution (20% w/v) for 10 s and fried in soybean oil for 10 s (160 °C), vacuum-packed, and processed at different temperatures for 10 min. Then, the squid mantles were subjected to colorimetric analysis, sensory evaluation, free amino acid analysis, and texture profile analysis. In addition, the volatile organic compounds (VOCs) in the squid mantles were analyzed. The results revealed that lower treating temperatures (80 and 90 °C) improved the chromatic and textural properties, along with organoleptic perception. Additionally, the content of amino acid in the squid mantles treated at 121 °C was significantly lower than that of the samples treated at other temperatures (p < 0.05). Headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) was used to detect 41 VOCs, including their monomers and dimers. Among these detected VOCs, the contents of alcohols, ketones, and pyrazines were positively correlated with temperature. However, the content of aldehydes in the squid mantles gradually decreased as the heating temperature increased (p < 0.05). The combined HS-GC-IMS and E-nose results revealed that the lower temperatures (80 and 90 °C) were more suitable for flavor development and practical processing. This study provides valuable information for properly controlling the heating process of squid products, as well as flavor and practical applications for the aquatic industry.
Collapse
Affiliation(s)
- Jiagen Li
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (J.L.); (Z.L.); (S.D.); (B.Z.)
| | - Zhaoqi Li
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (J.L.); (Z.L.); (S.D.); (B.Z.)
| | - Shanggui Deng
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (J.L.); (Z.L.); (S.D.); (B.Z.)
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand;
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (J.L.); (Z.L.); (S.D.); (B.Z.)
| | - Jiancong Huo
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China; (J.L.); (Z.L.); (S.D.); (B.Z.)
| |
Collapse
|
4
|
Zhan F, Li Z, Pan D, Benjakul S, Li X, Zhang B. Investigating the migration hypothesis: Effects of trypsin-like protease on the quality of muscle proteins of red shrimp ( Solenocera crassicornis) during cold storage. Food Chem X 2023; 20:100906. [PMID: 38144848 PMCID: PMC10740068 DOI: 10.1016/j.fochx.2023.100906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/22/2023] [Accepted: 09/27/2023] [Indexed: 12/26/2023] Open
Abstract
This study aimed to investigate the effect of trypsin-like protease (TLP) on the quality of muscle proteins in red shrimp (Solenocera crassicornis) during cold storage. The results indicated that the activity of TLP decreased significantly in the head of shrimp but increased significantly in the muscle tissues during the cold storage. The myofibril fragmentation index (MFI) value of intact shrimp was significantly higher than that of beheaded shrimp, while the Ca2+-ATPase activity of intact shrimp was significantly lower than that of beheaded shrimp. SDS-PAGE analysis showed that the molecular weight of purified TLP from the shrimp head was about 24 kDa, and the TLP showed high activity at 50 °C and pH 8, indicating that the TLP belongs to the trypsin family. Results from in vitro simulation experiments indicated that the process of TLP incubation significantly reduced the particle size and enlarged the distribution of myofibrillar proteins (MPs) in shrimp muscle tissues. The comparisons were made with respect to the control samples. It can be inferred that TLP migrated from the shrimp head to the muscle tissues during storage and thus promoted the degradation of MPs in red shrimp. The beheading treatment could be an effective mean to maintain better quality and extend the commercialization of shrimp products.
Collapse
Affiliation(s)
- Feili Zhan
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
- College of Food Science and Pharmacy, Ningbo University, Ningbo 315832, China
| | - Zhipeng Li
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| | - Daodong Pan
- College of Food Science and Pharmacy, Ningbo University, Ningbo 315832, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Songkhla 90112, Thailand
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, Jinzhou, Liaoning 121013, China
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
5
|
Huang PH, Hou CY, Hsieh CW, Cheng KC, Ciou JY, Qiu YT, Huang CC, Hazeena SH. Investigation of the physicochemical properties of the thin slices of dried pork meat paper mixed with squid. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1590-1599. [PMID: 37033313 PMCID: PMC10076472 DOI: 10.1007/s13197-023-05702-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023]
Abstract
Globally, the Peruvian squid (Dosidicus gigas) has the highest productivity among squid species. However, due to its high-water content and astringent taste, it has limited fresh food value. This study used Peruvian squid meat as the primary material to prepare thin slices of dried squid meat paper mixed with pork. Here, different proportions (20, 40, 60, 80, and 100%, while 0% as the control group) of squid surimi have used to mix with pork for the meat paper preparation and the changes in physicochemical properties, microstructure, and sensory evaluation were analyzed. The results showed that the total volatile basic nitrogen (TVB-N) contents increased with the storage period, where 20% squid surimi substitution had the lowest TVB-N content. The 20% squid surimi substitution group had the highest expansion rate, the lowest peroxide value (PV), and moisture content. The food-borne microorganisms (E. coli, coliforms, and Salmonella spp.) were within the legal limits or negative. Hardness and crispiness, 20-40% squid surimi substitution were closely similar to the control group. This study has provided an effective investigation of the possibility of expanding the utilization of Peruvian squid resources by combining appropriate squid surimi with minced pork for high-quality thin slices of dried meat paper.
Collapse
Affiliation(s)
- Ping-Hsiu Huang
- College of Food, Jiangsu Food and Pharmaceutical Science College, Huai’an, 223003 China
| | - Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung, University of Science and Technology, Kaohsiung, 81157 Taiwan, ROC
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung, 40227 Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, Taichung, 40402 Taiwan, ROC
| | - Kuan-Chen Cheng
- Department of Medical Research, China Medical University Hospital, Taichung, 40402 Taiwan, ROC
- Institute of Biotechnology, National Taiwan University, Taipei, 10617 Taiwan
- Institute of Food Science Technology, National Taiwan University, Taipei, 10617 Taiwan, ROC
- Department of Optometry, Asia University, Taichung, 41354 Taiwan, ROC
| | - Jhih-Ying Ciou
- Department of Food Science, Tunghai University, Taichung, 407224 Taiwan, ROC
| | - Yi-Ting Qiu
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung, University of Science and Technology, Kaohsiung, 81157 Taiwan, ROC
| | - Chin-Chih Huang
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung, University of Science and Technology, Kaohsiung, 81157 Taiwan, ROC
| | - Sulfath Hakkim Hazeena
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung, University of Science and Technology, Kaohsiung, 81157 Taiwan, ROC
| |
Collapse
|
6
|
Evaluating different levels of papain as texture modifying agent in bovine meat loaf containing transglutaminase. Meat Sci 2023; 198:109112. [PMID: 36702066 DOI: 10.1016/j.meatsci.2023.109112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
In this study, bovine meat loaves were produced with different levels of papain (0.00125%, 0.0025%, 0.00375%, and 0.005%) combined with transglutaminase (1%). The effect of this reformulation on pH, instrumental color, water activity, proximate composition, texture, yield, and scanning electron microscopy (SEM) of meat loaves was investigated. In addition, the enzymatic activity of papain was also analyzed. The papain addition increased the pH and the yield of the samples. The hardness was progressively reduced with the increase of papain level. Such changes could be seen through the images recorded by SEM, where an extremely fragmented structure was observed in treatments with higher papain concentration. Papain showed an optimum temperature of 80 °C. This study allowed to observe an intense proteolytic effect in all treatments, despite the papain concentration. Therefore, lower levels should be applied so that the product does not alter its sensory characteristics, such as soft and crumbly texture.
Collapse
|
7
|
Mohd Azmi SI, Kumar P, Sharma N, Sazili AQ, Lee SJ, Ismail-Fitry MR. Application of Plant Proteases in Meat Tenderization: Recent Trends and Future Prospects. Foods 2023; 12:1336. [PMID: 36981262 PMCID: PMC10047955 DOI: 10.3390/foods12061336] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Papain, bromelain, and ficin are commonly used plant proteases used for meat tenderization. Other plant proteases explored for meat tenderization are actinidin, zingibain, and cucumin. The application of plant crude extracts or powders containing higher levels of compounds exerting tenderizing effects is also gaining popularity due to lower cost, improved sensory attributes of meat, and the presence of bioactive compounds exerting additional benefits in addition to tenderization, such as antioxidants and antimicrobial effects. The uncontrolled plant protease action could cause excessive tenderization (mushy texture) and poor quality due to an indiscriminate breakdown of proteins. The higher cost of separation and the purification of enzymes, unstable structure, and poor stability of these enzymes due to autolysis are some major challenges faced by the food industry. The meat industry is targeting the recycling of enzymes and improving their stability and shelf-life by immobilization, encapsulation, protein engineering, medium engineering, and stabilization during tenderization. The present review critically analyzed recent trends and the prospects of the application of plant proteases in meat tenderization.
Collapse
Affiliation(s)
- Syahira Izyana Mohd Azmi
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Pavan Kumar
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India;
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Ranbir Singh Pura 181012, Union Territory of Jammu and Kashmir, India;
| | - Awis Qurni Sazili
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Halal Products Research Institute, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Sung-Jin Lee
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Mohammad Rashedi Ismail-Fitry
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Halal Products Research Institute, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| |
Collapse
|
8
|
Ribeiro WO, Ozaki MM, Dos Santos M, Rodríguez AP, de Castro RJS, Sato HH, Campagnol PCB, Pollonio MAR. Improving the textural and nutritional properties in restructured meat loaf by adding fibers and papain designed for elderly. Food Res Int 2023; 165:112539. [PMID: 36869546 DOI: 10.1016/j.foodres.2023.112539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/04/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023]
Abstract
This study aimed to evaluate the effects of dietary fibers (apple, oat, pea, and inulin) in meat loaves treated with papain enzyme. In the first step, dietary fibers were added to the products at the level of 6%. All dietary fibers decreased the cooking loss and improved the water retention capacity throughout the shelf life of the meat loaves. Besides, the dietary fibers increased the compression force of meat loaves treated with papain, mainly oat fiber. The dietary fibers decreased the pH, especially the treatment with apple fiber. In the same way, the color was changed mainly by the apple fiber addition, resulting in a darker color in both raw and cooked samples. TBARS index increased in meat loaves added with both pea and apple fibers, mostly for the last one. In the next step, the combination of inulin, oat, and pea fibers was evaluated in the meat loaves treated with papain, combining fibers up to 6% total content likewise decreased cooking and cooling loss and increased the texture of the papain-treated meat loaf. The addition of fibers improved the acceptability of the texture-related samples, except for the three-fiber mixture (inulin, oat, and pea), which was related to a dry, hard-to-swallow texture. The mix of pea and oat fibers conferred the best descriptive attributes, possibly related to improved texture and water retention in the meat loaf, and comparing the use of isolated oat and pea, the perception of negative sensory attributes was not mentioned, such as soy and other off-flavors. Considering these results, this study showed that dietary fibers combined with papain improved the yielding and functional properties with potential technological use and consistent nutritional claims for elderly.
Collapse
Affiliation(s)
- Wanessa Oliveira Ribeiro
- Department of Food Technology, School of Food Engineering, State University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | - Maristela Midori Ozaki
- Department of Food Technology, School of Food Engineering, State University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | - Mirian Dos Santos
- Department of Food Technology, School of Food Engineering, State University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | - Andrea Paola Rodríguez
- Department of Food Technology, School of Food Engineering, State University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | - Ruann Janser Soares de Castro
- Department of Food Science and Nutrition, School of Food Engineering, State University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | - Helia Harumi Sato
- Department of Food Science and Nutrition, School of Food Engineering, State University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | | | | |
Collapse
|
9
|
Hu Y, Xiao N, Ye Y, Shi W. Fish proteins as potential precursors of taste-active compounds: an in silico study. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6404-6413. [PMID: 35562847 DOI: 10.1002/jsfa.12006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Fish protein is a good source of amino acids and peptides with sensory properties. Theoretically, the type of protein affects the taste quality of the protein hydrolysates. To better use fish protein in the food ingredients industry, an in silico approach was adopted to evaluate the potential of fish protein to release taste-active compounds. RESULTS Six types of protein from seven commercial fishes were screened from the Uniprot knowledge base. The results showed that a remarkable number of umami fragments presented in myosin and parvalbumin (PB), such as glutamic acid (Glu), aspartic acid (Asp), and Asp- and Glu- containing peptides, whereas sweet amino acids and bitter peptides (e.g., Pro- and Gly- containing peptides) were mainly found in collagen (CGI) in all fish samples. After the in silico proteolysis by papain, a difference in the profile of taste-active fragments was observed among the six types of proteins. Amino acids were the main hydrolysis products of these proteins, especially umami, sweet, and bitter amino acids, significantly contributing to the taste formation of protein hydrolysates. Besides, the myosin and CGI hydrolysates were abundant in taste active peptides both in types and quantities. CONCLUSION Myosin is a promising protein source for producing umami fragments, and CGI seems to be a good precursor of sweet and bitter fragments. Different types of protein have an essential effect on the taste of protein hydrolysates. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yun Hu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Naiyong Xiao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yiting Ye
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Wenzheng Shi
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- National R&D Branch Center for Freshwater Aquatic Products Processing Technology (Shanghai), Shanghai, China
| |
Collapse
|
10
|
Du Q, Fang C, Qi H, Benjakul S, Aubourg SP, Zhang B. Low-temperature vacuum permeation of sodium tripolyphosphate and trehalose suppresses the denaturation of myofibrillar proteins in peeled shrimp ( Litopenaeus vannamei) during frozen storage. Front Nutr 2022; 9:1012864. [PMID: 36276827 PMCID: PMC9583252 DOI: 10.3389/fnut.2022.1012864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Phosphates and trehalose are widely accepted additives in animal muscle products. In this study, the effects of pre-soaking with sodium tripolyphosphate (STPP) and trehalose under vacuum permeation (VP) conditions on the physicochemical properties of shrimp muscle were evaluated over 120 d of frozen storage. The results indicate the STPP/trehalose-VP treatments significantly reduced the thawing loss and prevented changes in the texture, myofibrillar protein (MP) content, and Ca2+-ATPase activity of shrimp muscle during frozen storage compared with results of control and individual STPP or trehalose soaking treatments. The histological structure analysis revealed the permeated STPP/trehalose distinctly inhibited the dissociation of muscle fibers and reduced physical damage to connective tissues during storage. Furthermore, analysis of the thermal properties indicated STPP/trehalose treatment increased the Tg’ values of shrimp muscle tissues, likely by restricting the mobility of water molecules in muscle tissues and embedding proteins in the glassy matrix. Thus, the physical destruction caused by ice crystal growth was greatly reduced, due to the absence of water molecules around muscle proteins during frozen storage. Accordingly, the combined STPP/trehalose-VP treatment significantly enhanced the stability of frozen shrimp, and the results support the application of traditional cryoprotective additives. The treated shrimp can be stored at comparatively higher temperatures with limited physicochemical reactions during frozen storage.
Collapse
Affiliation(s)
- Qi Du
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Chuangdong Fang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China,Pisa Marine Graduate School, Zhejiang Ocean University, Zhoushan, China,Chuangdong Fang
| | - He Qi
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Santiago P. Aubourg
- Consejo Superior de Investigaciones Cientificas (CSIC), Inst Invest Marinas, Vigo, Spain
| | - Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, College of Food Science and Pharmacy, Zhejiang Ocean University, Zhoushan, China,Pisa Marine Graduate School, Zhejiang Ocean University, Zhoushan, China,*Correspondence: Bin Zhang ;
| |
Collapse
|
11
|
Dong Y, Zhang H, Mei J, Xie J, Shao C. Advances in application of ultrasound in meat tenderization: A review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.969503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tenderness could measure the eating quality of meat. The mechanism of muscle tenderization is becoming more and more critical in the past decade. Since the transforming of muscle into edible meat requires a complex physiological and biochemical process, the related tenderization of meat can be beneficial to improving the meat quality. As a non-thermal processing technology with energy-saving, environmental protection, and intense penetration, ultrasonic treatment has been widely used in the tenderizing process of meat products. In this paper, the principle of meat tenderization, the ultrasonic technology, and the application of ultrasonic technology in meat tenderization is summarized. The effect of ultrasonic technology on the tenderization of meat products is discussed from different perspectives (muscle fibers and connective tissue properties).
Collapse
|
12
|
Shang S, Wu B, Fu B, Jiang P, Liu Y, Qi L, Du M, Dong X. Enzyme treatment-induced tenderization of puffer fish meat and its relation to physicochemical changes of myofibril protein. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Onopiuk A, Szpicer A, Pogorzelski G, Wierzbicka A, Poltorak A. Analysis of the impact of exogenous preparations of cysteine proteases on tenderness of beef muscles Semimembranosus and Longissimus thoracis et lumborum. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
14
|
Jančič U, Gorgieva S. Bromelain and Nisin: The Natural Antimicrobials with High Potential in Biomedicine. Pharmaceutics 2021; 14:76. [PMID: 35056972 PMCID: PMC8778819 DOI: 10.3390/pharmaceutics14010076] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 11/16/2022] Open
Abstract
Infectious diseases along with various cancer types are among the most significant public health problems and the leading cause of death worldwide. The situation has become even more complex with the rapid development of multidrug-resistant microorganisms. New drugs are urgently needed to curb the increasing spread of diseases in humans and livestock. Promising candidates are natural antimicrobial peptides produced by bacteria, and therapeutic enzymes, extracted from medicinal plants. This review highlights the structure and properties of plant origin bromelain and antimicrobial peptide nisin, along with their mechanism of action, the immobilization strategies, and recent applications in the field of biomedicine. Future perspectives towards the commercialization of new biomedical products, including these important bioactive compounds, have been highlighted.
Collapse
Affiliation(s)
- Urška Jančič
- Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
| | - Selestina Gorgieva
- Institute of Engineering Materials and Design, Faculty of Mechanical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia;
- Institute of Automation, Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška cesta 46, 2000 Maribor, Slovenia
| |
Collapse
|
15
|
Ma X, Chen Z, Han J, Zhou Y, Lin F, Li C, Wang L, Wang Y. Fabrication of immobilized bromelain using cobalt phosphate material prepared in deep eutectic solvent as carrier. Colloids Surf B Biointerfaces 2021; 210:112251. [PMID: 34894600 DOI: 10.1016/j.colsurfb.2021.112251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/03/2021] [Accepted: 11/24/2021] [Indexed: 12/24/2022]
Abstract
The aim of the present work is to fabricate immobilized bromelain based on the specific interaction between the cobalt ions of carrier and the inherent cysteines contained in bromelain molecules. The cobalt phosphate material was prepared as solid support by using choline chloride (ChCl)/betaine-glycerol deep eutectic solvent (DES) as solvent and template for the first time. The Co-P material with lamellate-based structure obtained in the ChCl-glycerol DES at the Co/P ratio of 3:2 showed the best performance for the immobilization of bromelain. The specific interaction between Co2+ and bromelain promoted the aggregation of lamellar Co-P, forming flower-like Co-P@bromelain particles. Under the optimum immobilization conditions, the specific enzyme activity of the immobilized enzyme reached the maximum of 71244 U/g. Compared with Co3(PO4)2 prepared in water system, the obtained Co-P@bromelain using the Co-P material synthesized in the ChCl-glycerol DES as carrier exhibited excellent structure stability. In addition, the immobilized Co-P@bromelain also showed higher catalytic efficiency than free bromelain.
Collapse
Affiliation(s)
- Xinnan Ma
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Zhili Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Juan Han
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Feng Lin
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Zhejiang Institute of Freshwater Fisheries, Huzhou 313001, China
| | - Chunmei Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China
| | - Yun Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu Province 212013, China.
| |
Collapse
|
16
|
Ye Z, Zhang J, Lorenzo JM, Zhang M, Zhang W. Effects of bromelain on the quality of smoked salted duck. Food Sci Nutr 2021; 9:4473-4483. [PMID: 34401095 PMCID: PMC8358376 DOI: 10.1002/fsn3.2422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 05/10/2021] [Accepted: 06/10/2021] [Indexed: 11/11/2022] Open
Abstract
This study was aimed to assess the effects of bromelain on the eating quality of smoked salted duck. Whole ducks were marinated with different doses of bromelain (300 U/g, 600 U/g, 900 U/g, 1,200 U/g and 1,500 U/g), while the group without bromelain was considered as control (CK). After the production of smoked salted duck was completed, the pH, color, texture, electronic tongue detection, thiobarbituric acid reactive substances (TBARS), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and mass spectrometry analysis were determined. The results showed that, compared to CK, the pH, TBARS and hardness values in 900, 1,200 and 1,500 U/g groups were reduced. The cohesiveness and the springiness were increased while the values of b* were decreased in all bromelain treatments (p < .05). The SDS-PAGE and mass spectrometry analysis indicated that myosin and actin were further hydrolyzed into small-molecule proteins by bromelain. Electronic tongue detection showed that the umami, the saltiness and the richness of smoked salted duck were enhanced, while the bitterness was reduced at the dose of 900 U/g. Thus, bromelain improved the eating quality of smoked salted duck in particular at the level of 900 U/g.
Collapse
Affiliation(s)
- Ziqing Ye
- Key Lab of Meat Processing and Quality ControlMinistry of EducationJiangsu Collaborative Innovation Center of Meat Processing and Quality ControlCollege of Food Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - Jian Zhang
- Key Lab of Meat Processing and Quality ControlMinistry of EducationJiangsu Collaborative Innovation Center of Meat Processing and Quality ControlCollege of Food Science and TechnologyNanjing Agricultural UniversityNanjingChina
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de GaliciaOurenseSpain
- Área de Tecnología de los AlimentosFacultad de Ciencias de OurenseUniversidad de VigoOurenseSpain
| | - Mutian Zhang
- Nanjing Cherry Duck Industry CompanyNanjingChina
| | - Wangang Zhang
- Key Lab of Meat Processing and Quality ControlMinistry of EducationJiangsu Collaborative Innovation Center of Meat Processing and Quality ControlCollege of Food Science and TechnologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
17
|
Shi H, Shahidi F, Wang J, Huang Y, Zou Y, Xu W, Wang D. Techniques for postmortem tenderisation in meat processing: effectiveness, application and possible mechanisms. FOOD PRODUCTION, PROCESSING AND NUTRITION 2021. [DOI: 10.1186/s43014-021-00062-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Abstract
Developing efficient and promising tenderising techniques for postmortem meat is a heavily researched topic among meat scientists as consumers are willing to pay more for guaranteed tender meat. However, emerging tenderising techniques are not broadly used in the meat industry and, to some degree, are controversial due to lack of theoretical support. Thus, understanding the mechanisms involved in postmortem tenderisation is essential. This article first provides an overview of the relationship of ageing tenderisation and calpain system, as well as proteomics applied to identify protein biomarkers characterizing tenderness. In general, the ageing tenderisation is mediated by multiple biochemical activities, and it can exhibit better palatability and commercial benefit by combining other interventions. The calpain system plays a key role in ageing tenderisation functions by rupturing myofibrils and regulating proteolysis, glycolysis, apoptosis and metabolic modification. Additionally, tenderising techniques from different aspects including exogenous enzymes, chemistry, physics and the combined methods are discussed in depth. Particularly, innovation of home cooking could be recommended to prepare relatively tender meat due to its convenience and ease of operation by consumers. Furthermore, the combined interventions provide better performance in controlled tenderness. Finally, future trends in developing new tenderising techniques, and applied consideration in the meat processing industry are proposed in order to improve meat quality with higher economical value.
Graphical abstract
Collapse
|
18
|
Xiao H, Li N, Yan L, Xue Y. The Hydration Characteristics, Structural Properties and Volatile Profile of Squid ( Symplectoteuthis oualaniensis) Mantle Muscle: Impacts of Steaming, Boiling, and Sous Vide Cooking. Foods 2021; 10:foods10071646. [PMID: 34359516 PMCID: PMC8305883 DOI: 10.3390/foods10071646] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022] Open
Abstract
Herein, the effects of boiling (BO), steaming (ST), and sous vide (SV) on the hydration characteristics, structural properties, and volatile profile of squid (Symplectoteuthis oualaniensis) mantle muscle (SMM) were investigated. Three cooking methods resulted in a dramatic decrease in proton mobility and freedom of protons, the relaxation time T2 decreased after cooking, and the water binding in the SMM was closer, but the SV treatment could retain more water in the SMM. SV resulted in a lower cooking loss (10.8%) than ST (49.0%) and BO (36.7%). Samples treated with SV had a better color and texture, the secondary structure β-fold of the squid protein was damaged by cooking to a certain extent, and the damage degree was BO > ST > SV. Compared with BO and ST, SV treatment caused more damage to the myosin heavy chain, paramyosin, and actin in SMM, improved the tenderness of SMM, and resulted in more regular internal reticular structures and less formation of fibrous structures. Cooking methods can significantly affect the volatile components of SMM, resulting in increasing volatile components or generating new volatile components in SMM including 2-methylbutanal, ethyl 2-methylpropanoate, acetic acid, and propyl methyl ketone in ST and BO samples and 2-methylbutanal, hexanal, and 2,3-pentanedione in SV samples. Therefore, SV resulted in the best quality squids and has substantial industrial application potential.
Collapse
Affiliation(s)
- Hong Xiao
- Department of Food Science and Engineering, Ocean University of China, Qingdao 266003, China;
| | - Nannan Li
- Sanya Ocean Institute, Ocean University of China, Sanya 572024, China; (N.L.); (L.Y.)
| | - Longtao Yan
- Sanya Ocean Institute, Ocean University of China, Sanya 572024, China; (N.L.); (L.Y.)
| | - Yong Xue
- Department of Food Science and Engineering, Ocean University of China, Qingdao 266003, China;
- Sanya Ocean Institute, Ocean University of China, Sanya 572024, China; (N.L.); (L.Y.)
- Correspondence: address: ; Tel.: +86-0532-8203-2597; Fax: +86-0532-8203-2468
| |
Collapse
|
19
|
Batool A, Hazafa A, Ahmad S, Khan HA, Abideen HMZ, Zafar A, Bilal M, Iqbal HMN. Treatment of lymphomas via regulating the Signal transduction pathways by natural therapeutic approaches: A review. Leuk Res 2021; 104:106554. [PMID: 33684680 DOI: 10.1016/j.leukres.2021.106554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
Lymphoma is a heterogeneous group of malignancies, which comprises 4.2 % of all new cancer cases and 3.3 % of all cancer deaths in 2019, globally. The dysregulation of immune system, certain bacterial or viral infections, autoimmune diseases, and immune suppression are associated with a high risk of lymphoma. Although several conventional strategies have improved during the past few decades, but their detrimental impacts remain an obstacle to be resolved. However, natural compounds are considered a good option in the treatment of lymphomas because of their easy accessibility, specific mode of action, high biodegradability, and cost-effectiveness. Vegetables, fruits, and beverages are the primary sources of natural active compounds. The present review investigated the activities of different natural medicinal compounds including curcumin, MK615, resveratrol, bromelain, EGCG, and Annonaceous acetogenins to treat lymphomas. Moreover, in vitro and in vivo studies, classification, risk factors, and diagnosis of lymphoma are also discussed in the present review. The accumulated data proposed that natural compounds regulate the signaling pathways at the level of cell proliferation, apoptosis, and cell cycle to exhibit anti-lymphoma activities both in-vivo and in-vitro studies and suggested that these active compounds could be a good therapeutic option in the treatment of different types of lymphomas.
Collapse
Affiliation(s)
- Ammara Batool
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Abu Hazafa
- Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, 38000, Pakistan; International Society of Engineering Science and Technology, Coventry, CV1 5EH, United Kingdom.
| | - Saeed Ahmad
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar, 25120, Pakistan
| | - Hamid Ali Khan
- Institute of Biological Sciences, Sarhad University of Science and Information Technology, Peshawar, 25000, Pakistan
| | - Hafiz M Z Abideen
- Institute of Public Health, The University of Lahore, Lahore, 54590, Pakistan
| | - Ayesha Zafar
- Institute of Biochemistry and Biotechnology, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Hafiz M N Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Tecnológico, 64849, Monterrey, NL, Mexico
| |
Collapse
|
20
|
|
21
|
Effects of ficin, high pressure and their combination on quality attributes of post-rigor tan mutton. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Ge L, Zhao N, Miao Y, Zhang S, Zhao M, Luo Y, Lai H, Huang Y, Wang Y. Inhibitory effect of edible natural compounds with di- and tri-carboxyl moiety on endogenous protease inducing disassembly and degradation of myofibrils from grass carp (Ctenopharyngodon idella). Food Res Int 2020; 137:109457. [PMID: 33233133 DOI: 10.1016/j.foodres.2020.109457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/28/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
Abstract
Inhibition of endogenous protease is a rapid and feasible approach to control the proteolysis proceeding of post mortem fish flesh. In the present study, the in vitro inhibitory effects of common edible di- and tri-carboxylic acids and salts on endogenous proteolytic activities as well as myofibrillar disassembly and degradation mediated by crude enzyme of grass carp muscle were investigated. The results showed that among the compounds tested, maleic acid, fumaric acid, tartaric acid and malic acid were the most effective inhibitor for cathepsin B, L and calpain, with IC50 ranging from 7.76 to 30.13 mM, from 32.38 to 65.12 mM, from 1.06 to 6.76 mM, respectively. Also, relatively lower Ki (ranging from 1.04 to 43.21 mM) of these compounds were found towards cathepsin B, L and calpain. Incubation of myofibrillar protein with crude enzyme in the presence of di- and tri-carboxylic compounds could remarkably suppress the dissociation and degradation of myosin heavy chain (MHC), and ameliorate the loss of heat shock protein (HSP) in myofibrils, with tartaric acid and fumaric acid proved more effective than other compounds, possibly implicating their application as potential and efficient inhibitors for quality control of fish muscle products.
Collapse
Affiliation(s)
- Lihong Ge
- College of Life Science, Sichuan Normal University, Chengdu, China.
| | - Nan Zhao
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China.
| | - Yuzhi Miao
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Siyuan Zhang
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Minhui Zhao
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Yongyuan Luo
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Haimei Lai
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yuli Huang
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yali Wang
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
23
|
Shi L, Xiong G, Yin T, Ding A, Li X, Wu W, Qiao Y, Liao L, Jiao C, Wang L. Effects of ultra-high pressure treatment on the protein denaturation and water properties of red swamp crayfish (Procambarus clarkia). Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110124] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
24
|
Pizarro-Oteíza S, Briones-Labarca V, Pérez-Won M, Uribe E, Lemus-Mondaca R, Cañas-Sarazúa R, Tabilo-Munizaga G. Enzymatic impregnation by high hydrostatic pressure as pretreatment for the tenderization process of Chilean abalone (Concholepas concholepas). INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Singh A, Mittal A, Benjakul S. Full Utilization of Squid Meat and Its Processing By-products: Revisit. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1734611] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Avtar Singh
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Ajay Mittal
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| | - Soottawat Benjakul
- Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|