1
|
Yarahmadi A, Najafiyan H, Yousefi MH, Khosravi E, Shabani E, Afkhami H, Aghaei SS. Beyond antibiotics: exploring multifaceted approaches to combat bacterial resistance in the modern era: a comprehensive review. Front Cell Infect Microbiol 2025; 15:1493915. [PMID: 40176987 PMCID: PMC11962305 DOI: 10.3389/fcimb.2025.1493915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/23/2025] [Indexed: 04/05/2025] Open
Abstract
Antibiotics represent one of the most significant medical breakthroughs of the twentieth century, playing a critical role in combating bacterial infections. However, the rapid emergence of antibiotic resistance has become a major global health crisis, significantly complicating treatment protocols. This paper provides a narrative review of the current state of antibiotic resistance, synthesizing findings from primary research and comprehensive review articles to examine the various mechanisms bacteria employ to counteract antibiotics. One of the primary sources of antibiotic resistance is the improper use of antibiotics in the livestock industry. The emergence of drug-resistant microorganisms from human activities and industrial livestock production has presented significant environmental and public health concerns. Today, resistant nosocomial infections occur following long-term hospitalization of patients, causing the death of many people, so there is an urgent need for alternative treatments. In response to this crisis, non-antibiotic therapeutic strategies have been proposed, including bacteriophages, probiotics, postbiotics, synbiotics, fecal microbiota transplantation (FMT), nanoparticles (NPs), antimicrobial peptides (AMPs), antibodies, traditional medicines, and the toxin-antitoxin (TA) system. While these approaches offer innovative solutions for addressing bacterial infections and preserving the efficacy of antimicrobial therapies, challenges such as safety, cost-effectiveness, regulatory hurdles, and large-scale implementation remain. This review examines the potential and limitations of these strategies, offering a balanced perspective on their role in managing bacterial infections and mitigating the broader impact of antibiotic resistance.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamide Najafiyan
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Elham Khosravi
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Shabani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Seyed Soheil Aghaei
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
- Applied Physiology Research Center, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| |
Collapse
|
2
|
Dong X, Bi X, Quek SY. Integrative approach to assessing bioactivity from hempseed protein isolate extracted and dehydrated by different methods: Synergising in silico prediction and in vitro validation. Food Chem 2025; 463:141459. [PMID: 39368207 DOI: 10.1016/j.foodchem.2024.141459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
This study demonstrated a comprehensive workflow combining in silico screening and prediction with in vitro validation to investigate the bioactivity of hempseed protein isolate (HPI) extracted and dehydrated using different methods. By adopting an in silico approach, 13 major proteins of HPI were hydrolysed by 20 selected enzymes, leading to the prediction of 20 potential bioactivities. With papain hydrolysis, dipeptidyl peptidase-IV (DPP4) and angiotensin-converting enzyme (ACE) inhibitory activities emerged as having the highest potential. In vitro experiments confirmed these predictions, with DPP4 and ACE inhibitory activities displaying IC50 values of 0.32-0.42 mg/mL and 6.8-9.17 μg/mL, respectively. A strong correlation (r2 = 0.96) was observed between in vitro protein inhibitory results and in silico predicted data. This study demonstrated an effective integrative approach for predicting bioactive peptides in food protein, providing valuable guidance on its processing to create value-added products.
Collapse
Affiliation(s)
- Xuan Dong
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand.
| | - Xuezhi Bi
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 138668 Singapore, Singapore.
| | - Siew Young Quek
- Food Science, School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand; Riddet Institute, Centre of Research Excellence for Food Research, Palmerston North 4474, New Zealand.
| |
Collapse
|
3
|
Chen Q, Ge Y, He X, Li S, Fang Z, Li C, Chen H. Virtual-screening of xanthine oxidase inhibitory peptides: Inhibition mechanisms and prediction of activity using machine-learning. Food Chem 2024; 460:140741. [PMID: 39128372 DOI: 10.1016/j.foodchem.2024.140741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Xanthine oxidase (XO) inhibitory peptides can prevent XO-mediated hyperuricemia. Currently, QSAR about XO inhibitory peptides with different lengths remains to be enriched. Here, XO inhibitory peptides were obtained from porcine visceral proteins through virtual-screening. A prediction model was established by machine-learning. Virtual-screening retained four lengths of peptides, including 3-6. Molecular-docking recognized their binding sites with XO and showed residues W, F, and G were the key amino acids. Datasets of XO inhibitory peptides therewith were established. The optimal model was used to generalize the peptides reported. Results showed that the R2 of the tripeptide, tetrapeptide, pentapeptide and hexapeptide in the generalisation test were R2 = 0.81, R2 = 0.82, R2 = 0.83 and R2 = 0.83, respectively. Overall, this work can serve as a reference for explaining the activity mechanism of XO inhibitory peptides and predicting the activity of XO inhibitory peptides.
Collapse
Affiliation(s)
- Qian Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Yuxi Ge
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Xiaoyu He
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Shanshan Li
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Zhengfeng Fang
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Cheng Li
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, Sichuan 625014, China.
| |
Collapse
|
4
|
Hoffmann RG, Moraes GP, da Silva CB, Daroit DJ. Enzymatic processing of animal by-products: production of antioxidant hydrolysates with Bacillus sp. CL18 crude protease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26737-26746. [PMID: 38456978 DOI: 10.1007/s11356-024-32819-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Protein hydrolysates might display diverse bioactivities with potential relevance to human and animal health and food technology. Enzymatic hydrolysis of agro-industrial by-products is increasingly focused. In this study, a crude protease from Bacillus sp. CL18 was applied to obtain antioxidant protein hydrolysates from porcine, bovine, poultry, and fish by-products. The crude enzyme hydrolyzed all the twelve investigated by-products, as detected by increased soluble protein contents after 4 h of proteolysis. Hydrolysates exhibited higher radical-scavenging, Fe2+-chelating and reducing power capacities than non-hydrolyzed by-products. Hydrolysis times (0-8 h) and enzyme-to-substrate (E/S) ratios (384, 860, and 1,400 U/g) were assessed to produce antioxidant bovine lung hydrolysates. The highest E/S ratio accelerated both hydrolysis and increases in antioxidant activities; however, it did not result in bioactivities higher than hydrolysates obtained with the intermediate E/S ratio. Optimal antioxidant activities could be reached after 6 h of hydrolysis using 860 U/g. Animal by-products are interesting sources of bioactive protein hydrolysates, which could be produced with a non-commercial bacterial protease. This might represent a promising strategy for the valorization of animal by-products generated in large amounts by the agri-food sector.
Collapse
Affiliation(s)
- Rubia Godoy Hoffmann
- Programa de Pós-Graduação em Ambiente e Tecnologias Sustentáveis, Universidade Federal da Fronteira Sul (UFFS), Rua Jacob Reinaldo Haupenthal 1580, Campus Cerro Largo, 97900-000, Brazil
| | - Gabriela Poll Moraes
- Programa de Pós-Graduação em Ambiente e Tecnologias Sustentáveis, Universidade Federal da Fronteira Sul (UFFS), Rua Jacob Reinaldo Haupenthal 1580, Campus Cerro Largo, 97900-000, Brazil
| | - Carolina Becker da Silva
- Programa de Pós-Graduação em Ambiente e Tecnologias Sustentáveis, Universidade Federal da Fronteira Sul (UFFS), Rua Jacob Reinaldo Haupenthal 1580, Campus Cerro Largo, 97900-000, Brazil
| | - Daniel Joner Daroit
- Programa de Pós-Graduação em Ambiente e Tecnologias Sustentáveis, Universidade Federal da Fronteira Sul (UFFS), Rua Jacob Reinaldo Haupenthal 1580, Campus Cerro Largo, 97900-000, Brazil.
| |
Collapse
|
5
|
Xu Y, Yang Y, Ma CM, Bian X, Liu XF, Wang Y, Chen FL, Wang B, Zhang G, Zhang N. Characterization of the structure, antioxidant activity and hypoglycemic activity of soy (Glycine max L.) protein hydrolysates. Food Res Int 2023; 173:113473. [PMID: 37803796 DOI: 10.1016/j.foodres.2023.113473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/31/2023] [Accepted: 09/10/2023] [Indexed: 10/08/2023]
Abstract
This study aimed to hydrolyze soy isolate protein (SPI) using five enzymes (alcalase, pepsin, trypsin, papain, and bromelain) in order to obtain five enzymatic hydrolysates and to elucidate the effect of enzymes on structural and biological activities of the resulting hydrolysates. The antioxidant and hypoglycemic activities of the soy protein isolate hydrolysates (SPIEHs) were evaluated through in silico analysis, revealing that the alcalase hydrolysate exhibited the highest potential, followed by the papain and bromelain hydrolysates. Subsequently, the degree of hydrolysis (DH), molecular weight distribution (MWD), amino acid composition, structure, antioxidant activities, and hypoglycemic activity in vitro of SPIEHs were analyzed. After enzymatic treatment, the particle size, polymer dispersity index (PDI), ζ-potentials, β-sheet content and α-helix content of SPIEHs was decreased, and the maximum emission wavelength of all SPIEHs exhibited red-shifted, which all suggesting the structure of SPIEHs was unfolded. More total amino acids (TAAs), aromatic amino acids (AAAs), and hydrophobic amino acids (HAAs) were found in alcalase hydrolysate. For 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity, metal ion chelating activity, α-glucosidase inhibitory activity and α-amylase inhibitory activity, alcalase hydrolysate had the lowest IC50; alcalase hydrolysate and papain hydrolysate had the lowest IC50 for hydroxyl radical scavenging activity. Physiological activity of SPIEHs was evaluated thoroughly by 5-Axe cobweb charts, and the results revealed that alcalase hydrolysate exhibited the greatest biological activities.
Collapse
Affiliation(s)
- Yue Xu
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Yang Yang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Chun-Min Ma
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Xin Bian
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Xiao-Fei Liu
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Yan Wang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Feng-Lian Chen
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Bing Wang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Guang Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China
| | - Na Zhang
- Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin, Heilongjiang 150028, China.
| |
Collapse
|
6
|
Mohd Azmi SI, Kumar P, Sharma N, Sazili AQ, Lee SJ, Ismail-Fitry MR. Application of Plant Proteases in Meat Tenderization: Recent Trends and Future Prospects. Foods 2023; 12:1336. [PMID: 36981262 PMCID: PMC10047955 DOI: 10.3390/foods12061336] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Papain, bromelain, and ficin are commonly used plant proteases used for meat tenderization. Other plant proteases explored for meat tenderization are actinidin, zingibain, and cucumin. The application of plant crude extracts or powders containing higher levels of compounds exerting tenderizing effects is also gaining popularity due to lower cost, improved sensory attributes of meat, and the presence of bioactive compounds exerting additional benefits in addition to tenderization, such as antioxidants and antimicrobial effects. The uncontrolled plant protease action could cause excessive tenderization (mushy texture) and poor quality due to an indiscriminate breakdown of proteins. The higher cost of separation and the purification of enzymes, unstable structure, and poor stability of these enzymes due to autolysis are some major challenges faced by the food industry. The meat industry is targeting the recycling of enzymes and improving their stability and shelf-life by immobilization, encapsulation, protein engineering, medium engineering, and stabilization during tenderization. The present review critically analyzed recent trends and the prospects of the application of plant proteases in meat tenderization.
Collapse
Affiliation(s)
- Syahira Izyana Mohd Azmi
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Pavan Kumar
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, Punjab, India;
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, Ranbir Singh Pura 181012, Union Territory of Jammu and Kashmir, India;
| | - Awis Qurni Sazili
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Halal Products Research Institute, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Sung-Jin Lee
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Mohammad Rashedi Ismail-Fitry
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Halal Products Research Institute, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| |
Collapse
|
7
|
Xing L, Fu L, Toldrá F, Teng S, Yin Y, Zhang W. The stability of dry‐cured ham‐derived peptides and its anti‐inflammatory effect in RAW264.7 macrophage cells. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lujuan Xing
- Key Lab of Meat Processing and Quality Control College of Food Science and Technology Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Lijuan Fu
- Key Lab of Meat Processing and Quality Control College of Food Science and Technology Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Fidel Toldrá
- Instituto de Agroquímicay Tecnología de Alimentos (CSIC) Avenue Agustín Escardino 7 46980 Paterna Valencia Spain
| | - Shuang Teng
- Key Lab of Meat Processing and Quality Control College of Food Science and Technology Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Yantao Yin
- Key Lab of Meat Processing and Quality Control College of Food Science and Technology Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu 210095 China
| | - Wangang Zhang
- Key Lab of Meat Processing and Quality Control College of Food Science and Technology Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control College of Food Science and Technology Nanjing Agricultural University Nanjing Jiangsu 210095 China
| |
Collapse
|
8
|
Harris M, Potgieter J, Ishfaq K, Shahzad M. Developments for Collagen Hydrolysate in Biological, Biochemical, and Biomedical Domains: A Comprehensive Review. MATERIALS (BASEL, SWITZERLAND) 2021; 14:2806. [PMID: 34070353 PMCID: PMC8197487 DOI: 10.3390/ma14112806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 05/19/2021] [Accepted: 05/19/2021] [Indexed: 01/11/2023]
Abstract
The collagen hydrolysate, a proteinic biopeptide, is used for various key functionalities in humans and animals. Numerous reviews explained either individually or a few of following aspects: types, processes, properties, and applications. In the recent developments, various biological, biochemical, and biomedical functionalities are achieved in five aspects: process, type, species, disease, receptors. The receptors are rarely addressed in the past which are an essential stimulus to activate various biomedical and biological activities in the metabolic system of humans and animals. Furthermore, a systematic segregation of the recent developments regarding the five main aspects is not yet reported. This review presents various biological, biochemical, and biomedical functionalities achieved for each of the beforementioned five aspects using a systematic approach. The review proposes a novel three-level hierarchy that aims to associate a specific functionality to a particular aspect and its subcategory. The hierarchy also highlights various key research novelties in a categorical manner that will contribute to future research.
Collapse
Affiliation(s)
- Muhammad Harris
- Massey Agrifood (MAF) Digital Labs, Massey University, Palmerston North 4410, New Zealand;
- Industrial and Manufacturing Engineering Department, Rachna College of Engineering and Technology, Gujranwala 52250, Pakistan;
| | - Johan Potgieter
- Massey Agrifood (MAF) Digital Labs, Massey University, Palmerston North 4410, New Zealand;
| | - Kashif Ishfaq
- Industrial and Manufacturing Engineering Department, University of Engineering and Technology, Lahore 54890, Pakistan;
| | - Muhammad Shahzad
- Industrial and Manufacturing Engineering Department, Rachna College of Engineering and Technology, Gujranwala 52250, Pakistan;
| |
Collapse
|
9
|
|
10
|
Pearman NA, Ronander E, Smith AM, Morris GA. The identification and characterisation of novel bioactive peptides derived from porcine liver. Curr Res Food Sci 2020; 3:314-321. [PMID: 33336193 PMCID: PMC7733001 DOI: 10.1016/j.crfs.2020.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Bioactive peptides (BAPs) can be derived from a variety of sources; these could be from dietary proteins which are then broken down in the gastrointestinal tract to release BAPs, or they can be isolated from various sources ex vivo. Sources include plant-based proteins such as soy, and chickpeas, and animal proteins from waste from the meat industry and from fish skin. Bioinformatics is also a useful approach to assess the peptides released from digests due to the great number of possible sequences that can be isolated from proteins. Therefore, an in silico analysis of peptides could potentially lead to a more rapid discovery of BAPs. This article investigates a "crude" liver peptide mixture derived from papain hydrolysis of porcine liver and purified peptides derived from the hydrolysates following HPLC fractionation and in silico digestion of the host proteins identified using LC-MS/MS. This allowed the identification of two proteins (cytosol aminopeptidase and haemoglobin subunit alpha) present in the "crude" mixture after LC-MS/MS. In silico hydrolysis of these proteins identified that several peptides were predicted to be both present in the crude mixture using the BIOPEP database and to have potential bioactivity using the Peptide Ranker tool. Peptides (FWG, MFLG and SDPPLVFVG) with the greatest potential bioactivity and which had not previously been reported in the literature were then synthesised. The results indicated that the predicted bioactivity of the synthetic peptides would likely include antioxidant activity. FWG and MFLG derived from the in silico papain hydrolysis of cytosol aminopeptidase showed activity better or comparable to Trolox in the Oxygen Radical Absorbance Capacity (ORAC) assay. The use of these in silico tools, alongside a robust range of biochemical assays which cover a wider range of bioactivities would be a way of improving the discovery of novel bioactive peptides.
Collapse
Affiliation(s)
- Nicholas A. Pearman
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Elena Ronander
- Biofac A/S, Englandsvej 350-356, DK-2770, Kastrup, Denmark
| | - Alan M. Smith
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Gordon A. Morris
- Department of Chemical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| |
Collapse
|