1
|
Zhu P, Yang K, Shen J, Lu Z, Lv F, Wang P. Comparative Transcriptome Analysis Revealing the Enhanced Volatiles of Cofermentation of Yeast and Lactic Acid Bacteria on Whole Wheat Steamed Bread Dough. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19129-19141. [PMID: 37867327 DOI: 10.1021/acs.jafc.3c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
To reveal the underlying mechanism of enhanced volatiles of whole wheat steamed bread, the current study screened Saccharomyces cerevisiae Y5 and Lactiplantibacillus plantarum L7 from sourdough and studied the synergetic effect of cofermentation on the volatiles of steamed bread and fermented dough by comparative transcriptome analysis. Cofermentation significantly improved the types and concentration of volatiles in addition to the improved specific volume and texture. Genes involved in galactose, starch, and glucose metabolism and genes encoding pyruvate oxidase and β-galactosidase were significantly upregulated in S. cerevisiae and L. plantarum, respectively. Expression of the OPT2 encoding oligopeptide transporter in S. cerevisiae was upregulated, which facilitated the transmembrane transport of oligopeptide and amino acid into yeast cells. Genes involved in the synthesis and metabolism of amino acids, lipids, and ester compounds in L. plantarum changed significantly, and gene encoding acetic acid kinase was upregulated. Moreover, the quorum sensing-related genes in S. cerevisiae and L. plantarum were upregulated.
Collapse
Affiliation(s)
- Ping Zhu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Kesheng Yang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Juan Shen
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Zhaoxin Lu
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Fengxia Lv
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Pei Wang
- College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
2
|
Fu Y, Sun M, Feng T, Liu Q, Yao L, Yu C, Song S. Impact of Leavening Agents on Flavor Profiles and Microbial Communities in Steamed Bread: A Comparative Analysis of Traditional Chinese Sourdough and Commercial Yeast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18973-18985. [PMID: 37915201 DOI: 10.1021/acs.jafc.3c05321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Chinese steamed bread (CSB) made with commercial yeasts and traditional Chinese sourdoughs was analyzed for the flavor and microbial communities. Sensory attributes were assessed using quantitative descriptive analysis (QDA). Results showed that commercial yeast CSB-1 (JMMT1), a yeast-based sample, had stronger milky and sweet attributes, while commercial yeast CSB-2 (JMMT2) had more pronounced yeasty attributes. Among the sourdough-based samples, Shandong traditional sourdough steamed bread (SDMT) exhibited a winelike character with a weak sweet aftertaste, whereas Shanxi traditional sourdough steamed bread (SXMT) had a distinct sour attribute and a less prominent floury taste. SAFE-GC-O-MS analysis identified 40 aroma compounds with FD values ≥2, including 33 key aroma compounds with an OAV of ≥1. Compounds such as 2,3-butanediol, decanal, methyl isobutenyl ketone, gamma-nonanolactone, ethyl caprate, 2-ethylhexyl acetate, vanillin, and indole contributed significantly to the diverse aroma profiles. High-throughput sequencing revealed dominant strains: Bacillus in JMMT1, Lactobacillus in JMMT2, Bacillus in SDMT, and Lactobacillus in SXMT. Over two-thirds of the aroma compounds showed correlations with microorganisms. Notably, Acetobacter exhibited a highly significant correlation with butanoic acid, while Lactobacillus played a significant role in the formation of ester flavors. These findings contribute to the flavor evaluation and microbial community analysis of steamed bread made with different leavening agents, providing valuable insights into their relationship.
Collapse
Affiliation(s)
- Yuanzhe Fu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, PR China
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, PR China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, PR China
| | - Qian Liu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, PR China
| | - Lingyun Yao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, PR China
| | - Chuang Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, PR China
| | - Shiqing Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, PR China
| |
Collapse
|
3
|
McKenney EA, Nichols LM, Alvarado S, Hardy S, Kemp K, Polmanteer R, Shoemaker A, Dunn RR. Sourdough starters exhibit similar succession patterns but develop flour-specific climax communities. PeerJ 2023; 11:e16163. [PMID: 37810791 PMCID: PMC10559884 DOI: 10.7717/peerj.16163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
The microbial fermentation behind sourdough bread is among our oldest technologies, yet there are many opportunities for sourdough science to learn from traditional bakers. We analyzed 16S rRNA sequences in R to assess the bacterial community structure and performance of 40 starters grown from 10 types of flour over 14 days, and identified six distinct stages of succession. At each stage, bacterial taxa correlate with determinants of bread quality including pH, rise, and aromatic profile. Day 1 starter cultures were dominated by microorganisms commonly associated with plants and flour, and by aromas similar to toasted grain/cereal. Bacterial diversity peaked from days 2-6 as taxa shifted from opportunistic/generalist bacteria associated with flour inputs, toward specialized climax bacterial communities (days 10-14) characterized by acid-tolerant taxa and fruity (p < 3.03e-03), sour (p < 1.60e-01), and fermented (p < 1.47e-05) aromas. This collection of traits changes predictably through time, regardless of flour type, highlighting patterns of bacterial constraints and dynamics that are conserved across systems and scales. Yet, while sourdough climax communities exhibit similar markers of maturity (i.e., pH ≤ 4 and enriched in Lactobacillus (mean abundance 48.1%), Pediococcus (mean abundance 22.7%), and/or Gluconobacter (mean abundance 19.1%)), we also detected specific taxa and aromas associated with each type of flour. Our results address important ecological questions about the relationship between community structure and starter performance, and may enable bakers to deliberately select for specific sourdough starter and bread characteristics.
Collapse
Affiliation(s)
- Erin A. McKenney
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, United States
- North Carolina Museum of Natural Sciences, Raleigh, North Carolina, United States
| | - Lauren M. Nichols
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, United States
| | - Samuel Alvarado
- Department of Biology, University of West Florida, Pensacola, Florida, United States
- Biotechnology Program, North Carolina State University, Biotechnology-based Sequencing-based Undergraduate Research Experience (BITSURE), Raleigh, North Carolina, United States
| | - Shannon Hardy
- The Exploris School, Raleigh, North Carolina, United States
| | - Kristen Kemp
- Moore Square Middle School, Raleigh, North Carolina, United States
| | | | | | - Robert R. Dunn
- Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina, United States
| |
Collapse
|
4
|
Sun D, Li H, Qi H, Zhang D. Microbiota diversity, composition and drivers in waxy proso millet sourdoughs of Niandoubao, a traditional fermented cereal food in northeast China. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
5
|
Tang N, Xing X, Li H, Jiao H, Ji S, Ai Z. Effect of Alkali on the Microbial Community and Aroma Profile of Chinese Steamed Bread Prepared with Chinese Traditional Starter. Foods 2023; 12:foods12030617. [PMID: 36766145 PMCID: PMC9914934 DOI: 10.3390/foods12030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Alkali is an indispensable additive in Chinese steamed bread (CSB) production. This work aimed to evaluate the key roles of alkali in the microbial community of dough fermented using Chinese traditional starter (CTS) and the aroma profiles of CSB. The dominant fungi in CTS and fermented dough were members of the phylum Ascomycota and the genus Saccharomyces. Pediococcus, Companilactobacillus, and Weissella were the dominant bacterial genera in CTS and fermented dough. Adding alkali could retain the types of dominant yeasts and LAB derived from CTS, decrease the relative abundance of Companilactobacillus crustorum and Weissella cibaria, and increase that of Pediococcus pentosaceus, in fermented dough. Principal component analysis (PCA) indicated that adding alkali decreased the content of sourness-related volatiles in CSB fermented by CTS. Correlation analysis showed that Pediococcus and Weissella in fermented dough were positively correlated with the lipid oxidation flavor-related compounds in CSB, and Lactobacillus was positively correlated with sourness-related aroma compounds. Synthetic microbial community experiments indicated that CSB fermented by the starter containing P. pentosaceus possessed a strong aroma, and adding alkali weakened the flavor intensity. Alkali addition could promote the formation of ethyl acetate and methyl acetate with a pleasant fruity aroma in W. cibaria-associated CSB.
Collapse
Affiliation(s)
- Ning Tang
- College of Food Science and Technology, Henan Agricultural University, 63 Nongye Rd., Zhengzhou 450002, China
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
- National R&D Center for Frozen Rice&Wheat Products Processing Technology, Zhengzhou 450002, China
| | - Xiaolong Xing
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Huipin Li
- College of Food Science and Technology, Henan Agricultural University, 63 Nongye Rd., Zhengzhou 450002, China
- National R&D Center for Frozen Rice&Wheat Products Processing Technology, Zhengzhou 450002, China
| | - Honggang Jiao
- College of Food Science and Technology, Henan Agricultural University, 63 Nongye Rd., Zhengzhou 450002, China
- National R&D Center for Frozen Rice&Wheat Products Processing Technology, Zhengzhou 450002, China
| | - Shengxin Ji
- College of Food Science and Technology, Henan Agricultural University, 63 Nongye Rd., Zhengzhou 450002, China
- Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
| | - Zhilu Ai
- College of Food Science and Technology, Henan Agricultural University, 63 Nongye Rd., Zhengzhou 450002, China
- National R&D Center for Frozen Rice&Wheat Products Processing Technology, Zhengzhou 450002, China
- Key Laboratory of Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou 450002, China
- Correspondence: ; Tel./Fax: +86-371-63558150
| |
Collapse
|
6
|
Yao Z, Zhu Y, Wu Q, Xu Y. Challenges and perspectives of quantitative microbiome profiling in food fermentations. Crit Rev Food Sci Nutr 2022; 64:4995-5015. [PMID: 36412251 DOI: 10.1080/10408398.2022.2147899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Spontaneously fermented foods are consumed and appreciated for thousands of years although they are usually produced with fluctuated productivity and quality, potentially threatening both food safety and food security. To guarantee consistent fermentation productivity and quality, it is essential to control the complex microbiota, the most crucial factor in food fermentations. The prerequisite for the control is to comprehensively understand the structure and function of the microbiota. How to quantify the actual microbiota is of paramount importance. Among various microbial quantitative methods evolved, quantitative microbiome profiling, namely to quantify all microbial taxa by absolute abundance, is the best method to understand the complex microbiota, although it is still at its pioneering stage for food fermentations. Here, we provide an overview of microbial quantitative methods, including the development from conventional methods to the advanced quantitative microbiome profiling, and the application examples of these methods. Moreover, we address potential challenges and perspectives of quantitative microbiome profiling methods, as well as future research needs for the ultimate goal of rational and optimal control of microbiota in spontaneous food fermentations. Our review can serve as reference for the traditional food fermentation sector for stable fermentation productivity, quality and safety.
Collapse
Affiliation(s)
- Zhihao Yao
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education; State Key Laboratory of Food Science and Technology; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yang Zhu
- Bioprocess Engineering, Wageningen University and Research, Wageningen, The Netherlands
| | - Qun Wu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education; State Key Laboratory of Food Science and Technology; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, The Key Laboratory of Industrial Biotechnology, Ministry of Education; State Key Laboratory of Food Science and Technology; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
7
|
Zhang K, Zhang C, Gao L, Liu Y. Microbial diversity in laomian and yeast dough and its influence on volatiles in Chinese steamed bread. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.17043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Kangyi Zhang
- Center of Agricultural Products Processing, Henan Academy of Agricultural Sciences, 116 huayuan road 450000 Zhengzhou Henan China
- Henan International Union Laboratory for Whole Grain Wheat Products Processing Henan Academy of Agricultural Sciences 450000 Zhengzhou Henan China
| | - Can Zhang
- Center of Agricultural Products Processing, Henan Academy of Agricultural Sciences, 116 huayuan road 450000 Zhengzhou Henan China
- Henan International Union Laboratory for Whole Grain Wheat Products Processing Henan Academy of Agricultural Sciences 450000 Zhengzhou Henan China
| | - Lingling Gao
- Center of Agricultural Products Processing, Henan Academy of Agricultural Sciences, 116 huayuan road 450000 Zhengzhou Henan China
- Henan International Union Laboratory for Whole Grain Wheat Products Processing Henan Academy of Agricultural Sciences 450000 Zhengzhou Henan China
| | - Yue Liu
- Henan University of Technology 450008 Zhengzhou Henan China
| |
Collapse
|
8
|
Zhou Y, She X, Zhu S, Zhou X. The study of microbial diversity and volatile compounds in Tartary buckwheat sourdoughs. Food Chem X 2022; 14:100353. [PMID: 35677194 PMCID: PMC9167693 DOI: 10.1016/j.fochx.2022.100353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 10/26/2022] Open
Abstract
Microorganisms play an essential role in forming volatile compounds in traditional staple products. Tartary buckwheat, as a medicinal and food material, has high nutritional value but its development and utilization are seriously restricted due to its poor flavor. In this study, 16S rRNA and ITS rRNA sequencing were used to analyze the microbial diversity of Tartary buckwheat sourdoughs, while HS-SPME-GC/MS was used to identify volatile compounds during fermentation. The results showed that Lactococcus and Weissella were the dominant bacterial genus. Wickerhamomyces, Penicillium, and Aspergillus were the main fungal genera in the Tartary buckwheat sourdoughs. And the main volatile compounds in Tartary buckwheat sourdough were pyrazine compounds. After 12 h of fermentation, a large amount of alcohol and esters were produced, which endowed the sourdough with a good flavor. This suggests that sourdough fermentation could significantly improve the flavor of Tartary buckwheat.
Collapse
Affiliation(s)
- Yiming Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xuanming She
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Siyi Zhu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xiaoli Zhou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.,University Think Tank of Shanghai Municipality, Institute of Beautiful China and Ecological Civilization, Shanghai 201418, China
| |
Collapse
|
9
|
Li H, Fu J, Hu S, Li Z, Qu J, Wu Z, Chen S. Comparison of the effects of acetic acid bacteria and lactic acid bacteria on the microbial diversity of and the functional pathways in dough as revealed by high-throughput metagenomics sequencing. Int J Food Microbiol 2021; 346:109168. [PMID: 33773355 DOI: 10.1016/j.ijfoodmicro.2021.109168] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/06/2021] [Accepted: 03/12/2021] [Indexed: 11/15/2022]
Abstract
Knowledge of the effects of various strains of acetic acid bacteria (AAB) on sourdough remains limited. In this study, the diversity of microbial taxa in sourdoughs fermented by different starters was assessed and their functional capacity was evaluated via high-throughput metagenomics sequencing. Results showed that Erwinia (29.43%), Pantoea (45.89%), and Enterobacter (9.16%) were predominant in the blank CK treatment. Lactobacillus (91.40%), Saccharomyces (6.13%), as well as the AAB genus Acetobacter (0.61%) were the dominant microbial genera in the sourdoughs started by yeast and a strain of lactic acid bacteria (YL treatment). By contrast, the dominant genera in the sourdoughs started by yeasts and various LAB and AAB strains (YLA treatment) were Komagataeibacter (0.39%) except for the inoculated Lactobacillus (68.37%), Acetobacter (20.17%), and Saccharomyces (8.31%) species. Functional prediction of these changes in microbial community and diversity revealed that various metabolism-related pathways, including alanine, aspartate, and glutamate metabolism (21.95%), as well as amino acid biosynthesis (19.14%), were predominant in the sourdoughs started by yeast and an AAB strain (YA treatment). Moreover, arginine biosynthesis (11.65%) were the dominant pathways in the YL treatment. The fermented dough added with sourdoughs started with yeast + AAB and yeast + AAB + LAB strains had substantially higher contents (more than 48.58% in total) of essential amino acids than the dough added with sourdoughs started with yeast + LAB strain. These results demonstrated that amino acid biosynthesis has a beneficial effect on sourdoughs inoculated with an AAB strain.
Collapse
Affiliation(s)
- Haifeng Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China.
| | - Jiake Fu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Shuang Hu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Zhijian Li
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Jianhang Qu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Zijun Wu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| | - Siyuan Chen
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, Henan, China
| |
Collapse
|
10
|
Recent research advances of lactic acid bacteria in sourdough: origin, diversity, and function. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|