1
|
Tu Z, Li S, Tao M, He W, Shu Z, Wang S, Liu Z. Effect of shaking and piling processing on improving the aroma quality of green tea. Food Res Int 2025; 201:115624. [PMID: 39849777 DOI: 10.1016/j.foodres.2024.115624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Aroma plays a crucial role in the quality of pure green tea beverage. However, there are limited methods to improve their aroma. In this study, green tea produced using shaking and piling process (SPGT) demonstrated a notable improvement in aromatic intensity, particularly in floral, fruity, and sweet notes. A total of 58 volatile compounds were detected, with SPGT exhibiting the highest concentration of aroma compounds among the tested green teas. Eight key aroma compounds were selected based on a relative odor activity value (ROAV) greater than 1 in SPGT: dimethyl sulfide (71.14, cooked corn-like), 2-methylbutanal (3.17, cereal), octanal (1.31, fruity), linalool (5.25, floral), nonanal (5.00, floral), (E)-2-nonenal (2.81, cucumber), decanal (22.90, fruity), and β-ionone (60.51, floral). The concentration of aroma compounds, especially for floral and fruity key volatile compounds significantly increased during the shaking and piling process (p < 0.05), and their formation pathways help explained these changes. Our results provided a new theoretical foundation and practical guidelines for producing the high-aroma green tea.
Collapse
Affiliation(s)
- Zheng Tu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Sixu Li
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China; The College of Food and Health, Zhejiang A & F University, Hangzhou 311300, China
| | - Meng Tao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Weizhong He
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang 323400, China
| | - Zaifa Shu
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang 323400, China
| | - Shanshan Wang
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Zhengquan Liu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China.
| |
Collapse
|
2
|
Huang D, Sun C, Wu Y, Zheng F, Yang Q, Zhang X, Dai Q, Wan X, Chen Q. Integrative analysis of the impact of N 2/CO 2 on gabaron oolong tea aroma. Food Res Int 2025; 201:115606. [PMID: 39849765 DOI: 10.1016/j.foodres.2024.115606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/03/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
This study aimed to investigate the effect of the combination of shaking and various anaerobic treatments on the aroma quality of gabaron oolong tea (GAOT) by chemical and sensory evaluation. The results showed that elevated anaerobic treatment harmed GAOT aroma, emphasizing undesirable attributes such as earthy, fatty, etc. A total of 85 volatiles were identified by gas chromatography-ion mobility spectrometry (GC-IMS), and the relationship between aroma attributes and volatiles were revealed by PLS regression projection and correlation network. Hexanal and octanal at inappropriate concentrations were main causes to the earthy attribute, while nonanal exhibited a potential masking effect against unpleasant attributes. Addition experiments and σ-τ plot analysis verified these associations. Furthermore, observing dynamic patterns of content changes of these three aldehydes in fresh leaves prior to tea thermal processing, providing references for future process optimization. These results provide a new direction for enhancing the quality of GAOT.
Collapse
Affiliation(s)
- Dongzhu Huang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chenyi Sun
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yuhan Wu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Fangling Zheng
- Sichuan Vocational and Technical College, Suining 629000, China
| | - Qiqi Yang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xinmeng Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qianying Dai
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory of Food Nutrition and Safety, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
3
|
Yao X, Li Y, Tang J, Yu J, Zhang Y, Wan X, Zhang G, Zhai X. Characterization of cooked off-flavor volatile sulfur-containing compounds in green tea and their thermal inhibition via (-)-epigallocatechin gallate. Food Chem 2025; 463:141143. [PMID: 39255697 DOI: 10.1016/j.foodchem.2024.141143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Cooked note is an undesired flavor in green tea, while the key odorants and inhibition mechanisms were unknown. Here, volatiles of four green tea samples and two thermal reaction models of methionine-glucose and methional were assessed using gas chromatography‑sulfur chemiluminescence detector and two dimensional gas chromatography-time-of-flight mass spectrometry. Nonvolatiles of reaction models were determined using ultra performance liquid chromatography-Q-Exactive orbitrap mass spectrometry. Four cooked smelling sulfur-containing odorants including dimethyl trisulfide, dimethyl sulfide, diethyl disulfide, and methanethiol having odor activity values > 1 were characterized in tea samples. Aroma addition tests confirmed dimethyl trisulfide (> 0.4 μg/L) as a reliable predictor of the cooked note. Seven sulfur-containing odorants were detected in reaction models. The addition of (-)-epigallocatechin gallate depleted glucose and interrupted the reaction, thus reduced sulfur-containing odorants' amounts. The study provides a novel insight on targeted strategic guidance for mitigating cooked off-flavor during the thermal processing of green tea production.
Collapse
Key Words
- (−)-Epigallocatechin gallate
- (−)-Epigallocatechin gallate (PubChemCID 65,064)
- 2-(Methylsulfanyl)propane (PubChemCID 15,246).
- 2-Acetylthiazole (PubChemCID 520,108)
- 2-Ethyl-3,5-dimethylpyrazine (PubChemCID 26,334).
- 2-Methyl-3-heptanone (PubChemCID 25,611).
- 2-Methylbutanal (PubChemCID 7284).
- Benzothiazole (PubChemCID 7222).
- Bis(methylthio)methane (PubChemCID 15,380).
- Cooked off-flavor
- Diethyl disulfide (PubChemCID 8077).
- Dimethyl disulfide (PubChemCID 12,232).
- Dimethyl sulfide (PubChemCID 1068).
- Dimethyl trisulfide
- Dimethyl trisulfide (PubChemCID 19,310).
- Furfuryl methyl sulfide (PubChemCID 518,937).
- Geraniol (PubChemCID 637,566).
- Green tea
- Hexanal (PubChemCID 6184).
- Methanethiol (PubChemCID 878).
- Methional (PubChemCID 18,635).
- Methionine (PubChemCID 6137).
- Thermal inhibition
- d-Glucose (PubChemCID 5793).
- δ-Decalactone (PubChemCID 12,813).
Collapse
Affiliation(s)
- Xin Yao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Yangyang Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Jun Tang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Jieyao Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Yanyan Zhang
- Department of Flavor Chemistry, University of Hohenheim, Stuttgart 70599, Germany
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Guoyu Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xiaoting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
4
|
Huang J, Zhang J, Chen Z, Xiong Z, Feng W, Wei Y, Li T, Ning J. Sensory-directed flavor analysis of Jinggu white tea: Exploring the formation mechanisms of sweet and fruity aromas. Food Chem X 2024; 24:102026. [PMID: 39655215 PMCID: PMC11626070 DOI: 10.1016/j.fochx.2024.102026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
White tea is a naturally processed type of tea that has a unique favorable aroma. Typically, the aroma of white tea depends on its origin. Compared with Fujian white tea (FJ) and Yunnan other origin white tea (YO), Jinggu white tea (JG) has a stronger fruity and sweet aroma. In this study, to determine the factors underlying the unique fruity and sweet aroma of JG, we used YO and FJ as control samples and analysed the samples by using a molecular sensory science technique. Olfactory experiments and odor activity analysis revealed 10 key active substances to contribute to the aroma of JG. Aroma addition experiments further showed that linalool and benzeneacetaldehyde were the main contributors to the fruity and sweet aroma of JG, respectively. The results are helpful to understand the aroma of JG and provide a theoretical basis for the quality control of JG.
Collapse
Affiliation(s)
- Junlan Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Zhenbin Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Zhichao Xiong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Wanzhen Feng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| |
Collapse
|
5
|
Li N, Yao Z, Ning J, Sun L, Lin Q, Zhu X, Li C, Zheng X, Jin J. Comparison of different drying technologies for green tea: Changes in color, non-volatile and volatile compounds. Food Chem X 2024; 24:101935. [PMID: 39553236 PMCID: PMC11564038 DOI: 10.1016/j.fochx.2024.101935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/19/2024] Open
Abstract
Drying technology plays a pivotal role in tea processing. Herein, the differences in color, non-volatile, and volatile components of green tea under various drying methods were investigated. The results indicated that vacuum freeze-microwave increased the L* and b* values, and decreased the a* values of tea leaves. Moreover, vacuum freeze-microwave drying resulted in higher polyphenol content than the other three drying methods although there was no significant difference. A total of 43 volatile compounds were identified. Of these, 2-propanone, ethanol(D), ethanol(M), ethyl acetate(M), 2-methyl-1-butanol, and 2-methylthiophene were found to play an important role in the above discrimination (VIP >1.5). Dry extraction showed a higher content of volatile components than wet extraction. Regardless of the extraction conditions, vacuum freeze-microwave drying exhibited a stronger signal intensity and more volatile components than other drying methods. This study provides a reference for analyzing the quality differences of green tea by different drying methods.
Collapse
Affiliation(s)
- Nannan Li
- China CO-OP Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, Jiangsu Province 211111, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, China
- Tianfang Tea Industry Co., Ltd, Shitai, Anhui Province 245100, China
| | - Zhengying Yao
- China CO-OP Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, Jiangsu Province 211111, China
| | - Jingming Ning
- School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Lijun Sun
- China CO-OP Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, Jiangsu Province 211111, China
| | - Qunying Lin
- China CO-OP Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, Jiangsu Province 211111, China
| | - Xiaoyan Zhu
- China CO-OP Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, Jiangsu Province 211111, China
| | - Cuihong Li
- Tianfang Tea Industry Co., Ltd, Shitai, Anhui Province 245100, China
| | - Xiaohe Zheng
- Tianfang Tea Industry Co., Ltd, Shitai, Anhui Province 245100, China
| | - Jinghong Jin
- China CO-OP Nanjing Institute for Comprehensive Utilization of Wild Plants, Nanjing, Jiangsu Province 211111, China
| |
Collapse
|
6
|
Yan X, Wang Y, Yang T, Wang F, Wan X, Zhang Z. Exogenous theanine application improves the fresh leaf yield and quality of an albino green tea Huangjinya. Food Chem 2024; 467:142298. [PMID: 39657488 DOI: 10.1016/j.foodchem.2024.142298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024]
Abstract
Green tea made from the albino tea plant cultivar 'Huangjinya' is highly popular due to its umami taste. However, its cultivation and economic value are restricted by late sprouting, low yields, and insufficient aroma. In this study, we sprayed 0, 0.025, 0.1 or 1 mM theanine on 'Huangjinya' tea plants before sprouting in spring. We observed 1 mM theanine spray accelerated sprouting and new shoot growth which leading to a 25.4% increase in yield. Moreover, the exogenous theanine spraying increased amino acids and decreased polyphenols in the green tea made from the new shoots of 'Huangjinya'. In addition, the 0.025 and 1 mM theanine sprays also improved the overall aroma profile, particularly the contents of fruity, fatty, and minty volatiles. In summary, theanine application elevates the fresh leaf yield and quality of Huangjinya, holding great potential for expanding its consumer base and increasing the economic value of albino tea.
Collapse
Affiliation(s)
- Xiaomei Yan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Yangmin Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Fei Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
7
|
Liu L, Qiao D, Mi X, Yu S, Jing T, An Y. Widely targeted metabolomics and SPME-GC-MS analysis revealed the quality characteristics of non-volatile/volatile compounds in Zheng'an Bai tea. Front Nutr 2024; 11:1484257. [PMID: 39654535 PMCID: PMC11625558 DOI: 10.3389/fnut.2024.1484257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024] Open
Abstract
Background As albino tea under the geographical protection of agricultural products, Zheng'an Bai tea is not only rich in amino acids, polyphenols and other beneficial components for the human body, but also its leaf color will turn green as the temperature gradually rises, thus causing changes in the quality characteristics of tea leaves. However, these changing characteristics have not yet been revealed. Methods In-depth quality analysis was carried out on the fresh leaves of Zheng'an Bai tea at four different developmental stages and four samples from the processing stage through extensive targeted metabolomics and SPME-GC-MS analysis. Results In this study, a total of 573 non-volatile metabolites were detected from the fresh leaves and processing samples of Zheng'an Bai tea, mainly including 96 flavonoids, 75 amino acids, 56 sugars and alcohols, 48 terpenoids, 46 organic acids, 44 alkaloids, and 39 polyphenols and their derivatives. In fresh leaves, the most significant differential metabolites (VIP > 1, p < 0.05) among different samples mainly include substances such as ethyl gallate, theaflavin, isovitexin and linalool, while the main differential metabolites of samples in the processing stage include alkaloids, polyphenols and flavonoids such as zarzissine, methyl L-Pyroglutamate, theaflavin 3,3'-digallate, euscaphic acid and ethyl gallate. Overall, substances such as sugars and alcohols, alkaloids and polyphenols show the greatest differences between fresh leaves and the processing process. Meanwhile, 97 kinds of volatile metabolites were detected in these samples, most of which had a higher content in the fresh leaves. Moderate spreading is conducive to the release of the aroma of tea leaves, but fixation causes a sharp decrease in the content of most volatile metabolites. Ultimately, 9 volatile substances including geraniol, linalool, nerolidol, jasmone, octanal, 1-Nonanal, heptaldehyde, methyl salicylate and 1-Octen-3-ol were identified as the key aroma components (OAV >1) of Zheng'an Bai tea. Conclusion In conclusion, this study has for the first time comprehensively revealed the quality change characteristics of fresh leaves at different developmental stages and during the processing of Zheng'an Bai tea, and provided a foundation for further process improvement.
Collapse
Affiliation(s)
- Li Liu
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China
| | - Dahe Qiao
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Xiaozeng Mi
- Guizhou Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Shirui Yu
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Yanlin An
- Department of Food Science and Engineering, Moutai Institute, Renhuai, China
| |
Collapse
|
8
|
Jiang G, Xue R, Xiang J, Wang Y, Liu B, Yuan Y, Pu Q, Fang X, Hu X, Liu X, Huang Y. Dynamic changes in the aroma profiles and volatiles of Enshi Yulu tea throughout its industrial processing. Food Chem 2024; 458:140145. [PMID: 38943956 DOI: 10.1016/j.foodchem.2024.140145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/13/2024] [Accepted: 06/15/2024] [Indexed: 07/01/2024]
Abstract
Although Enshi Yulu tea (ESYL) possesses a distinctive fragrance, there is a scarcity of studies focusing on its primary volatiles or aroma genesis. This study aims to elucidate the dynamics in the profiles of aromas and volatiles through aroma profiling analysis and headspace solid-phase microextraction/gas chromatography-mass spectrometry. A total of 10 aroma attributes and 128 volatiles were identified in ESYL, with geraniol and linalool exhibiting the highest levels, and alcohols constituting the predominant proportion. Besides, a relative odor activity value (ROAV) based molecular aroma wheel was constructed, revealing 12 key odorants with ROAVs >1, wherein linalool, β-ionone, and nonanal ranked highest. Notably, steaming and final drying emerged as critical steps for ESYL aroma development, while the non-enzymatic degradation of fatty acids likely contributed to the formation of its fresh aroma. These findings significantly enhance our comprehension of ESYL aroma formation.
Collapse
Affiliation(s)
- Guangxian Jiang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Tea Science Department of College of Horticulture and Forestry of Huazhong Agricultural University, Wuhan 430070, China
| | - Rong Xue
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Tea Science Department of College of Horticulture and Forestry of Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Xiang
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, Hubei, China
| | - Yufei Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Tea Science Department of College of Horticulture and Forestry of Huazhong Agricultural University, Wuhan 430070, China
| | - Bin Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Tea Science Department of College of Horticulture and Forestry of Huazhong Agricultural University, Wuhan 430070, China
| | - Yuan Yuan
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Tea Science Department of College of Horticulture and Forestry of Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Pu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Tea Science Department of College of Horticulture and Forestry of Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Fang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Tea Science Department of College of Horticulture and Forestry of Huazhong Agricultural University, Wuhan 430070, China
| | - Xingming Hu
- Agriculture and Rural Bureau of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, Hubei, China
| | - Xiaoying Liu
- Enshi City Huazhishan Ecological Agriculture Co., Ltd. in Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, China
| | - Youyi Huang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Tea Science Department of College of Horticulture and Forestry of Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
Huang S, Tao L, Xu L, Shu M, Qiao D, Wen H, Xie H, Chen H, Liu S, Xie D, Wei C, Zhu J. Discrepancy on the flavor compound affect the quality of Taiping Houkui tea from different production regions. Food Chem X 2024; 23:101547. [PMID: 38974194 PMCID: PMC11225684 DOI: 10.1016/j.fochx.2024.101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
Taiping Houkui (TPHK) is prevalent green tea in China, its flavor quality is significantly influenced by different production regions. However, the key flavor compounds responsible for these discrepancies remain unclearly. Here, TPHK samples were produced from fresh leaves of 'Shidacha 2' cultivar planted in 14 distinct production regions. In 14 TPHK samples, a total of 33 non-volatile compounds were identified and quantified. Partial least-squares discriminant analysis (PLS-DA) reveal that theanine and glutamate were the main umami compounds, caffeine imparted with bitterness, which collectively contributed to the variation in the taste flavor of TPHK across different production regions. Furthermore, the profiles of 51 volatile compounds were determined, integrated PLS-DA with odor activity values of volatiles indicated that linalool (165.7-888.5) and geraniol (11.9-141.4) affecting the floral aroma of TPHK among different production regions. Our findings revealed the critical compounds that contributed to the effect of production regions on flavor quality of TPHK.
Collapse
Affiliation(s)
- Songyan Huang
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Lingling Tao
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Linlin Xu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Mingtao Shu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Dahe Qiao
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Huilin Wen
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Hui Xie
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Hongrong Chen
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Shengrui Liu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Deyu Xie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695, USA
| | - Chaoling Wei
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| | - Junyan Zhu
- State Key Laboratory of Tea Plant Biology and Utilization/Key Laboratory of Tea Biology Processing, Ministry of Agriculture, Anhui Agricultural University, West 130 Changjiang Road, Hefei 230036, Anhui, People's Republic of China
| |
Collapse
|
10
|
Feng W, Zhou H, Xiong Z, Sheng C, Xia D, Zhang J, Li T, Wei Y, Deng WW, Ning J. Exploring the effect of different tea varieties on the quality of Lu'an Guapian tea based on metabolomics and molecular sensory science. Food Chem X 2024; 23:101534. [PMID: 38911473 PMCID: PMC11192980 DOI: 10.1016/j.fochx.2024.101534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/19/2024] [Accepted: 06/02/2024] [Indexed: 06/25/2024] Open
Abstract
Lu'an Guapian (LAGP) tea is one of the most famous teas in China. However, research on its suitable processing varieties is still lacking. This study analyzed the quality of LAGP tea made from three different tea varieties, namely, 'Anhui1' (AH1), 'Quntizhong' (QTZ), and 'Shuchazao' (SCZ), using molecular sensory science and metabolomics techniques. The results showed that AH1 had a strong floral aroma and the strongest umami flavor, while QTZ had a distinct roasted aroma and a mellow taste. SCZ had a cooked corn-like aroma and the highest bitterness and astringency owing to the high tea polyphenol contents and low free amino acid contents. The study also identified 12 key aroma-active compounds, with trans-beta-ionone and 2-ethyl-3,5-dimethyl-pyrazine contributing the most to floral and roasted aromas, respectively. The results of this study provide a theoretical and practical basis for selecting and breeding high-quality varieties of LAGP tea and stabilizing its quality.
Collapse
Affiliation(s)
- Wanzhen Feng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Huan Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Zhichao Xiong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Caiyan Sheng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Dongzhou Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Wei-Wei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| |
Collapse
|
11
|
Li T, Wei Y, Lu M, Wu Y, Jiang Y, Ke H, Shao A, Ning J. Exploring microbial and moist-heat effects on Pu-erh tea volatiles and understanding the methoxybenzene formation mechanism using molecular sensory science. Food Chem X 2024; 23:101553. [PMID: 38984291 PMCID: PMC11231526 DOI: 10.1016/j.fochx.2024.101553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
Piling fermentation (PF) is crucial for Pu-erh tea aroma, yet its microbial and moist-heat impact on aroma quality is poorly understood. Solid-phase microextraction, solvent-assisted flavor evaporation, and gas chromatography-mass spectrometry were used to detected and analyses the samples of sun-green green tea, sterile PF and spontaneous PF. Microbiological action promotes the formation of stale aromas. Moist-heat action promotes the formation of plum-fragrance and sweet aroma. 20 microbial markers and 28 moist-heat markers were screened from 184 volatile components. Combining odor activity values and gas chromatography-olfactometry, 22 aroma-active compounds were screened (1,2,3-trimethoxybenzene, linalool, 1,2,4-trimethoxybenzene …), and analyzed during PF processing. Aroma omission and addition experiments verified its importance. Gallic acid addition experiments successfully verified that microorganisms are the main contributors to the synthesis of methoxybenzenes. Finally, Blastobotrys, Rasamsonia, and Thermomyces showed positive correlation with the synthesis of 1-ethyl-4-methoxybenzene, 1,2,4-trimethoxybenzene, 1,2,3-trimethoxybenzene, and 1,2-dimethoxybenzene. The formation mechanism of Pu-erh tea's aroma was clarified. Exploring microbial and moist-heat effects on Pu-erh tea volatiles and understanding the methoxybenzene formation mechanism using molecular sensory science.
Collapse
Affiliation(s)
- Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Mingxia Lu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yida Wu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yanqun Jiang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Han Ke
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Aiju Shao
- Menghai Tea Industry Co., Ltd., Yunnan 650000, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui 230036, China
- School of Tea and Food Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| |
Collapse
|
12
|
Wang Y, Deng G, Huang L, Ning J. Sensory-directed flavor analysis reveals the improvement in aroma quality of summer green tea by osmanthus scenting. Food Chem X 2024; 23:101571. [PMID: 39007121 PMCID: PMC11239469 DOI: 10.1016/j.fochx.2024.101571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
Flower scenting is an effective way to enhance the aroma of green tea (GT), including those osmanthus scented green tea (OSGT). However, the mechanism of aroma enhancement by scenting is still unclear. Here, the volatiles of GT, OSGT, and osmanthus were detected by GC-MS. The total volatile content of OSGT was significantly increased compared to GT, with the flowery and coconut aromas enhanced. Furthermore, 17 of 139 volatiles were responsible for the enhancement by GC-olfactometry and their absolute odor activity values (OAVs). Aroma recombination, omission and addition experiments showed that dihydro-β-ionone, (E)-β-ionone, (E, E)-2,4-heptadienal, geraniol, linalool, α-ionone, and γ-decalactone were the key aroma volatiles with flowery or coconut aromas. Additionally, the dynamics of the key volatiles (OAVs >1) from different scenting durations were analyzed, proving that the optimal duration was 6-12 h. This study provides new insight into the mechanism of aroma formation during OSGT production.
Collapse
Affiliation(s)
- Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China
- Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, China
| | - Guojian Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China
- Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, China
| | - Lunfang Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China
- Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, China
- Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, China
- International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, China
| |
Collapse
|
13
|
Ao C, Niu X, Shi D, Zheng X, Yu J, Zhang Y. Dynamic Changes in Aroma Compounds during Processing of Flat Black Tea: Combined GC-MS with Proteomic Analysis. Foods 2024; 13:3243. [PMID: 39456305 PMCID: PMC11507447 DOI: 10.3390/foods13203243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Flat black tea (FBT) has been innovatively developed to alleviate homogenisation competition, but the dynamic changes in aroma components during the process remain unclear. This study employed HS-SPME-GC-MS to analyse the aroma components of tea samples from various processing stages of FBT, and to make a comparative assessment with conventional strip-like Congou black tea (SBT). Additionally, a proteomic analysis was conducted on fresh leaves, withered leaves, and frozen-thawed leaves. Significant changes were observed in the aroma components and proteins during the processing. The results of the multivariate and odour activity value analysis demonstrated that the principal aroma components present during the processing of FBT were linalool, (E)-2-hexen-1-al, methyl salicylate, geraniol, hexanal, benzeneacetaldehyde, (Z)-3-hexenyl butyrate, dimethyl sulphide, 2-methylbutanal, 2-ethylfuran, nonanal, nonanol, 3-methylbutanal, (Z)-3-hexen-1-ol, 2-pentylfuran, linalool oxide I, and β-myrcene. Freezing-thawing and final roasting are the key processing steps for forming the aroma quality of FBT. The final roasting yielded a considerable quantity of pyrazines and pyrroles, resulting in a high-fried aroma, but caused a significant reduction in linalool, geraniol, β-myrcene, and esters, which led to a loss of floral and fruity aromas. The freezing-thawing treatment resulted in an accelerated loss of aroma substances, accompanied by a decrease in the expression level of lipoxygenase and 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase. The formation of aroma substances in the linoleic acid metabolic pathway and terpenoid metabolic process was hindered, which had a negative impact on tea aroma. This study elucidates the causes of unsatisfactory aroma quality in tea products made from frozen tea leaves, providing theoretical support for the utilisation of frostbitten tea leaves, and helps us to understand the mechanism of aroma formation in black tea.
Collapse
Affiliation(s)
- Cun Ao
- Tea Research Institute, Hangzhou Academy of Agricultural Science, Hangzhou 310024, China; (C.A.); (X.N.); (D.S.); (X.Z.)
| | - Xiaojun Niu
- Tea Research Institute, Hangzhou Academy of Agricultural Science, Hangzhou 310024, China; (C.A.); (X.N.); (D.S.); (X.Z.)
| | - Daliang Shi
- Tea Research Institute, Hangzhou Academy of Agricultural Science, Hangzhou 310024, China; (C.A.); (X.N.); (D.S.); (X.Z.)
| | - Xuxia Zheng
- Tea Research Institute, Hangzhou Academy of Agricultural Science, Hangzhou 310024, China; (C.A.); (X.N.); (D.S.); (X.Z.)
| | - Jizhong Yu
- Tea Research Institute, Hangzhou Academy of Agricultural Science, Hangzhou 310024, China; (C.A.); (X.N.); (D.S.); (X.Z.)
| | - Yingbin Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
14
|
Göksu Sürücü C, Tolun A, Halisçelik O, Artık N. Brewing method-dependent changes of volatile aroma constituents of green tea ( Camellia sinensis L.). Food Sci Nutr 2024; 12:7186-7201. [PMID: 39479672 PMCID: PMC11521698 DOI: 10.1002/fsn3.4307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/03/2024] [Accepted: 06/19/2024] [Indexed: 11/02/2024] Open
Abstract
The determination of optimal levels of green tea amount and brewing time would have a crucial role in the accumulation of desired aromatic volatile compounds to meet worldwide market demand. Aroma is the most important factor influencing tea consumers' choices along with taste, price, and brand. This study aims to determine how the brewing time and amount of green tea affect the aroma profile of green tea infusion. The effect of the amount of Turkish green tea (5-10 g) and brewing time (5-60 min) on aromatic volatile compounds was evaluated using solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) technique. The SPME/GC-MS analysis identified 57 components in the aroma profile of green tea infusions including 13 esters, 12 alkanes, 7 unknowns, 6 ketones, 3 alcohols, 2 terpenes, 2 terpenoids, 1 alkaloid, 1 phenolic compound, 1 lactone, 1 pyrazine, and 1 norisoprenoid. The green tea amount and brewing time had significant effects on the number of chemical compounds. A total of 42, 47, and 36 aromatic volatile compounds were determined by brewing 5, 7.5, and 10 g of green tea. The most abundant constituents in green tea infusions were phytone, 2-decenal, lauric acid, unknown 1, methoxy-1-methylethyl pyrazine, α-ionone, β-ionone, and diethyl phthalate (DEP). With this study, the aroma structures of green tea infusion have been revealed for the first time depending on the brewing time and quantity.
Collapse
Affiliation(s)
- Canan Göksu Sürücü
- Plant‐Based Food Research Center, Field Crops Central Research Institute, Directorate General of Agricultural Research and PoliciesAnkaraTürkiye
| | - Aysu Tolun
- Department of Food EngineeringAnkara UniversityAnkaraTürkiye
| | - Ozan Halisçelik
- Core Unit Metabolomics, Berlin Institute of HealthCharité UniversityBerlinGermany
| | - Nevzat Artık
- Department of Food EngineeringAnkara UniversityAnkaraTürkiye
| |
Collapse
|
15
|
Zhang J, Mao Y, Xu Y, Feng Z, Wang Y, Chen J, Zhao Y, Cui H, Yin J. Effect of Isolated Scenting Process on the Aroma Quality of Osmanthus Longjing Tea. Foods 2024; 13:2985. [PMID: 39335913 PMCID: PMC11431753 DOI: 10.3390/foods13182985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Scenting is an important process for the formation of aroma quality in floral Longjing tea. There are differences in the aroma quality of osmanthus Longjing teas processed by different scenting processes. The efficient isolated scenting method was employed to process a new product of osmanthus Longjing tea in this study, and this was compared with the traditional scenting method. The volatile compounds of osmanthus Longjing tea were analyzed by a GC-MS instrument. In addition, the effects of scenting time and osmanthus consumption on the aroma quality of Longjing tea were studied. The results indicated that there were 67 kinds of volatile compounds in the osmanthus Longjing tea produced by the isolated scenting process (O-ISP), osmanthus Longjing tea produced by the traditional scenting process (O-TSP), and raw Longjing tea embryo (R), including alcohols, ketones, esters, aldehydes, olefins, acids, furans, and other aroma compounds. The proportions of alcohol compounds, ester compounds, aldehyde compounds, and ketone compounds in O-ISP were higher than in O-TSP and R. When the osmanthus consumption was increased, the relative contents of volatile aroma compounds gradually increased, which included the contents of trans-3,7-linalool oxide II, dehydrolinalool, linalool oxide III (furan type), linalool oxide IV (furan type), 2,6-Dimethyl cyclohexanol, isophytol, geraniol, 1-octene-3-alcohol, cis-2-pentenol, trans-3-hexenol, β-violet alcohol, 1-pentanol, benzyl alcohol, trans-p-2-menthene-1-alcohol, nerol, hexanol, terpineol, 6-epoxy-β-ionone, 4,2-butanone, 2,3-octanedione, methyl stearate, cis-3-hexenyl wasobutyrate, and dihydroanemone lactone. When the scenting time was increased, the relative contents of aroma compounds gradually increased, which included the contents of 2-phenylethanol, trans-3,7-linalool oxide I, trans-3,7-linalool oxide II, dehydrolinalool, isophytol, geraniol, trans-3-hexenol, β-ionol, benzyl alcohol, trans-p-2-menthene-1-ol, nerol, hexanol, terpineol, dihydroβ-ionone, α-ionone, and β-ionone,6,10. The isolated scenting process could achieve better aroma quality in terms of the floral fragrance, refreshing fragrance, and tender fragrance than the traditional scenting process. The isolated scenting process was suitable for processing osmanthus Longjing tea with high aroma quality. This study was hoped to provide a theoretical base for the formation mechanism and control of quality of osmanthus Longjing tea.
Collapse
Affiliation(s)
- Jianyong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Yuxiao Mao
- Hangzhou Academy of Agricultural Science, Hangzhou 310024, China
| | - Yongquan Xu
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Zhihui Feng
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Yuwan Wang
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Jianxin Chen
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| | - Yun Zhao
- Hangzhou Academy of Agricultural Science, Hangzhou 310024, China
| | - Hongchun Cui
- Hangzhou Academy of Agricultural Science, Hangzhou 310024, China
| | - Junfeng Yin
- Tea Research Institute, Chinese Academy of Agricultural Science, Hangzhou 310008, China
| |
Collapse
|
16
|
Ye Y, Gong Y, Huang P, Luo F, Gan R, Fang C. Dynamic changes in the non-volatile and flavour compounds in withered tea leaves of three different colour cultivars based on multi-omics. Food Chem 2024; 449:139281. [PMID: 38608608 DOI: 10.1016/j.foodchem.2024.139281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
In this study, metabolomics and proteomics were performed to investigate the fluctuations of non-volatile compounds and proteins in tea leaves from three tea cultivars with varying colours during withering. A total of 2798 compounds were detected, exhibiting considerable variations in amino acids, phenylpropanoids, and flavonoids. The ZH1 cultivar displayed increased levels of amino acids but decreased levels of polyphenols, which might be associated with the up-regulation of enzymes responsible for protein degradation and subsequent amino acid production, as well as the down-regulation of enzymes involved in phenylpropanoid and flavonoid biosynthesis. The FUD and ZH1 cultivars had elevated levels of flavanols and flavanol-O-glycosides, which were regulated by the upregulation of FLS. The ZJ and ZH1 cultivars displayed elevated levels of theaflavin and peroxidase. This work presents a novel investigation into the alterations of metabolites and proteins between tea cultivars during withering, and helps with the tea cultivar selection and manufacturing development.
Collapse
Affiliation(s)
- Yulong Ye
- Tea Research Institute, Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| | - Yiyun Gong
- Tea Research Institute, Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| | - Ping Huang
- Tea Research Institute, Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| | - Fan Luo
- Tea Research Institute, Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China
| | - Renyou Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore, 138669, Singapore
| | - Chunyan Fang
- Tea Research Institute, Institute of Quality Standard and Testing Technology Research, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China.
| |
Collapse
|
17
|
Xiao Y, Liu S, Zeng L, Zhou C, Peng Y, Wu Y, Yin X, Peng G. Effects of processing methods on the aroma of Poria cocos and its changing regulations during processing. Food Chem 2024; 448:139151. [PMID: 38547709 DOI: 10.1016/j.foodchem.2024.139151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/24/2024]
Abstract
Poria cocos is a natural source of fungal food raw materials. Processing method is a key effecting the aroma of Poria cocos. In this study, the aroma compounds of Poria cocos products processed using sweating-low-temperature drying (SW-LD), sweating-high-temperature drying (SW-HD), steaming-low-temperature drying (ST-LD), and steaming-high-temperature drying (ST-HD) were compared by headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS), and the changes in aroma compounds of Poria cocos products during processing were analyzed. GC-MS analysis showed SW-HD product had highest content of aroma compounds. Aroma activity value (OAV) analysis indicated that 9 aroma compounds contributed to the overall aroma of Poria cocos. Among 9 compounds of Poria cocos, 1-octen-3-ol, hexanal, nonanal, octanal, trans-2-octenal, and heptanal contributed to mushroom, refreshing, sweet and fatty characters. In addition, the aroma compound changes during the processing were analyzed, revealing that steaming and sweating were the key processes affecting the aroma of Poria cocos products. The findings of this study provide valuable theoretical guidance for the development of Poria cocos processing technology.
Collapse
Affiliation(s)
- Yangbo Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Changsha 410128, China
| | - Shu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Luzhi Zeng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Changsha 410128, China
| | - Churen Zhou
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Changsha 410128, China
| | - Yisi Peng
- Hunan Agricultural University, Changsha 410128, China; Huaihua Engineering and Technology Research Center for Standardized Cultivation and Origin Sulfur-free Drying of Chinese herbal medicine, Huaihua 418400, China; Jingzhou Kangyuan Lingye Technology Co., Ltd., Huaihua 418400, China
| | - Yu Wu
- Hunan Agricultural University, Changsha 410128, China; Huaihua Engineering and Technology Research Center for Standardized Cultivation and Origin Sulfur-free Drying of Chinese herbal medicine, Huaihua 418400, China; Jingzhou Kangyuan Lingye Technology Co., Ltd., Huaihua 418400, China
| | - Xia Yin
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| | - Guoping Peng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Changsha 410128, China; Huaihua Engineering and Technology Research Center for Standardized Cultivation and Origin Sulfur-free Drying of Chinese herbal medicine, Huaihua 418400, China; Jingzhou Kangyuan Lingye Technology Co., Ltd., Huaihua 418400, China.
| |
Collapse
|
18
|
Huang D, Zheng D, Sun C, Fu M, Wu Y, Wang H, Yu J, Yang Y, Li Y, Wan X, Chen Q. Combined multi-omics approach to analyze the flavor characteristics and formation mechanism of gabaron green tea. Food Chem 2024; 445:138620. [PMID: 38382249 DOI: 10.1016/j.foodchem.2024.138620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
Gabaron green tea (GAGT) has unique flavor and health benefits through the special anaerobic treatment. However, how this composite processing affects the aroma formation of GAGT and the regulatory mechanism was rarely reported. This study used nontargeted metabolomics and molecular sensory science to overlay screen differential metabolites and key aroma contributors. The potential regulatory mechanism of anaerobic treatment on the aroma formation of GAGT was investigated by transcriptomics and correlation analyses. Five volatiles: benzeneacetaldehyde, nonanal, geraniol, linalool, and linalool oxide III, were screened as target metabolites. Through the transcriptional-level differential genes screening and analysis, some CsERF transcription factors in the ethylene signaling pathway were proposed might participate the response to the anaerobic treatment. They might regulate the expression of related genes in the metabolic pathway of the target metabolites thus affecting the GAGT flavor. The findings of this study provide novel information on the flavor and its formation of GAGT.
Collapse
Affiliation(s)
- Dongzhu Huang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Dongqiao Zheng
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chenyi Sun
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Maoyin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yuhan Wu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hong Wang
- Key Laboratory of Food Nutrition and Safety, Anhui Engineering Laboratory for Agro-products Processing, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jieyao Yu
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yunqiu Yang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yeyun Li
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Food Nutrition and Safety, Anhui Engineering Laboratory for Agro-products Processing, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
19
|
Qin M, Zhou J, Luo Q, Zhu J, Yu Z, Zhang D, Ni D, Chen Y. The key aroma components of steamed green tea decoded by sensomics and their changes under different withering degree. Food Chem 2024; 439:138176. [PMID: 38091790 DOI: 10.1016/j.foodchem.2023.138176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024]
Abstract
Steamed green tea has a long history and unique aroma, but little is known about its key aroma components. In this study, 173 volatiles in steamed green tea were identified using solvent-assisted flavor evaporation and headspace-solid phase microextraction plus two chromatographic columns of different polarities. Aroma extract dilution analysis revealed 48 highly aroma-active compounds with flavor dilution factors 64-1024. Internal standards were used to calculate odorant active value (OAV), and 11 OAV > 1 key aroma compounds were determined. Omission test identified eight substances, including dimethyl sulfide, (E)-β-ionone, cis-jasmone, linalool, nonanal, heptanal, isovaleraldehyde and (Z)-3-hexenol, as the key aroma active compounds of steamed green tea. With the increase of withering degree, the content of these substances increased first and then decreased except for heptanal and cis-jasmone. Moreover, the water content of 62 % was suggested to be an appropriate withering degree during the processing of steamed green tea.
Collapse
Affiliation(s)
- Muxue Qin
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jingtao Zhou
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qianqian Luo
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Junyu Zhu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhi Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - De Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Dejiang Ni
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Yuqiong Chen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
20
|
Yang Y, Wang Q, Xie J, Deng Y, Zhu J, Xie Z, Yuan H, Jiang Y. Uncovering the Dynamic Alterations of Volatile Components in Sweet and Floral Aroma Black Tea during Processing. Foods 2024; 13:728. [PMID: 38472841 DOI: 10.3390/foods13050728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Aroma is an indispensable factor that substantially impacts the quality assessment of black tea. This study aims to uncover the dynamic alterations in the sweet and floral aroma black tea (SFABT) throughout various manufacturing stages using a comprehensive analytical approach integrating gas chromatography electronic nose, gas chromatography-ion mobility spectrometry (GC-IMS), and gas chromatography-mass spectrometry (GC-MS). Notable alterations in volatile components were discerned during processing, predominantly during the rolling stage. A total of 59 typical volatile compounds were identified through GC-IMS, whereas 106 volatile components were recognized via GC-MS throughout the entire manufacturing process. Among them, 14 volatile compounds, such as linalool, β-ionone, dimethyl sulfide, and 1-octen-3-ol, stood out as characteristic components responsible for SFABT with relative odor activity values exceeding one. This study serves as an invaluable theoretical platform for strategic controllable processing of superior-quality black tea.
Collapse
Affiliation(s)
- Yanqin Yang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qiwei Wang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jialing Xie
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yuliang Deng
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jiayi Zhu
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhongwen Xie
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Haibo Yuan
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yongwen Jiang
- Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
21
|
Yang Y, Xie J, Wang Q, Deng Y, Zhu L, Zhu J, Yuan H, Jiang Y. Understanding the dynamic changes of volatile and non-volatile metabolites in black tea during processing by integrated volatolomics and UHPLC-HRMS analysis. Food Chem 2024; 432:137124. [PMID: 37633132 DOI: 10.1016/j.foodchem.2023.137124] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/28/2023]
Abstract
Processing technology has an important effect on the flavor quality of black tea. However, the dynamic changes of volatile and non-volatile metabolites in black tea during processing are poorly understood. In this study, the volatile and non-volatile compounds during black tea processing were comprehensively characterized by integrated volatolomics and UHPLC-Q-Exactive/MS analysis. Volatile and non-volatile metabolites changed continuously throughout the processing process, especially during the withering stage. A total of 178 volatile metabolites and 103 non-volatile metabolites were identified. Among them, 11 volatile components with relative odor activity value greater than 1 (including dimethyl sulfide, 3-methylbutanal, 2-methylbutanal, β-myrcene, β-ocimene, linalool, methyl salicylate, β-cyclocitral, β-citral, citral, and β-ionone) were regarded as key aroma-active components responsible for finished black tea with sweet aroma. This study provides a comprehensive understanding of dynamic evolution trajectory of volatile and non-volatile metabolites during processing, which lays a theoretical foundation for the targeted processing of high-quality black tea.
Collapse
Affiliation(s)
- Yanqin Yang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jialing Xie
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Qiwei Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yuliang Deng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Li Zhu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Jiayi Zhu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haibo Yuan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Yongwen Jiang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
22
|
Wei Y, Zhang J, Li T, Zhao M, Song Z, Wang Y, Ning J. GC-MS, GC-O, and sensomics analysis reveals the key odorants underlying the improvement of yellow tea aroma after optimized yellowing. Food Chem 2024; 431:137139. [PMID: 37604002 DOI: 10.1016/j.foodchem.2023.137139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
An optimized yellowing process for yellow tea (YT) was recently developed. The study found that the optimized yellowing process caused a significant increase in sweet and floral aromas by 31.3% and 24.0%, respectively. A total of 21 aroma-active compounds were identified using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-olfactometry (GC-O) combined with sensomics analysis. Quantification of the 15 aroma-active compounds and calculation of odor activity values (OAVs) showed that the OAVs of sweet and floral aroma compounds increased significantly by 986.2% and 46.4%, respectively, after the optimized yellowing process. Sensory-directed aroma reconstitution and omission experiments confirmed that dimethyl sulfide, 3-methylbutanal, β-ionone, β-damascenone, geraniol, phenylacetaldehyde, and linalool were the key odorants in YT after the optimized yellowing process. Odorant addition tests further demonstrated that β-damascenone (OAV 590.4) was the main odorant for YT sweet aroma enhancement, while β-ionone (OAV 884.6) was the main odorant for YT floral aroma enhancement.
Collapse
Affiliation(s)
- Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, China
| | - Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, China
| | - Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, China
| | - Mengjie Zhao
- The National Key Engineering Lab of Crop Stress Resistance Breeding, the School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Zhenshuo Song
- Tea Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yujie Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Hefei 230036, Anhui, China.
| |
Collapse
|
23
|
Tian M, Lin K, Yang L, Jiang B, Zhang B, Zhu X, Ren D, Yu H. Characterization of key aroma compounds in gray sufu fermented using Leuconostoc mesenteroides subsp. Mesenteroides F24 as a starter culture. Food Chem X 2023; 20:100881. [PMID: 37767060 PMCID: PMC10520528 DOI: 10.1016/j.fochx.2023.100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/17/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Gray sufu is a traditional fermented bean product with strong flavor in China, but traditional fermentation methods often lead to its off-flavor. This study was performed to investigate the flavor quality characteristics of gray sufu fermented using L. mesenteroides F24. Results showed 220 volatile compounds in gray sufu, among which alcohols and esters were the main volatiles. Inoculation with L. mesenteroides F24 considerably affected the contents of flavor substances in gray sufu and substantially increased the main flavor compounds. In addition, 29 kinds of key volatile compounds were identified by analyzing the ROAVs. Four unique key flavor substances were found in gray sufu inoculated with L. mesenteroides F24. This study is the first report on the feasibility of L. mesenteroides F24 as a promising starter culture to improve the flavor quality of gray sufu. The results provide a theoretical basis for improving the processing and quality control of gray sufu.
Collapse
Affiliation(s)
- Meng Tian
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- Soybean Research & Development Centre, Division of Soybean Processing, Chinese Agricultural Research System, Changchun 130118, China
| | - Ke Lin
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- Soybean Research & Development Centre, Division of Soybean Processing, Chinese Agricultural Research System, Changchun 130118, China
| | - Liu Yang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Bin Jiang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Biying Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
| | - Xianming Zhu
- Changchun Zhu Laoliu Food Co., Ltd., Changchun, China
| | - Dayong Ren
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- Soybean Research & Development Centre, Division of Soybean Processing, Chinese Agricultural Research System, Changchun 130118, China
| | - Hansong Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, Jilin Province 130118, China
- Soybean Research & Development Centre, Division of Soybean Processing, Chinese Agricultural Research System, Changchun 130118, China
| |
Collapse
|
24
|
Gong J, Ma Y, Li L, Cheng Y, Huang Y. Comparative characterization and contribution of key aroma compounds in the typical base liquor of Jiang-flavor Baijiu from different distributions in the Chinese Chishui River basin. Food Chem X 2023; 20:100932. [PMID: 37868367 PMCID: PMC10589752 DOI: 10.1016/j.fochx.2023.100932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/18/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
The characteristic of typical base liquor is crucial in controlling ultimate quality of Jiang-flavor Baijiu. This study investigates the flavor compounds of three typical base liquors (Jiangxiang, Chuntian, and Jiaodixiang) by LLE/LLME/HS-SPME, gas chromatography-mass spectrometry (GC-MS), gas chromatography-flame ionization detection (GC-FID), sensory analysis, and odor activity value (OAV). Of the 201 main volatile compounds identified, 37 significant compounds distinguished the three typical base liquors. Acid (441.72 ± 0.17 mg/L), alcohol (5388.88 ± 0.55 mg/L), and ester compounds (8181.64 ± 0.15 mg/L) were respectively marked in Jiangxiang, Chuntian, and Jiaodixiang typical base liquors. Orthogonal partial least squares discriminant analysis (OPLS-DA), correlation analysis, and aroma recombination showed that butyric acid (OAV: 102.23), butyl 2-methylbutyrate (OAV: 6045.59), and ethyl caproate (OAV: 418.37) were significantly correlated with sweet, fruity, pit mud, jiang, and ethanol aromas. It identifies the primary constituents that affect flavor variations in the three typical base liquors and provides guidance for investigations on the flavor formation of Jiang-flavor Baijiu.
Collapse
Affiliation(s)
- Jiaxin Gong
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, Guizhou 550025, China
| | - Yu Ma
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
| | - Lili Li
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yuxin Cheng
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, Guizhou 550025, China
| | - Yongguang Huang
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, Guizhou 550025, China
| |
Collapse
|
25
|
Li M, Feng Z, Wang F, Chen J, Fan J, Wang J, Liu Z, Yin J. Effects of brewing water on the volatile composition of tea infusions. Food Chem 2023; 429:136971. [PMID: 37516052 DOI: 10.1016/j.foodchem.2023.136971] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023]
Abstract
There is a huge demand for brewing water in tea consumption, and the sensory flavor of tea infusion is significantly affected by the water used for brewing. To investigate the impact of brewing water on the aroma of tea infusions made from Camelia senensis, the three tea infusions of green, oolong and black tea brewed by six different drinking waters were analyzed by sensory evaluation, solid-phase microextraction, gas chromatography-mass spectrometry, and chemometrics. Brewing water with high pH values (>8.10) and high TDS content (>140 ppm) resulted in a lower overall aroma acceptability for tea infusion, where HCO3-, Ca2+ and Mg2+ were key influencing ions. A total of 86, 106, and 131 volatiles were identified in green, oolong and black tea infusions, respectively, which were strongly influenced by six different brands of waters. Decanal, dimethyl sulfide, β-ionone and linalool were potent volatiles in tea aroma changes caused by brewing water.
Collapse
Affiliation(s)
- Meiqin Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhihui Feng
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Fang Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jianxin Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jie Fan
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jieqiong Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Zhengquan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Junfeng Yin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
26
|
Ma L, Sun Y, Wang X, Zhang H, Zhang L, Yin Y, Wu Y, Du L, Du Z. The characteristic of the key aroma-active components in white tea using GC-TOF-MS and GC-olfactometry combined with sensory-directed flavor analysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7136-7152. [PMID: 37337850 DOI: 10.1002/jsfa.12798] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND White tea has become more and more popular with consumers due to its health benefits and unique flavor. However, the key aroma-active compounds of white tea during the aging process are still unclear. Thus, the key aroma-active compounds of white tea during the aging process were investigated using gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS) and gas chromatography-olfactometry (GC-O) combined with sensory-directed flavor analysis. RESULTS A total of 127 volatile compounds were identified from white tea samples with different aging years by GC-TOF-MS. Fifty-eight aroma-active compounds were then determined by GC-O, and 19 of them were further selected as the key aroma-active compounds based on modified frequency (MF) and odor activity value (OAV). CONCLUSION Aroma recombination and omission testing confirmed that 1-octen-3-ol, linalool, phenethyl alcohol, geraniol, (E)-β-ionone, α-ionone, hexanal, phenylacetaldehyde, nonanal, (E, Z)-(2,6)-nonadienal, safranal, γ-nonalactone and 2-amylfuran were the common key aroma-active compounds to all samples. Cedrol, linalool oxide II and methyl salicylate were confirmed peculiar in new white tea, while β-damascenone and jasmone were peculiar in aged white tea. This work will offer support for further studies on the material basis of flavor formation of white tea. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lijuan Ma
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yangyang Sun
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Xuejiao Wang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Heyun Zhang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Linqi Zhang
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yage Yin
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Yumeng Wu
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Liping Du
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin, P. R. China
- Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, P. R. China
| | - Ziping Du
- College of Economics and Management, Tianjin University of Science and Technology, Tianjin, P. R. China
| |
Collapse
|
27
|
Zhang J, Xia D, Li T, Wei Y, Feng W, Xiong Z, Huang J, Deng WW, Ning J. Effects of different over-fired drying methods on the aroma of Lu'an Guapian tea. Food Res Int 2023; 173:113224. [PMID: 37803542 DOI: 10.1016/j.foodres.2023.113224] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 10/08/2023]
Abstract
Over-fired drying, a crucial process in the production of Lu'an Guapian (LAGP) tea, greatly enriches the tea's aroma. In this study, the aroma compounds of LAGP tea processed through pulley charcoal drying (PCD), roller drying (RD), roller-conveyor drying (RCD), and hot air drying (HD) were analyzed using gas chromatography-mass spectrometry. A subsequent analysis of aroma extraction dilution analysis and odor activity values revealed that (E)-β-ionone, dimethyl sulfide, (E,E)-2,4-heptadienal, geraniol, linalool, benzeneacetaldehyde, coumarin, 2-ethyl-3,5-dimethyl-pyrazine, indole, hexanal, (Z)-jasmone, and (Z)-3-hexen-1-ol were the key contributors to the samples' aroma variation. Moreover, a quantitative descriptive analysis and aroma recombination and omission experiments analysis revealed that (E)-β-ionone is the most critical contributor to the formation of floral aroma in tea processed using PCD, whereas (E,E)-2,4-heptadienal is responsible for the more pronounced fresh aroma in tea processed using HD. In addition, 2-ethyl-3,5-dimethyl-pyrazine contributes to the formation of a roasted aroma in tea processed using RD and RCD. The study results provide a theoretical basis for choosing the processing method, especially for drying, to obtain high-quality LAGP tea.
Collapse
Affiliation(s)
- Jixin Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Dongzhou Xia
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China; Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Tiehan Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Yuming Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Wanzhen Feng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Zhichao Xiong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Junlan Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Wei-Wei Deng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China
| | - Jingming Ning
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China.
| |
Collapse
|
28
|
Xu Y, Liu Y, Yang J, Wang H, Zhou H, Lei P. Manufacturing process differences give Keemun black teas their distinctive aromas. Food Chem X 2023; 19:100865. [PMID: 37780253 PMCID: PMC10534231 DOI: 10.1016/j.fochx.2023.100865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/29/2023] [Accepted: 09/04/2023] [Indexed: 10/03/2023] Open
Abstract
Traditional Keemun black tea is also known as Congou black tea (CF). Over the last three decades, three other types of Keemun black tea (Jinzhen, JZ; Maofeng, MF; Xiangluo, XL) made by different processing have been introduced into the tea market. Total CF volatile concentrations ranged from 1666.3 to 2185.7 μg/L, followed by XL (1193.5-1916.1 μg/L), JZ (1058.9-1811.0 μg/L), and MF (987.5-1518.0 μg/L) tea infusions. A total of 79 volatiles in tea infusions was identified by two methods, among which fourteen with OAVs > 1 were identified and OAVs proportion of volatiles with flowery, fruity, or sweet notes to those with other notes differed in four Keemun black teas (CF = 6.58:1, MF = 5.16:1, JZ = 4.04:1, XL = 5.11:1). Phenylethyl alcohol oxidation resulted in phenylacetaldehyde formation which is the characteristic odorant in Keemun black tea. We clearly show that changes in tea processing gives the distinctive aroma to different Keemun black teas.
Collapse
Affiliation(s)
| | | | - Jihong Yang
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan 245000, China
| | - Hui Wang
- Tea Research Institute, Anhui Academy of Agricultural Sciences, Huangshan 245000, China
| | | | | |
Collapse
|
29
|
Zhong N, Zhao X, Yu P, Huang H, Bao X, Li J, Zheng H, Xiao L. Characterization of the Sensory Properties and Quality Components of Huangjin Green Tea Based on Molecular Sensory-Omics. Foods 2023; 12:3234. [PMID: 37685167 PMCID: PMC10486783 DOI: 10.3390/foods12173234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Huangjin green tea (HJC) is one of the most famous regional green teas in China, and has gained attention for its unique flavor. Research on HJC has focused mainly on the synthesis of L-theanine, with fewer studies concentrating on sensory characteristics. In this study, molecular sensory science techniques, including color analysis, gas chromatography-ion mobility spectrometry, and E-tongue, were used to characterize the sensory properties of HJC, with Fuding Dabai and Anji Baicha teas used as conventional and high amino acid controls, respectively. The sensory characteristics and main quality components of HJC lie somewhere between these two other teas, and somewhat closer to the conventional control. They were difficult to distinguish by color, but significant differences exist in terms of volatile organic compounds (VOCs), E-tongue values on bitterness and astringency, and their contents of major taste components. VOCs such as (E)-2-octenal, linalool, ethyl acrylate, ethyl acetate, and 2-methyl-3-furanethiol were found to be the main differential components that contributed to aroma, significantly influencing the tender chestnut aroma of HJC. Free amino acids, tea polyphenols, and ester catechins were the main differential components responsible for taste, and its harmonious phenol-to-ammonia ratio was found to affect the fresh, mellow, heavy, and brisk taste of HJC.
Collapse
Affiliation(s)
- Ni Zhong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (N.Z.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Xi Zhao
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Penghui Yu
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Hao Huang
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Xiaocun Bao
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Jin Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (N.Z.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
| | - Hongfa Zheng
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410128, China
| | - Lizheng Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha 410128, China; (N.Z.)
- National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
30
|
Wang J, Bi H, Li M, Wang H, Xue M, Yu J, Ho CT, Zhang L, Zhuo Q, Jiang J, Wan X, Zhai X. Contribution of theanine to the temperature-induced changes in aroma profile of Wuyi rock tea. Food Res Int 2023; 169:112860. [PMID: 37254434 DOI: 10.1016/j.foodres.2023.112860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/21/2023] [Accepted: 04/17/2023] [Indexed: 06/01/2023]
Abstract
Theanine is a distinctive amino acid in tea that plays a vital role in tea flavor during the roasting process. Model thermal reactions of total amino acids and sugars with different roasting conditions (low-fire, middle-fire, and high-fire) showed theanine competitively inhibited the formation of indole, skatole, 4-hydroxy-2,5-dimethyl-3(2H)-furanone, and Strecker aldehydes, while greatly stimulated the production of roasty pyrazines. In addition, highest amounts of pyrazines were obtained under high-fire degree. Quantification of these reaction products in Wuyi rock tea (WRT) was realized in different roasted Dahongpao teas by means of sensomics approach. The quantitative data revealed the biggest influence of roasting temperatures on the formation of reaction products among indole, lipid oxidation products, and pyrazines, while other reaction products were only slightly affected. The findings of this study provide a fresh perspective on the impact of theanine on aroma formation during the roasting process, which will help to explore the formation of key odorants during tea production.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Haijun Bi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Mengru Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Hui Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Manman Xue
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Jieyao Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Chi-Tang Ho
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | | | | | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaoting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
31
|
Xie J, Wang L, Deng Y, Yuan H, Zhu J, Jiang Y, Yang Y. Characterization of the key odorants in floral aroma green tea based on GC-E-Nose, GC-IMS, GC-MS and aroma recombination and investigation of the dynamic changes and aroma formation during processing. Food Chem 2023; 427:136641. [PMID: 37393635 DOI: 10.1016/j.foodchem.2023.136641] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 07/04/2023]
Abstract
To characterize the key odorants of floral aroma green tea (FAGT) and reveal its dynamic evolution during processing, the volatile metabolites in FAGT during the whole processing were analyzed by integrated volatolomics techniques, relative odor activity value (rOAV), aroma recombination, and multivariate statistical analysis. The volatile profiles undergone significant changes during processing, especially in the withering and fixation stages. A total of 184 volatile compounds were identified (∼53.26% by GC-MS). Among them, 7 volatiles with rOAV > 1 were identified as characteristic odorants of FAGT, and most of these compounds reached the highest in withering stage. According to the formation pathways, these key odorants could be divided into four categories: fatty acid-derived volatiles, glycoside-derived volatiles, amino acid-derived volatiles, and carotenoid-derived volatiles. Our study provides a comprehensive strategy to elucidate changes in volatile profiles during processing and lays a theoretical foundation for the targeted processing of high-quality green tea.
Collapse
Affiliation(s)
- Jialing Xie
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Lilei Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; College of Food Science, Southwest University, Beibei District, Chongqing 400715, China
| | - Yuliang Deng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Haibo Yuan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Jiayi Zhu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yongwen Jiang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yanqin Yang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
32
|
Zheng X, Hu T, Xie H, Ou X, Huang J, Wang C, Liu Z, Li Q. Characterization of the key odor-active compounds in different aroma types of Fu brick tea using HS-SPME/GC-MSO combined with sensory-directed flavor analysis. Food Chem 2023; 426:136527. [PMID: 37336100 DOI: 10.1016/j.foodchem.2023.136527] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/05/2023] [Accepted: 06/01/2023] [Indexed: 06/21/2023]
Abstract
Fu brick tea (FBT) is popular for its unique 'fungal flower' aroma, however, its key odor-active compounds are essentially unknown. In this study, the odor-active compounds of "stale-fungal" aroma (CJX), "fresh-fungal" aroma (QJX), and "fermentation-fungal" aroma (FJX) types FBT were extracted and examined by headspace solid phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS) and gas chromatographyolfactometry (GC-O). A total of 43 volatile and 38 odor-active compounds were identified by these methods. Among them, the content of dihydroactindiolide (4596-13189 µg/L), (E)-linalool oxide (2863-6627 µg/L), and benzyl alcohol (4992-6859 µg/L) were highest. Aroma recombination experiments further verified that these odor-active compounds could be simulated the overall aroma profile of FBT successfully. Furthermore, omission experiments confirmed that 15, 20, and 15 key odor-active compounds in CJX, QJX, and FJX FBT, respectively. This study will provide a theoretical basis for comprehensively understanding the formation of characteristic aromas in FBT.
Collapse
Affiliation(s)
- Xuexue Zheng
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Tengfei Hu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - He Xie
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Xingchang Ou
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Chao Wang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China.
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China.
| | - Qin Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Collaborative Innovation Centre of Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, PR China.
| |
Collapse
|
33
|
Badjona A, Bradshaw R, Millman C, Howarth M, Dubey B. Faba Bean Flavor Effects from Processing to Consumer Acceptability. Foods 2023; 12:foods12112237. [PMID: 37297480 DOI: 10.3390/foods12112237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Faba beans as an alternative source of protein have received significant attention from consumers and the food industry. Flavor represents a major driving force that hinders the utilization faba beans in various products due to off-flavor. Off-flavors are produced from degradation of amino acids and unsaturated fatty acids during seed development and post-harvest processing stages (storage, dehulling, thermal treatment, and protein extraction). In this review, we discuss the current state of knowledge on the aroma of faba bean ingredients and various aspects, such as cultivar, processing, and product formulation that influence flavour. Germination, fermentation, and pH modulation were identified as promising methods to improve overall flavor and bitter compounds. The probable pathway in controlling off-flavor evolution during processing has also been discussed to provide efficient strategies to limit their impact and to encourage the use of faba bean ingredients in healthy food design.
Collapse
Affiliation(s)
- Abraham Badjona
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Robert Bradshaw
- Bimolecular Research Centre, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Caroline Millman
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Martin Howarth
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Bipro Dubey
- National Centre of Excellence for Food Engineering, Sheffield Hallam University, Sheffield S1 1WB, UK
| |
Collapse
|
34
|
An T, Shen S, Zu Z, Chen M, Wen Y, Chen X, Chen Q, Wang Y, Wang S, Gao X. Changes in the volatile compounds and characteristic aroma during liquid-state fermentation of instant dark tea by Eurotium cristatum. Food Chem 2023; 410:135462. [PMID: 36669288 DOI: 10.1016/j.foodchem.2023.135462] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Instant dark tea (IDT) was prepared by liquid-state fermentation inoculating Eurotium cristatum. The changes in the volatile compounds and characteristic aroma of IDT during fermentation were analyzed using gas chromatography-mass spectrometry by collecting fermented samples after 0, 1, 3, 5, 7, and 9 days of fermentation. Components with high odor activity (log2FD ≥ 5) were verified by gas chromatography-olfactometry. A total of 107 compounds showed dynamic changes during fermentation over 9 days, including 17 alcohols, 7 acids, 10 ketones, 11 esters, 8 aldehydes, 37 hydrocarbons, 4 phenols, and 13 other compounds. The variety of flavor compounds increased gradually with time within the early stage and achieved a maximum of 79 compounds on day 7 of fermentation. β-Damascenone showed the highest odor activity (log2FD = 9) in the day 7 sample, followed by linalool and geraniol. These results indicate that fungal fermentation is critical to the formation of these aromas of IDT.
Collapse
Affiliation(s)
- Tingting An
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Anhui Agricultural University, Hefei 230036, China
| | - Shanshan Shen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Anhui Agricultural University, Hefei 230036, China
| | - Zhongqi Zu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Anhui Agricultural University, Hefei 230036, China
| | - Mengxue Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Anhui Agricultural University, Hefei 230036, China
| | - Yu Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Anhui Agricultural University, Hefei 230036, China
| | - Xu Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Anhui Agricultural University, Hefei 230036, China
| | - Yu Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Anhui Agricultural University, Hefei 230036, China
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xueling Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Tea Biology and Tea Processing of Ministry of Agriculture and Rural Affairs, International Joint Research Laboratory of Tea Chemistry and Health Effects of Ministry of Education, Anhui Provincial Laboratory, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
35
|
Wan Y, Han Y, Deng X, Chen Y. Metabolomics Analysis Reveals the Effect of Two Alpine Foliar Diseases on the Non-Volatile and Volatile Metabolites of Tea. Foods 2023; 12:foods12081568. [PMID: 37107363 PMCID: PMC10137691 DOI: 10.3390/foods12081568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Blister blight and small leaf spots are important alpine diseases that mainly attack tender tea leaves, affecting tea quality. However, there is limited information on the effect of these diseases on tea's non-volatile and volatile metabolites. Metabolomic analysis based on UHPLC-Q-TOF/MS, HPLC and GC/MS was used to reveal the characteristic chemical profiles of tea leaves infected with blister blight (BB) and small leaf spots (SS). Flavonoids and monolignols were non-volatile metabolites that were enriched and significantly changed. Six main monolignols involved in phenylpropanoid biosynthesis were significantly induced in infected tea leaves. The accumulation of catechins, (-)-epigallocatechin gallate, (-)-epicatechin gallate, caffeine, amino acids and theanine were significantly decreased in both diseased tea leaves, while soluble sugar, (-)-epigallocatechin and phenol-ammonia were obviously increased. Among them, the amounts of sweet and umami-related soluble sugar, sucrose, amino acids and theanine were much higher in BB, while bitter and astringent taste-related catechins and derivatives were much higher in SS. Volatiles analysis showed that volatiles content in SS and BB was significantly decreased, and styrene was significantly induced in blister blight-infected tea leaves. The results indicate that the type and amount of volatiles were highly and differentially influenced by infection with the two alpine diseases.
Collapse
Affiliation(s)
- Yuhe Wan
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Yuxin Han
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Xinyi Deng
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| | - Yingjuan Chen
- Department of Tea Science, College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
36
|
Feng X, Yang S, Pan Y, Zhou S, Ma S, Ou C, Fan F, Gong S, Chen P, Chu Q. Yellow tea: more than turning green leaves to yellow. Crit Rev Food Sci Nutr 2023; 64:7836-7853. [PMID: 37009836 DOI: 10.1080/10408398.2023.2193271] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Yellow tea (YT), a slightly-fermented tea originated from Ming Dynasty with distinctive "Three yellows," mild-sweet smell, and mellow taste attributed to the unique yellowing process. Based on current literature and our previous work, we aim to comprehensively illustrate the key processing procedures, characteristic chemical compounds, health benefits and applications, as well as the interlocking relationships among them. Yellowing is the most vital procedure anchored on the organoleptic quality, characteristic chemical components, and bioactivities of YT, which is influenced by temperature, moisture content, duration, and ventilation conditions. Pheophorbides, carotenoids, thearubigins and theabrownins are the major pigments contributing to the "three yellows" appearance. Alcohols, such as terpinol and nerol, are attributed to the refreshing and sweet aroma of bud and small-leaf YT, while heterocyclics and aromatics forming during roasting result in the crispy rice-like large-leaf YT. Hygrothermal effects and enzymatic reactions during yellowing result in the decline of astringent substances. Meanwhile, multiple bioactive compounds such as catechins, ellagitannins, and vitexin, endow YT with antioxidant, anti-metabolic syndrome, anti-cancer, gut microbiota regulation, and organ injury protection effects. Future studies focusing on the standard yellowing process technology, quality evaluation system, and functional factors and mechanisms, possible orientations, and perspectives are guaranteed.
Collapse
Affiliation(s)
- Xinyu Feng
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, P. R. China
| | - Shiyan Yang
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Yani Pan
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Su Zhou
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, P. R. China
| | - Shicheng Ma
- Wuzhou Liubao Tea Research Association, Wuzhou, P. R. China
| | - Cansong Ou
- Wuzhou Tea Industry Development Service Center, Wuzhou, P. R. China
| | - Fangyuan Fan
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Shuying Gong
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Ping Chen
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| | - Qiang Chu
- Tea Research Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, P. R. China
| |
Collapse
|
37
|
Zhang C, Zhou C, Tian C, Xu K, Lai Z, Lin Y, Guo Y. Volatilomics Analysis of Jasmine Tea during Multiple Rounds of Scenting Processes. Foods 2023; 12:foods12040812. [PMID: 36832885 PMCID: PMC9956320 DOI: 10.3390/foods12040812] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Jasmine tea is reprocessed from finished tea by absorbing the floral aroma of jasmine (Jasminum sambac (L.) Aiton); this process is commonly known as "scenting". Making high-quality jasmine tea with a refreshing aroma requires repeated scenting. To date, the detailed volatile organic compounds (VOCs) and the formation of a refreshing aroma as the number of scenting processes increases are largely unknown and therefore need further study. To this end, integrated sensory evaluation, widely targeted volatilomics analysis, multivariate statistical analyses, and odor activity value (OAV) analysis were performed. The results showed that the aroma freshness, concentration, purity, and persistence of jasmine tea gradually intensifies as the number of scenting processes increases, and the last round of scenting process without drying plays a significant role in improving the refreshing aroma. A total of 887 VOCs was detected in jasmine tea samples, and their types and contents increased with the number of scenting processes. In addition, eight VOCs, including ethyl (methylthio)acetate, (Z)-3-hexen-1-ol acetate, (E)-2-hexenal, 2-nonenal, (Z)-3-hexen-1-ol, (6Z)-nonen-1-ol, β-ionone, and benzyl acetate, were identified as key odorants responsible for the refreshing aroma of jasmine tea. This detailed information can expand our understanding of the formation of a refreshing aroma of jasmine tea.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengzhe Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Caiyun Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kai Xu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongxiong Lai
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuling Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuqiong Guo
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Tea Industry Research Institute, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence:
| |
Collapse
|
38
|
Huang D, Li M, Wang H, Fu M, Hu S, Wan X, Wang Z, Chen Q. Combining gas chromatography-ion mobility spectrometry and olfactory analysis to reveal the effect of filled-N2 anaerobic treatment duration on variation in the volatile profiles of gabaron green tea. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
39
|
Qu FF, Li XH, Wang PQ, Han YH, Wu Y, Hu JH, Zhang XF. Effect of thermal process on the key aroma components of green tea with chestnut-like aroma. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:657-665. [PMID: 36054006 DOI: 10.1002/jsfa.12177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 08/01/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Chestnut-like aroma is one of the unique qualities of Chinese green tea and has become an important factor influencing consumer decisions. However, the chemical formation mechanism of chestnut-like aroma during green tea processing remains unclear. In this study, the dynamic changes of key components contributing to chestnut-like aroma and their precursors were analyzed in fresh leaves, fixation leaves, first baking tea leaves, and green tea. RESULTS The thermal process had an important effect on volatile components in tea leaves, causing a significant decrease of alcohols and esters and a significant increase of ketones, acids, phenols, and sulfur compounds. Furthermore, 31 volatiles were identified as the key odorants responsible for chestnut-like aroma of green tea, including dimethyl sulfide, methyl isobutenyl ketone, 2-methylbutanal, 2,4-dimethylstyrene, d-limonene, methyl 2-methylvalerate, linalool, decanal, longifolene, phenylethyl alcohol, l-α-terpineol, jasmone, and so on. And the majority of these odorants were only formed in the drying stage. Additionally, isoleucine, theanine, methionine, and glucose were found to be involved in the formation of chestnut-like aroma of green tea. CONCLUSION The drying process played a vital important role in the formation of chestnut-like aroma of green tea. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Feng-Feng Qu
- College of Horticulture, Qingdao Agricultural University, Qingdao, PR China
| | - Xiao-Han Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, PR China
| | - Pei-Qiang Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, PR China
| | - Ya-Hui Han
- College of Horticulture, Qingdao Agricultural University, Qingdao, PR China
| | - Ying Wu
- College of Agriculture, Tennessee State University, Nashville, TN, USA
| | - Jian-Hui Hu
- College of Horticulture, Qingdao Agricultural University, Qingdao, PR China
| | - Xin-Fu Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, PR China
| |
Collapse
|
40
|
Zhai X, Hu Y, Pei Z, Yu J, Li M, Zhang L, Ho CT, Zhang Y, Wan X. Insights into the Key Odorants in Large-Leaf Yellow Tea ( Camellia sinensis) by Application of the Sensomics Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:690-699. [PMID: 36573803 DOI: 10.1021/acs.jafc.2c05881] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Large-leaf yellow tea (LYT) is a yellow tea product with a specific aroma characteristic and is enjoyed with increasing enthusiasm in China. However, its key odorants are still unknown. In this study, 46 odorants in the headspace and vacuum-distillate of the tea infusion were identified via aroma extract dilution analysis. Sixteen compounds were newly found in LYT infusion. They were present in the highest flavor dilution factors together with 2-ethyl-3,5-dimethylpyrazine. All odorants were quantitated to evaluate their own odor activity values (OAVs). High OAVs were found for 2-methylbutanal (malty, 210), (E,E)-2,4-heptandienal (fatty/flowery, 170), 2-methylpropanal (malty, 120) and 2,3-diethyl-5-methylpyrazine (earthy/roasty, 110). An aroma recombinate consisting of 17 odorants (all OAVs ≥ 1) in an odorless nonvolatile LYT matrix mimicked the overall aroma of the original infusion, verifying the successful characterization of key aroma components in a LYT beverage. The knowledge of key odorants obtained showed potential for simplifying industrial flavor optimization of the LYT product.
Collapse
Affiliation(s)
- Xiaoting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, 230036, China
| | - Yuemeng Hu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, 230036, China
| | - Ziying Pei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, 230036, China
| | - Jieyao Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, 230036, China
| | - Mengru Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, 230036, China
| | - Chi-Tang Ho
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, 230036, China
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Yanyan Zhang
- Department of Flavor Chemistry, University of Hohenheim, Fruwirthstraße 12, Verfügungsgebäude, 70599, Stuttgart, Germany
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
- International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
41
|
Liu PP, Feng L, Xu YQ, Zheng L, Yin P, Ye F, Gui AH, Wang SP, Wang XP, Teng J, Xue JJ, Gao SW, Zheng PC. Characterization of stale odor in green tea formed during storage: Unraveling improvements arising from reprocessing by baking. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
42
|
Zhai X, Wang J, Wang H, Xue M, Yao X, Li M, Yu J, Zhang L, Wan X. Formation of dimethyl sulfide from the decomposition of S-methylmethionine in tea (Camellia sinensis) during manufacturing process and infusion brewing. Food Res Int 2022; 162:112106. [DOI: 10.1016/j.foodres.2022.112106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/15/2022]
|
43
|
Yang J, Zhou H, Liu Y, Wang H, Xu Y, Huang J, Lei P. Chemical constituents of green teas processed from albino tea cultivars with white and yellow shoots. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 5:100143. [PMID: 36389341 PMCID: PMC9640954 DOI: 10.1016/j.fochms.2022.100143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/21/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Green teas produced from white (NB) and yellow (HJY) shoots have distinct flavor. Concentrations of non-galloylated catechins and amino acids are high in NB teas. HJY green teas contain high concentration of galloylated catechins. CsTA and CsPDX2.1 (involved in catabolism) are highly expressed in HJY tea shoots. Total concentration of volatile compounds is higher in HJY than in NB green teas.
Green tea processed from albino tea varieties often has umami taste and fresh aroma. This study identified green teas made from two types of albino tea cultivar, one having the white shoots (called Naibai, NB) and the other having the yellow shoots (called Huangjinya, HJY). Taste compounds analyses showed that galloylated catechins were highly concentrated in HJY green teas, whereas non-galloylated catechins and amino acids were more abundant in NB green teas. CsTA (involved in the catabolism of galloylated catechins) showed high expression in HJY tea shoots, resulting in gallic acid as a precursor for β-glucogallin biosynthesis being abundant in HJY. CsPDX2.1 (responsible for theanine hydrolyzation) had a lower expression level in NB than HJY shoots. Fatty acid–derived volatiles (FADVs), glycosidically bound volatiles (GBVs) and carotenoid–derived volatiles (CDVs) were highly concentrated in HJY green teas, whereas amino acids–derived volatiles were highly concentrated in NB green teas.
Collapse
|
44
|
Characterization of the Key Aroma Compounds of Shandong Matcha Using HS-SPME-GC/MS and SAFE-GC/MS. Foods 2022; 11:foods11192964. [PMID: 36230044 PMCID: PMC9562185 DOI: 10.3390/foods11192964] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
Shandong matcha has the quality characteristics of bright green color, seaweed-like aroma and strong, fresh and brisk taste. In order to identify the characteristic aroma components and clarify the contribution of the grinding process to the aroma of Shandong matcha. Three grades of Shandong matcha and corresponding tencha material were firstly tested with sensory evaluation, and the volatile components were extracted with headspace solid-phase microextraction (HS-SPME) and solvent-assisted flavor evaporation (SAFE) and analyzed using GC–MS. The sensory evaluation results showed that high-grade matcha (M-GS) had prominent seaweed-like, fresh and roasted notes, whereas medium and low-grade matcha (M-G1, M-G2) were gradually coupled with grassy, fatty and high-fired aromas. GC–MS results showed that in the HS-SPME method, heterocyclic compounds (45.84–65.35%) were the highest in Shandong matcha, followed by terpenoids (7.44–16.92%) and esters (6.91–15.27%), while in the safe method, esters were the highest (12.96–24.99%), followed by terpenoids (10.76–25.09%) and heterocyclic compounds (12.12–17.07%). As a whole, the composition of volatile components between M-G1 and M-G2 is relatively close, and there are more differences in volatile components between them and M-GS. The volatile components unique to M-GS were screened using the odor activity value (OAV) evaluation method, with components such as 3-methyl-2-butene-1-thiol, 3-ethyl-Phenol, 2-thiophenemethanethiol, 2,4-undecadienal, (E,E)-2,6-nonadienal, (E,Z)- being evaluated. There were other differentially volatile components, that is, volatile components that coexist in the three grades of matcha, but with different concentrations and proportions. M-G1 and M-G2 contained more volatile substances with high-fired aroma, such as 2-ethyl-3-methyl-pyrazine, coumarin and 5,6,7,8-tetrahydroquinoxaline. The grinding process not only changes the appearance of tencha, but also increases the content of volatile components of matcha as a whole, enhancing the aroma and flavor characteristics of matcha. In this study, the contents of 24 volatile components in matcha were mainly increased, such as benzene, (2,2-dimethoxyethyl)-, cis-7-decen-1-al, safranal and fenchyl acetate. The dual factors of material tencha and matcha grinding technology are indispensable in forming the differences in aroma and flavor of Shandong matcha at different levels.
Collapse
|
45
|
Yin P, Wang JJ, Kong YS, Zhu Y, Zhang JW, Liu H, Wang X, Guo GY, Wang GM, Liu ZH. Dynamic Changes of Volatile Compounds during the Xinyang Maojian Green Tea Manufacturing at an Industrial Scale. Foods 2022; 11:foods11172682. [PMID: 36076866 PMCID: PMC9455817 DOI: 10.3390/foods11172682] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022] Open
Abstract
Xinyang Maojian (XYMJ) is one of the premium green teas and originates from Xinyang, which is the northernmost green tea production area in China. The special geographic location, environmental conditions, and manufacturing process contribute to the unique flavor and rich nutrition of XYMJ green tea. Aroma is an important quality indicator in XYMJ green tea. In order to illustrate the aroma of XYMJ green tea, the key odorants in XYMJ green tea and their dynamic changes during the manufacturing processes were analyzed by headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry (GC-MS). A total of 73 volatile compounds of six different chemical classes were identified in the processed XYMJ green tea samples, and the manufacturing processes resulted in the losses of total volatile compounds. Among the identified volatile compounds, twenty-four aroma-active compounds, such as trans-nerolidol, geranylacetone, nonanal, (+)-δ-cadinene, linalool, (Z)-jasmone, cis-3-hexenyl butyrate, cis-3-hexenyl hexanoate, methyl jasmonate, and β-ocimene, were identified as the key odorants of XYMJ green tea based on odor activity value (OAV). The key odorants are mainly volatile terpenes (VTs) and fatty acid-derived volatiles (FADVs). Except for (+)-δ-cadinene, copaene, cis-β-farnesene, (Z,E)-α-farnesene and phytol acetate, the key odorants significantly decreased after fixing. The principal coordinate analysis (PCoA) and the hierarchical cluster analysis (HCA) analyses suggested that fixing was the most important manufacturing process for the aroma formation of XYMJ green tea. These findings of this study provide meaningful information for the manufacturing and quality control of XYMJ green tea.
Collapse
Affiliation(s)
- Peng Yin
- Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Henan Engineering Research Center of Tea Processing and Testing, College of Tea Science, Xinyang Agriculture and Forestry University, Xinyang 464000, China
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
| | - Jing-Jing Wang
- Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Henan Engineering Research Center of Tea Processing and Testing, College of Tea Science, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Ya-Shuai Kong
- Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Henan Engineering Research Center of Tea Processing and Testing, College of Tea Science, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Yao Zhu
- Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Henan Engineering Research Center of Tea Processing and Testing, College of Tea Science, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Jun-Wei Zhang
- Xinyang Yunzhen Tea Co., Ltd., Xinyang 464000, China
| | - Hao Liu
- Xinyang Xianfeng Tea Co., Ltd., Xinyang 464000, China
| | - Xiao Wang
- Xinyang Wenxin Tea Co., Ltd., Xinyang 464000, China
| | - Gui-Yi Guo
- Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Henan Engineering Research Center of Tea Processing and Testing, College of Tea Science, Xinyang Agriculture and Forestry University, Xinyang 464000, China
| | - Guang-Ming Wang
- Henan Key Laboratory of Tea Plant Comprehensive Utilization in South Henan, Henan Engineering Research Center of Tea Processing and Testing, College of Tea Science, Xinyang Agriculture and Forestry University, Xinyang 464000, China
- Correspondence: (G.-M.W.); (Z.-H.L.)
| | - Zhong-Hua Liu
- Key Laboratory of Tea Science of Ministry of Education, National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China
- Correspondence: (G.-M.W.); (Z.-H.L.)
| |
Collapse
|
46
|
Zhai X, Zhang L, Granvogl M, Ho CT, Wan X. Flavor of tea (Camellia sinensis): A review on odorants and analytical techniques. Compr Rev Food Sci Food Saf 2022; 21:3867-3909. [PMID: 35810334 DOI: 10.1111/1541-4337.12999] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 05/08/2022] [Accepted: 05/23/2022] [Indexed: 01/28/2023]
Abstract
Tea is among the most consumed nonalcoholic beverages worldwide. Understanding tea flavor, in terms of both sensory aspects and chemical properties, is essential for manufacturers and consumers to maintain high quality of tea products and to correctly distinguish acceptable or unacceptable products. This article gives a comprehensive review on the aroma and off-flavor characteristics associated with 184 odorants. Although many efforts have been made toward the characterization of flavor compounds in different types of tea, modern flavor analytical techniques that affect the results of flavor analysis have not been compared and summarized systematically up to now. Thus, the overview mainly provides the instrumental flavor analytical techniques for both aroma and taste of tea (i.e., extraction and enrichment, qualitative, quantitative, and chemometric approaches) as well as descriptive sensory analytical methodologies for tea, which is helpful for tea flavor researchers. Flavor developments of tea evolved toward time-saving, portability, real-time monitoring, and visualization are also prospected to get a deeper insight into the influences of different processing techniques on the formation and changes of flavor compounds, especially desired flavor compounds and off-flavor substances present at (ultra)trace amounts in tea and tea products.
Collapse
Affiliation(s)
- Xiaoting Zhai
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China
| | - Michael Granvogl
- Department of Food Chemistry and Analytical Chemistry (170a), Institute of Food Chemistry, Faculty of Natural Science, University of Hohenheim, Stuttgart, Germany
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei, China
| |
Collapse
|
47
|
Yin P, Kong YS, Liu PP, Wang JJ, Zhu Y, Wang GM, Sun MF, Chen Y, Guo GY, Liu ZH. A critical review of key odorants in green tea: Identification and biochemical formation pathway. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
48
|
Cui Y, Lai G, Wen M, Han Z, Zhang L. Identification of low-molecular-weight color contributors of black tea infusion by metabolomics analysis based on UV-visible spectroscopy and mass spectrometry. Food Chem 2022; 386:132788. [PMID: 35344723 DOI: 10.1016/j.foodchem.2022.132788] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/22/2022] [Accepted: 03/22/2022] [Indexed: 12/01/2022]
Abstract
Nine black tea samples with different color intensity were firstly determined by chromatic difference analyzer. The color characteristics were secondly quantitatively described by UV-visible spectroscopy. Thirdly, liquid chromatography tandem mass spectrometry (LC-MS) based metabolomics analysis was applied in low-molecular-weight compounds. Finally, the color contributors were identified by the correlation analysis of color, spectrometry and mass data. UV-visible based metabolomics analysis revealed that the wavelength at 380-520 nm (VIP > 1.50) was the critical absorbance band for distinguishing different color of BT infusions, while LC-MS based metabolomics analysis indicated that there were 48 main marker compounds responsible for the classification of different BT infusions. Correlation analysis results showed that the coefficients of theaflavins, thearubigins, theabrownins, flavonoid glycosides, and some hydroxycinnamoyl acids were > 0.7, which suggested they were main color contributors of BT infusion. The present study expanded a new vision on the color analysis of BT infusion.
Collapse
Affiliation(s)
- Yuqing Cui
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Guoping Lai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China
| | - Zisheng Han
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China; International Joint Laboratory on Tea Chemistry and Health Effects of Ministry of Education, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
49
|
Xiao Z, Zhang W, Guo W, Zhang L, Huang A, Tao M, Li M, Su R, Liu Z. Determining the effects of tencha-ro drying on key volatile compounds in tencha (Camellia sinensis) through gas chromatography-mass spectrometry. J Food Sci 2022; 87:3355-3365. [PMID: 35822303 DOI: 10.1111/1750-3841.16245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022]
Abstract
Drying is the key process through which the aroma of tencha forms. However, the effects of drying method on volatiles are unknown. We compared tencha-ro drying with regular drying. Volatiles in tencha infusions were extracted using headspace solid-phase microextraction and solvent-assisted flavor evaporation combined with gas chromatography-mass spectrometry. Partial least squares (PLS), odor activity value (OAV), and heat map analyses were performed to identify the optimal drying method for creating a seaweed-like aroma. Changes in the key volatile compounds of the samples were investigated. The tencha infusions contained 125 volatiles with nine chemical structures. According to the sensory evaluation, tencha-ro drying was the optimal method for producing high-quality tencha with an intense and consistent seaweed-like aroma. The PLS model accurately distinguished among the types of tencha. By combining OAVs with screening through multivariate statistical analysis, six volatile compounds were revealed to contribute substantially to tencha's seaweed-like aroma: 2-ethyl-3,5-dimethylpyrazine, 2-ethyl-6-methylpyrazine, 2-ethyl-5-methylpyrazine, dimethyl sulfide, β-ionone, and 2-formyl-1-methylpyrrole. The findings provide a theoretical basis and technical guidance for the processing of high-quality tencha with a strong seaweed-like aroma. PRACTICAL APPLICATION: This study demonstrated that tencha-ro drying contributes to the formation of a seaweed-like aroma in tencha and provides theoretical guidance for tea factories to use the appropriate drying methods for high-quality tencha.
Collapse
Affiliation(s)
- Zhipeng Xiao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.,School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Wenjun Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.,School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Wenli Guo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.,School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Lan Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.,School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Ai Huang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.,School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Meng Tao
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.,School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Meiqin Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.,School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Rui Su
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.,School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zhengquan Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China.,School of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
50
|
Effect of Strobilanthes tonkinensis Lindau Addition on Black Tea Flavor Quality and Volatile Metabolite Content. Foods 2022; 11:foods11121678. [PMID: 35741875 PMCID: PMC9222377 DOI: 10.3390/foods11121678] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 12/10/2022] Open
Abstract
The characteristic aroma of Chinese black tea (BT) produced in summer usually lacks intensity and persistence, reducing consumer acceptance and market demand. Strobilanthes tonkinensis Lindau (STL) possesses excellent biological characteristics, making it a promising novel tea ingredient. We investigated the effects of different addition methods and concentrations for the novel additive STL on the sensory quality of BT. A 20:1500 g/g addition to rolled tea leaves was identified as the best BT with STL (BoS) treatment. We identified 141 volatile metabolites (VMs) for the first time in STL, with high alcohol, ester, ketone, enyne, alkyne, and alkane contents. Partial least-squares discriminant analysis distinguished the samples and revealed 28, 26, and 14 differential VMs in STL vs. BoS, BT vs. STL, and BT vs. BoS comparisons, respectively. Using a combination of Venn, multiple experiment viewer, and odor activity value analysis, 16 key differential VMs were identified. Compared to BT, the 1-octen-3-ol, 1-hexanol, 1-dodecanol, (E)-3-hexen-1-ol, phenylethyl alcohol, and 2-methoxy-3-(2-methylpropyl)-pyrazine contents in BoS were 394.7%, 53.6%, 34.1%, 24.4%, 9.9%, and 5.7% higher, respectively. BoS combined the aromatic properties of BT and STL into a sweet and glutinous rice flavor. The results provide theoretical support for future research and development of novel BT-based products.
Collapse
|