1
|
Qin X, Han H, Zhang J, Xie B, Zhang Y, Liu J, Dong W, Hu Y, Yu X, Feng Y. Transcriptomic and Metabolomic Analyses of Soybean Protein Isolate on Monascus Pigments and Monacolin K Production. J Fungi (Basel) 2024; 10:500. [PMID: 39057385 PMCID: PMC11277953 DOI: 10.3390/jof10070500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Monascus pigments (MPs) and monacolin K (MK) are important secondary metabolites produced by Monascus spp. This study aimed to investigate the effect of soybean protein isolate (SPI) on the biosynthesis of MPs and MK based on the analysis of physiological indicators, transcriptomes, and metabolomes. The results indicated that the growth, yellow MPs, and MK production of Monascus pilosus MS-1 were significantly enhanced by SPI, which were 8.20, 8.01, and 1.91 times higher than that of the control, respectively. The utilization of a nitrogen source, protease activity, the production and utilization of soluble protein, polypeptides, and free amino acids were also promoted by SPI. The transcriptomic analysis revealed that the genes mokA, mokB, mokC, mokD, mokE, mokI, and mokH which are involved in MK biosynthesis were significantly up-regulated by SPI. Moreover, the glycolysis/gluconeogenesis, pyruvate metabolism, fatty acid degradation, tricarboxylic acid (TCA) cycle, and amino acid metabolism were effectively up-regulated by SPI. The metabolomic analysis indicated that metabolisms of amino acid, lipid, pyruvate, TCA cycle, glycolysis/gluconeogenesis, starch and sucrose, and pentose phosphate pathway were significantly disturbed by SPI. Thus, MPs and MK production promoted by SPI were mainly attributed to the increased biomass, up-regulated gene expression level, and more precursors and energies.
Collapse
Affiliation(s)
- Xueling Qin
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (X.Q.); (H.H.); (J.Z.); (B.X.); (Y.Z.); (J.L.); (W.D.); (Y.H.); (X.Y.)
- College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Haolan Han
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (X.Q.); (H.H.); (J.Z.); (B.X.); (Y.Z.); (J.L.); (W.D.); (Y.H.); (X.Y.)
- College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Jiayi Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (X.Q.); (H.H.); (J.Z.); (B.X.); (Y.Z.); (J.L.); (W.D.); (Y.H.); (X.Y.)
- College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Bin Xie
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (X.Q.); (H.H.); (J.Z.); (B.X.); (Y.Z.); (J.L.); (W.D.); (Y.H.); (X.Y.)
- College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Yufan Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (X.Q.); (H.H.); (J.Z.); (B.X.); (Y.Z.); (J.L.); (W.D.); (Y.H.); (X.Y.)
- College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Jun Liu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (X.Q.); (H.H.); (J.Z.); (B.X.); (Y.Z.); (J.L.); (W.D.); (Y.H.); (X.Y.)
- College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Weiwei Dong
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (X.Q.); (H.H.); (J.Z.); (B.X.); (Y.Z.); (J.L.); (W.D.); (Y.H.); (X.Y.)
- College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Yuanliang Hu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (X.Q.); (H.H.); (J.Z.); (B.X.); (Y.Z.); (J.L.); (W.D.); (Y.H.); (X.Y.)
- College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Xiang Yu
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (X.Q.); (H.H.); (J.Z.); (B.X.); (Y.Z.); (J.L.); (W.D.); (Y.H.); (X.Y.)
- College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| | - Yanli Feng
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, China; (X.Q.); (H.H.); (J.Z.); (B.X.); (Y.Z.); (J.L.); (W.D.); (Y.H.); (X.Y.)
- College of Life Sciences, Hubei Normal University, Huangshi 435002, China
| |
Collapse
|
2
|
He Y, Zhu L, Dong X, Li A, Xu S, Wang L, Shao Y. Metabolic Regulation of Two pksCT Gene Transcripts in Monascus ruber Impacts Citrinin Biosynthesis. J Fungi (Basel) 2023; 9:1174. [PMID: 38132775 PMCID: PMC10745002 DOI: 10.3390/jof9121174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023] Open
Abstract
Citrinin (CIT), a secondary metabolite produced by the filamentous fungi Monascus species, exhibits nephrotoxic, hepatotoxic, and carcinogenic effects in mammals, remarkably restricting the utilization of Monascus-derived products. CIT synthesis is mediated through the pksCT gene and modified by multiple genetic factors. Here, the regulatory effects of two pksCT transcripts, pksCTα, and pksCTβ, generated via pre-mRNA alternative splicing (AS), were investigated using hairpin RNA (ihpRNA) interference, and their impact on CIT biosynthesis and the underlying mechanisms were assessed through chemical biology and transcriptome analyses. The CIT yield in ihpRNA-pksCTα and ihpRNA-pksCT (α + β) transformants decreased from 7.2 μg/mL in the wild-type strain to 3.8 μg/mL and 0.08 μg/mL, respectively. Notably, several genes in the CIT biosynthetic gene cluster, specifically mrl3, mrl5, mrr1, and mrr5 in the ihpRNA-pksCT (α + β) transformant, were downregulated. Transcriptome results revealed that silencing pksCT has a great impact on carbohydrate metabolism, amino acid metabolism, lipid metabolism, and AS events. The key enzymes in the citrate cycle (TCA cycle) and glycolysis were significantly inhibited in the transformants, leading to a decrease in the production of biosynthetic precursors, such as acetyl-coenzyme-A (acetyl-coA) and malonyl-coenzyme-A (malonyl-coA). Furthermore, the reduction of CIT has a regulatory effect on lipid metabolism via redirecting acetyl-coA from CIT biosynthesis towards lipid biosynthesis. These findings offer insights into the mechanisms underlying CIT biosynthesis and AS in Monascus, thus providing a foundation for future research.
Collapse
Affiliation(s)
- Yi He
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.Z.); (X.D.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (A.L.); (S.X.)
| | - Lisha Zhu
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.Z.); (X.D.)
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (A.L.); (S.X.)
| | - Xingxing Dong
- National R&D Center for Se-Rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-Rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.Z.); (X.D.)
| | - Aoran Li
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (A.L.); (S.X.)
| | - Suyin Xu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (A.L.); (S.X.)
| | - Liling Wang
- College of Food Science and Engineering, Tarim University, Alar 843300, China;
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Yang H, Peng Z, Xie L, Xie J, Huang Z. Adding genistein or luteolin decreased the yield of citrinin and without reducing pigments in yam solid-fermentation by Monascus. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6440-6451. [PMID: 37209398 DOI: 10.1002/jsfa.12719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/15/2023] [Accepted: 05/20/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND Chinese yam fermented by Monascus, namely red mold dioscorea (RMD), has the potential of treating diseases. However, the production of citrinin limits the application of RMD. In the present study, the fermentation process of Monascus was optimized by adding genistein or luteolin to reduce citrinin yield. RESULTS The results showed that citrinin in 25 g of Huai Shan yam was reduced by 48% and 72% without affecting the pigment yield by adding 0.2 g of luteolin or genistein, respectively, to a 250-mL conical flask after fermentation for 18 days at 28 °C, whereas the addition of luteolin increased the content of yellow pigment by 1.3-fold. Under optimal conditions, citrinin in 20 g of iron bar yam decreased by 55% and 74% after adding 0.2 g of luteolin or genistein. Luteolin also increased yellow pigment content by 1.2-fold. Ultra HPLC coupled to quadrupole time-of-flight mass spectrometry was used for the preliminary analysis of Monascus fermentation products. It was found that the amino acid types in RMD are similar to those in yams, but there are fewer polysaccharides and fatty acids. CONCLUSION The results obtained in the present study showed that the addition of genistein or luteolin could reduce citrinin on the premise of increasing pigment yield, which laid a foundation for the better use of yams in Monascus fermentation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Haiyun Yang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Zhiqing Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Liuming Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Long M, Pei X, Lu Z, Xu D, Zheng N, Li Y, Ge H, Cao W, Osire T, Xia X. Effective degradation of anthraquinones in Folium Sennae with Monascus fermentation for toxicity reduce and efficacy enhancement. Heliyon 2023; 9:e18735. [PMID: 37560635 PMCID: PMC10407211 DOI: 10.1016/j.heliyon.2023.e18735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Abstract
Folium Sennae are widely used around the world, mainly in purging and removal of endogenous active substances, such as anthraquinone and its derivatives. However, the potential toxicity of anthraquinones to the liver, kidney, and intestinal limits the application of Folium Sennae. In this study, we aimed at safe regulation of Folium Sennae to degrade anthraquinones, boosting medicinal properties and reducing toxicity and potency with Monascus fermentation. Monascus strains H1102 for Folium Sennae fermentation were selected as the initial strain which was capable of producing high yields of functional pigment and low yields of hazardous citrinin. The anthraquinone degradation rate reached 41.2%, with 212.2 U mL-1 of the pigment and approximately 0.038 mg L-1 of the citrinin under optimal fermentation conditions followed by response surface streamlining, which met the requirements of reducing toxicity, increasing efficiency of Monascus fermented Folium Sennae. Furthermore, the Monascus/Folium Sennae culture had no observable toxic effect on HK-2 and L-02 cells in vitro and further inhibited cell apoptosis and necrosis. Overall, our results showed that Monascus fermentation could provide an alternative strategy for toxicity reduction of herbal medicines as well as efficacy enhancement.
Collapse
Affiliation(s)
- Mengfei Long
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaomei Pei
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhi Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Infinitus (China) Co. Ltd., Guangzhou, 510665, China
| | - Duo Xu
- Wuxi Dipont School of Arts and Science, Wuxi, 214122, China
| | - Nan Zheng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yaxian Li
- Infinitus (China) Co. Ltd., Guangzhou, 510665, China
| | - Hanxiao Ge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wentao Cao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Tolbert Osire
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, Guangdong, China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
5
|
Yang H, Meng H, Xie L, Huang Z. Contribution of Quercetin to the Composition and Antioxidant Properties of Monascus Exopolysaccharides. Foods 2023; 12:foods12051004. [PMID: 36900521 PMCID: PMC10001060 DOI: 10.3390/foods12051004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 03/03/2023] Open
Abstract
Exopolysaccharides are important metabolites of Monascus with healthy activities. However, the low production level limits their applications. Hence, the aim of this work was to increase the yield of exopolysaccharides (EPS) and optimize liquid fermentation by adding flavonoids. The EPS yield was optimized via both medium composition and culture conditions. The optional fermentation conditions achieved for EPS production of 7.018 g/L were 50 g/L sucrose, 3.5 g/L yeast extract, 1.0 g/L MgSO4·7H2O, 0.9 g/L KH2PO4, 1.8 g/L K2HPO4·3H2O, 1 g/L quercetin, and 2 mL/L Tween-80, with pH 5.5, inoculum size 9%, seed age 52 h, shaking speed 180 rpm, and fermentation culture 100 h, respectively. Furthermore, the addition of quercetin increased EPS production by 11.66%. The results also showed little citrinin residue in the EPS. The exopolysaccharides' composition and antioxidant capacity of quercetin-modified exopolysaccharides were then preliminarily investigated. The addition of quercetin changed the composition of the exopolysaccharides and the molecular weight (Mw). In addition, the antioxidant activity of Monascus exopolysaccharides was monitored using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-Azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS+), and -OH. Monascus exopolysaccharides have good scavenging ability of DPPH and -OH. Furthermore, quercetin increased the scavenging ABTS+ ability. Overall, these findings provide a potential rationale for the application of quercetin in improving the EPS yield.
Collapse
Affiliation(s)
- Haiyun Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino–German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Hui Meng
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino–German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Liuming Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino–German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino–German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Correspondence:
| |
Collapse
|
6
|
Zhang C, Chen M, Yang L, Cheng Y, Qin Y, Zang Y, Wang B, Sun B, Wang C. Effects of mokF gene deletion and overexpression on the Monacolin K metabolism yields of Monascus purpureus. Appl Microbiol Biotechnol 2022; 106:3069-3080. [PMID: 35435455 DOI: 10.1007/s00253-022-11913-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/30/2022] [Accepted: 04/02/2022] [Indexed: 12/27/2022]
Abstract
Monascus purpureus is a fungus known for producing various physiologically active secondary metabolites. Of these, Monacolin K, a compound with hypocholesterolemic effects, is controlled by the biosynthetic gene mokF. Here, mokF deletion and overexpression strains (F2 and C3, respectively) were constructed using genetic engineering and compared with the M. purpureus wild strain (M1). The results showed that Monacolin K production was reduced by 50.86% in F2 and increased by 74.19% in C3. Of the three strains, C3 showed the highest production of Monacolin K and the most abnormal morphology. In addition, mokF influenced the expression level of mokA-mokI and might play an important role in regulating the biosynthesis of secondary metabolites in M. purpureus. Overall, our study verified the function of mokF in M. purpureus using gene deletion and overexpression technology. KEY POINTS: • The deletion and overexpression strains of mokF gene were successfully constructed. • The deletion or overexpression of mokF gene directly affected Monacolin K production. •The mokF gene had little effect on Monascus pigments and cell biomass.
Collapse
Affiliation(s)
- Chan Zhang
- Beijing Technology & Business University (BTBU), Beijing, 100048, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China. .,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, No. 11 Fucheng Road, Haidian District, Beijing, 100048, China.
| | - Mengxue Chen
- Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Le Yang
- Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Ying Cheng
- Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Yuhui Qin
- Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Yueming Zang
- Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Bei Wang
- Beijing Technology & Business University (BTBU), Beijing, 100048, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Baoguo Sun
- Beijing Technology & Business University (BTBU), Beijing, 100048, China.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China.,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Chengtao Wang
- Beijing Technology & Business University (BTBU), Beijing, 100048, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China. .,Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University, No. 11 Fucheng Road, Haidian District, Beijing, 100048, China.
| |
Collapse
|
7
|
Zhao J, Wang Z, Xu D, Sun X. Identification of antidiabetic components from Cyclocarya paliurus. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Huang Z, Luo Y, Xia X, Wu A, Wu Z. Bioaccessibility, safety, and antidiabetic effect of phenolic-rich extract from fermented Psidium guajava Linn. leaves. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
9
|
1H NMR Combined with Multivariate Statistics for Discrimination of Female and Male Flower Buds of Populus tomentosa. Molecules 2021; 26:molecules26216458. [PMID: 34770866 PMCID: PMC8587820 DOI: 10.3390/molecules26216458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
1H Nuclear Magnetic Resonance (1H NMR) combined with multivariate statistics was adopted to discriminate female and male flower buds of Populus tomentosa in the study. Samples of 11 female and 16 male flower buds of P. tomentosa were collected in Beijing, China. 1H NMR spectra were acquired on a 400 MHz spectrometer. In total, 30 chemical compounds were identified with standards and literature according to chemical shifts, peak areas, and multiplicity. Principal component analysis (PCA), hierarchical clustering analysis (HCA), and supervised orthogonal partial least squares-discriminant analysis (OPLS-DA) were applied to discriminate female and male flower buds. An apparent grouping trend (R2X, 0.809; Q2, 0.903) between female and male groups was exhibited with PCA and HCA. The two groups were also well discriminated with OPLS-DA (R2X, 0.808; R2Y, 0.976; Q2, 0.960). Combined with variable importance in projection (VIP) > 1.0 and p < 0.05 of OPLS-DA, it was found that the content of daucosterol, β-sitosterol, ursolic acid, and betulonic acid in male group was higher than that in female, which should be the key differences of chemical constituents in female and male flower buds of P. tomentosa. The study demonstrated that 1H NMR combined with multivariate statistics could be used to discriminate female and male plants and clarify differences, which provided a novel method to identify the gender of dioecious plants.
Collapse
|
10
|
Gao Y, Hou L, Gao J, Li D, Tian Z, Fan B, Wang F, Li S. Metabolomics Approaches for the Comprehensive Evaluation of Fermented Foods: A Review. Foods 2021; 10:2294. [PMID: 34681343 PMCID: PMC8534989 DOI: 10.3390/foods10102294] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 12/15/2022] Open
Abstract
Fermentation is an important process that can provide new flavors and nutritional and functional foods, to deal with changing consumer preferences. Fermented foods have complex chemical components that can modulate unique qualitative properties. Consequently, monitoring the small molecular metabolites in fermented food is critical to clarify its qualitative properties and help deliver personalized nutrition. In recent years, the application of metabolomics to nutrition research of fermented foods has expanded. In this review, we examine the application of metabolomics technologies in food, with a primary focus on the different analytical approaches suitable for food metabolomics and discuss the advantages and disadvantages of these approaches. In addition, we summarize emerging studies applying metabolomics in the comprehensive analysis of the flavor, nutrition, function, and safety of fermented foods, as well as emphasize the applicability of metabolomics in characterizing the qualitative properties of fermented foods.
Collapse
Affiliation(s)
- Yaxin Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Lizhen Hou
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Jie Gao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Danfeng Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Zhiliang Tian
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Fengzhong Wang
- Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuying Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China; (Y.G.); (L.H.); (J.G.); (D.L.); (Z.T.); (B.F.)
| |
Collapse
|
11
|
Yanli F, Xiang Y. Perspectives on Functional Red Mold Rice: Functional Ingredients, Production, and Application. Front Microbiol 2020; 11:606959. [PMID: 33324390 PMCID: PMC7723864 DOI: 10.3389/fmicb.2020.606959] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/29/2020] [Indexed: 01/16/2023] Open
Abstract
Monacolin K (MK) is a secondary metabolite of the Monascus species that can inhibit cholesterol synthesis. Functional red mold rice (FRMR) is the fermentation product of Monascus spp., which is rich in MK. FRMR is usually employed to regulate serum cholesterol, especially for hypercholesterolemic patients who refuse statins or face statin intolerance. The present perspective summarized the bioactive components of FRMR and their functions. Subsequently, efficient strategies for FRMR production, future challenges of FRMR application, and possible directions were proposed. This perspective helps to understand the present situation and developmental prospects of FRMR.
Collapse
Affiliation(s)
- Feng Yanli
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
- Hubei Engineering Research Center of Typical Wild Vegetables Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, China
- National Demonstration Center for Experimental Biology Education, Hubei Normal University, Huangshi, China
- College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Yu Xiang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, Hubei Normal University, Huangshi, China
- Hubei Engineering Research Center of Typical Wild Vegetables Breeding and Comprehensive Utilization Technology, Hubei Normal University, Huangshi, China
- National Demonstration Center for Experimental Biology Education, Hubei Normal University, Huangshi, China
- College of Life Sciences, Hubei Normal University, Huangshi, China
| |
Collapse
|
12
|
Takahashi JA, Barbosa BVR, Martins BDA, P. Guirlanda C, A. F. Moura M. Use of the Versatility of Fungal Metabolism to Meet Modern Demands for Healthy Aging, Functional Foods, and Sustainability. J Fungi (Basel) 2020; 6:E223. [PMID: 33076336 PMCID: PMC7711925 DOI: 10.3390/jof6040223] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/22/2020] [Accepted: 09/27/2020] [Indexed: 01/27/2023] Open
Abstract
Aging-associated, non-transmissible chronic diseases (NTCD) such as cancer, dyslipidemia, and neurodegenerative disorders have been challenged through several strategies including the consumption of healthy foods and the development of new drugs for existing diseases. Consumer health consciousness is guiding market trends toward the development of additives and nutraceutical products of natural origin. Fungi produce several metabolites with bioactivity against NTCD as well as pigments, dyes, antioxidants, polysaccharides, and enzymes that can be explored as substitutes for synthetic food additives. Research in this area has increased the yields of metabolites for industrial applications through improving fermentation conditions, application of metabolic engineering techniques, and fungal genetic manipulation. Several modern hyphenated techniques have impressively increased the rate of research in this area, enabling the analysis of a large number of species and fermentative conditions. This review thus focuses on summarizing the nutritional, pharmacological, and economic importance of fungi and their metabolites resulting from applications in the aforementioned areas, examples of modern techniques for optimizing the production of fungi and their metabolites, and methodologies for the identification and analysis of these compounds.
Collapse
Affiliation(s)
- Jacqueline A. Takahashi
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Pres. Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil; (B.V.R.B.); (B.d.A.M.)
| | - Bianca V. R. Barbosa
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Pres. Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil; (B.V.R.B.); (B.d.A.M.)
| | - Bruna de A. Martins
- Department of Chemistry, Exact Sciences Institute, Universidade Federal de Minas Gerais, Pres. Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil; (B.V.R.B.); (B.d.A.M.)
| | - Christiano P. Guirlanda
- Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Pres. Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil; (C.P.G.); (M.A.F.M.)
| | - Marília A. F. Moura
- Department of Food Science, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Pres. Antônio Carlos Avenue, 6627, Pampulha, Belo Horizonte 31270-901, MG, Brazil; (C.P.G.); (M.A.F.M.)
| |
Collapse
|