1
|
Martín-Vertedor D, de Valle-Prieto MB, Garrido M, Gil MV, Delgado-Adámez J. A lutein and zeaxanthin enriched extra virgin olive oil as a potential nutraceutical agent: A pilot study. Food Chem 2025; 464:141811. [PMID: 39532059 DOI: 10.1016/j.foodchem.2024.141811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/07/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Xanthophylls lutein and zeaxanthin are carotenoids with important antioxidant capacities and relevant roles against the prevention of eye diseases. In this study a valorization of non-commercial spinach to obtain lutein and zeaxanthin as raw materials to develop nutraceuticals was carried out. Three oil matrixes were analyzed: extra virgin olive oil (EVOO), lutein and zeaxanthin enriched EVOO (EVOO+LZ), and EVOO enriched with 25 % of EVOO+LZ (namely EVOO+D) to evaluate their biological potential as antioxidants. Urinary antioxidant total capacity, and circulatory blood levels of lutein and zeaxanthin were determined (in vivo analysis). Also, a simulation of gastrointestinal simulation (in vitro analysis) was performed. The results showed an increase in the circulatory levels of lutein-zeaxanthin after the ingestion of EVOO+LZ during 45 and 60 days, and an increase in the urinary antioxidant levels after the intake of EVOO+LZ and EVOO+D. In vitro assay revealed that both xanthophylls showed bioavailability to be assimilated in the intestinal tract. Therefore, these EVOO enriched with lutein-zeaxanthin might be considered as powerful antioxidant tools with potential properties in the management/prevention of eye diseases.
Collapse
Affiliation(s)
- Daniel Martín-Vertedor
- Center for Scientific Research and Technology of Extremadura (CICYTEX), Technological Institute of Food and Agriculture (INTAEX), Government of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
| | - María Benito de Valle-Prieto
- Center for Scientific Research and Technology of Extremadura (CICYTEX), Technological Institute of Food and Agriculture (INTAEX), Government of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
| | - María Garrido
- Department of Physiology, Faculty of Sciences, Universidad de Extremadura, E-06006 Badajoz, Spain
| | - Mª Victoria Gil
- Department de Organic and Inorganic Chemistry, Faculty of Sciences and IACYS-Unidad de Química Verde y Desarrollo Sostenible, Universidad de Extremadura, E-06006 Badajoz, Spain.
| | - Jonathan Delgado-Adámez
- Center for Scientific Research and Technology of Extremadura (CICYTEX), Technological Institute of Food and Agriculture (INTAEX), Government of Extremadura, Avda. Adolfo Suárez s/n, 06007 Badajoz, Spain
| |
Collapse
|
2
|
Kumar D, Sachdeva K, Tanwar R, Devi S. Review on novel targeted enzyme drug delivery systems: enzymosomes. SOFT MATTER 2024; 20:4524-4543. [PMID: 38738579 DOI: 10.1039/d4sm00301b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
The goal of this review is to present enzymosomes as an innovative means for site-specific drug delivery. Enzymosomes make use of an enzyme's special characteristics, such as its capacity to accelerate the reaction rate and bind to a particular substrate at a regulated rate. Enzymosomes are created when an enzyme forms a covalent linkage with a liposome or lipid vesicle surface. To construct enzymosomes with specialized activities, enzymes are linked using acylation, direct conjugation, physical adsorption, and encapsulation techniques. By reducing the negative side effects of earlier treatment techniques and exhibiting efficient medication release, these cutting-edge drug delivery systems improve long-term sickness treatments. They could be a good substitute for antiplatelet medication, gout treatment, and other traditional medicines. Recently developed supramolecular vesicular delivery systems called enzymosomes have the potential to improve drug targeting, physicochemical characteristics, and ultimately bioavailability in the pharmaceutical industry. Enzymosomes have advantages over narrow-therapeutic index pharmaceuticals as focusing on their site of action enhances both their pharmacodynamic and pharmacokinetic profiles. Additionally, it reduces changes in normal enzymatic activity, which enhances the half-life of an enzyme and accomplishes enzyme activity on specific locations.
Collapse
Affiliation(s)
- Dinesh Kumar
- School of Pharmaceutical Sciences, Om Sterling Global University, Hisar, 125001, Haryana, India.
| | - Komal Sachdeva
- School of Pharmaceutical Sciences, Om Sterling Global University, Hisar, 125001, Haryana, India.
| | - Rajni Tanwar
- Department of Pharmaceutical Sciences, Starex University, Gurugram, India
| | - Sunita Devi
- School of Pharmaceutical Sciences, Om Sterling Global University, Hisar, 125001, Haryana, India.
| |
Collapse
|
3
|
Bitounis D, Jacquinet E, Rogers MA, Amiji MM. Strategies to reduce the risks of mRNA drug and vaccine toxicity. Nat Rev Drug Discov 2024; 23:281-300. [PMID: 38263456 DOI: 10.1038/s41573-023-00859-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2023] [Indexed: 01/25/2024]
Abstract
mRNA formulated with lipid nanoparticles is a transformative technology that has enabled the rapid development and administration of billions of coronavirus disease 2019 (COVID-19) vaccine doses worldwide. However, avoiding unacceptable toxicity with mRNA drugs and vaccines presents challenges. Lipid nanoparticle structural components, production methods, route of administration and proteins produced from complexed mRNAs all present toxicity concerns. Here, we discuss these concerns, specifically how cell tropism and tissue distribution of mRNA and lipid nanoparticles can lead to toxicity, and their possible reactogenicity. We focus on adverse events from mRNA applications for protein replacement and gene editing therapies as well as vaccines, tracing common biochemical and cellular pathways. The potential and limitations of existing models and tools used to screen for on-target efficacy and de-risk off-target toxicity, including in vivo and next-generation in vitro models, are also discussed.
Collapse
Affiliation(s)
- Dimitrios Bitounis
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, USA
- Moderna, Inc., Cambridge, MA, USA
| | | | | | - Mansoor M Amiji
- Departments of Pharmaceutical Sciences and Chemical Engineering, Northeastern University, Boston, MA, USA.
| |
Collapse
|
4
|
AlMadalli HJ, Abdul Rasool BK, Shehab NG, Sala FD, Borzacchiello A. Pomegranate extract-loaded sphingosomes for the treatment of cancer: Phytochemical investigations, formulation, and antitumor activity evaluation. PLoS One 2024; 19:e0293115. [PMID: 38346085 PMCID: PMC10861072 DOI: 10.1371/journal.pone.0293115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/22/2023] [Indexed: 02/15/2024] Open
Abstract
AIM Formulation of Pomegranate Extracts (PE)-loaded sphingosomes as an antitumor therapy for the intravenous and passive targeted delivery to various tumor types, especially that of the breast, colon, and uterus; to increase the therapeutic activity and decrease the adverse effects profile. METHODS The pericarp and seeds' juice of Punica granatum were each extracted using D.W. and ethanol. Phytochemical investigation of all extracts was carried out including total phenolics, flavonoids, and anthocyanins contents, the antioxidant activity, as well as HPLC analysis of phenolics and flavonoids. The antitumor potential of all extracts was also tested utilizing three cell lines: MCF-7, HeLa, and HCT116. The candidate extract was chosen for the formulation phase and was entrapped into the sphingosomes using the thin-film hydration method and employing three different PE: lipids weight ratios. The synthesized formulations were characterized for their size, morphological features, zeta potential, entrapment efficiency, and in vitro drug release and kinetics modeling studies. The optimized formula was further analyzed by FTIR spectroscopy and electron microscopy. The antitumor activity of F2 was also investigated using the same cancer cell lines compared to the plant extract. RESULTS The highest phenolics, flavonoids, and anthocyanins contents were observed in the ethanolic pericarps extract (EPE), followed by the ethanolic seeds extract (ESE). Consequently, EPE showed a higher antitumor activity hence it was selected for the formulation phase. PE-loaded sphingosomes formula (F2) was selected for having the highest EE% (71.64%), and a sustained release profile with the highest in vitro release (42.5±9.44%). By employing the DDSolver, the Weibull model was found the most suitable to describe the PE release kinetics compared to other models. The release mechanism was found to follow Fickian diffusion. Simulated pharmacokinetic parameters have portrayed F2 as the candidate formula, with the highest AUC (536.095) and slowest MDT (0.642 h). In addition, F2 exhibited a significant (p>0.05) stronger and prolonged anticancer effect against MCF-7, HeLa, and HCT116 cell lines at all concentrations tested compared to the free extract. CONCLUSION The results proved that sphingosomes are an effective delivery system, improving pharmacological efficacy and reducing serious side effects of anticancer medications and natural products.
Collapse
Affiliation(s)
- Huda Jamal AlMadalli
- Pharmaceutical Product Development, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | | | - Naglaa Gamil Shehab
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College, Dubai, United Arab Emirates
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Francesca Della Sala
- Institute of Polymers, Composite, and Biomaterials (IPCB), National Research Council of Italy, Naples, Italy
| | - Assunta Borzacchiello
- Institute of Polymers, Composite, and Biomaterials (IPCB), National Research Council of Italy, Naples, Italy
| |
Collapse
|
5
|
Lopez C, David-Briand E, Lollier V, Mériadec C, Bizien T, Pérez J, Artzner F. Solubilization of free β-sitosterol in milk sphingomyelin and polar lipid vesicles as carriers: Structural characterization of the membranes and sphingosome morphology. Food Res Int 2023; 165:112496. [PMID: 36869506 DOI: 10.1016/j.foodres.2023.112496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/29/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023]
Abstract
High consumption of plant sterols reduces the risk of cardiovascular diseases in humans and provides health benefits. Increasing the amount of plant sterols in the diet is therefore necessary to reach the recommended daily dietary intake. However, food supplementation with free plant sterols is challenging because of their low solubility in fats and water. The objectives of this study were to investigate the capacity of milk-sphingomyelin (milk-SM) and milk polar lipids to solubilise β-sitosterol molecules in bilayer membranes organised as vesicles called sphingosomes. The thermal and structural properties of milk-SM containing bilayers composed of various amounts of β-sitosterol were examined by differential scanning calorimetry (DSC) and temperature-controlled X-ray diffraction (XRD), the molecular interactions were studied using the Langmuir film technique, the morphologies of sphingosomes and β-sitosterol crystals were observed by microscopy. We showed that the milk-SM bilayers devoid of β-sitosterol exhibited a gel to fluid Lα phase transition for Tm = 34.5 °C and formed facetted spherical sphingosomes below Tm. The solubilisation of β-sitosterol within milk-SM bilayers induced a liquid-ordered Lo phaseabove 25 %mol (1.7 %wt) β-sitosterol and a softening of the membranes leading to the formation of elongated sphingosomes. Attractive molecular interactions revealed a condensing effect of β-sitosterol on milk-SM Langmuir monolayers. Above 40 %mol (25.7 %wt) β-sitosterol, partitioning occured with the formation of β-sitosterol microcrystals in the aqueous phase. Similar results were obtained with the solubilization of β-sitosterol within milk polar lipid vesicles. For the first time, this study highlighted the efficient solubilization of free β-sitosterol within milk-SM based vesicles, which opens new market opportunities for the formulation of functional foods enriched in non-crystalline free plant sterols.
Collapse
Affiliation(s)
- Christelle Lopez
- INRAE, BIA, F-44316 Nantes, France; INRAE, STLO, F-35000 Rennes, France.
| | | | - Virginie Lollier
- INRAE, BIA, F-44316 Nantes, France; INRAE, PROBE Research Infrastructure, BIBS Facility, F-44316 Nantes, France
| | | | - Thomas Bizien
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin BP48, F-91192 Gif-sur-Yvette, France
| | - Javier Pérez
- Synchrotron Soleil, L'Orme des Merisiers, Saint-Aubin BP48, F-91192 Gif-sur-Yvette, France
| | - Franck Artzner
- IPR, UMR 6251, CNRS, University of Rennes 1, F-35042 Rennes, France
| |
Collapse
|
6
|
Lopez C, David-Briand E, Mériadec C, Bourgaux C, Pérez J, Artzner F. Milk sphingosomes as lipid carriers for α-tocopherol in aqueous foods: thermotropic phase behaviour and morphology. Food Res Int 2022; 162:112115. [DOI: 10.1016/j.foodres.2022.112115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/22/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
|
7
|
Yang F, Chen G. The nutritional functions of dietary sphingomyelin and its applications in food. Front Nutr 2022; 9:1002574. [PMID: 36337644 PMCID: PMC9626766 DOI: 10.3389/fnut.2022.1002574] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Sphingolipids are common structural components of cell membranes and are crucial for cell functions in physiological and pathophysiological conditions. Sphingomyelin and its metabolites, such as sphingoid bases, ceramide, ceramide-1-phosphate, and sphingosine-1-phosphate, play signaling roles in the regulation of human health. The diverse structures of sphingolipids elicit various functions in cellular membranes and signal transduction, which may affect cell growth, differentiation, apoptosis, and maintain biological activities. As nutrients, dietary sphingomyelin and its metabolites have wide applications in the food and pharmaceutical industry. In this review, we summarized the distribution, classifications, structures, digestion, absorption and metabolic pathways of sphingolipids, and discussed the nutritional functioning of sphingomyelin in chronic metabolic diseases. The possible implications of dietary sphingomyelin in the modern food preparations including dairy products and infant formula, skin improvement, delivery system and oil organogels are also evaluated. The production of endogenous sphingomyelin is linked to pathological changes in obesity, diabetes, and atherosclerosis. However, dietary supplementations of sphingomyelin and its metabolites have been shown to maintain cholesterol homeostasis and lipid metabolism, and to prevent or treat these diseases. This seemly paradoxical phenomenon shows that dietary sphingomyelin and its metabolites are candidates for food additives and functional food development for the prevention and treatment of chronic metabolic diseases in humans.
Collapse
Affiliation(s)
- Fang Yang
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan, China
- *Correspondence: Fang Yang,
| | - Guoxun Chen
- Department of Nutrition, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
8
|
Liu H, Hu X, Li L, Meng X, Fang Y, Xia Y. Micron and nano hybrid ufasomes from conjugated linoleic acid, their vesiculation and encapsulation of ginsenoside Rg3. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4140-4150. [PMID: 34997612 DOI: 10.1002/jsfa.11763] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/25/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Unsaturated fatty acids used to form unstable micro-vesicles, while conjugate linoleic acid (CLA)-sodium dodecyl sulfate (SDS) can self-assembly to stable nano-conjugate linoleic acid vesicles (nano-CLAVs). Generally, micro-capsule could geometrically provide higher loading capacity but also generate concerns in construction convenience, sustained release, bioaccessibility and stability. Hence there is a contradiction between loading capacity and encapsulation efficiency. Therefore, the study of the factors that decide the capsule size falling in nano or micron size with same capsule material would be a benefit to food or drug delivery science. RESULTS The micron- and nano-CLAVs were constructed for encapsulation and sustained release of ginsenoside Rg3. The formation mechanism of nano or micron capsule,s the effect of vesicle sizes on encapsulation efficiency, drug loading efficiency and stability of the encapsulated Rg3 were investigated. It was found that with the addition of salt (PBS), the size of CLAVs jumped from nano to micron. Furthermore, the salt concentration is the key factor that decides the vesicle size of nano or micron. The pH at fabrication triggers the vesiculation and dramatically affects the vesicle size over the nano and micron scales. CONCLUSION Compared to the nano-CLAVs, micron vesicles enhanced the loading capacity to 137.6% and the encapsulation efficiency to 138.4%, respectively. Meanwhile, the micron-CLAVs performed similar sustained release of Rg3 as the nano-CLAVs did, and was stable for 120 days at room temperature or sustained 98.9% of capsules after centrifuge at 6090 × g for 20 min. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Huan Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Xueyi Hu
- School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Lei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Xinyu Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Yun Fang
- School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| | - Yongmei Xia
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Chemical and Materials Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Safta DA, Bogdan C, Moldovan ML. Vesicular Nanocarriers for Phytocompounds in Wound Care: Preparation and Characterization. Pharmaceutics 2022; 14:pharmaceutics14050991. [PMID: 35631577 PMCID: PMC9147886 DOI: 10.3390/pharmaceutics14050991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 01/27/2023] Open
Abstract
The need to develop wound healing preparations is a pressing challenge given the limitations of the current treatment and the rising prevalence of impaired healing wounds. Although herbal extracts have been used for many years to treat skin disorders, due to their wound healing, anti-inflammatory, antimicrobial, and antioxidant effects, their efficacy can be questionable because of their poor bioavailability and stability issues. Nanotechnology offers an opportunity to revolutionize wound healing therapies by including herbal compounds in nanosystems. Particularly, vesicular nanosystems exhibit beneficial properties, such as biocompatibility, targeted and sustained delivery capacity, and increased phytocompounds’ bioavailability and protection, conferring them a great potential for future applications in wound care. This review summarizes the beneficial effects of phytocompounds in wound healing and emphasizes the advantages of their entrapment in vesicular nanosystems. Different types of lipid nanocarriers are presented (liposomes, niosomes, transferosomes, ethosomes, cubosomes, and their derivates’ systems), highlighting their applications as carriers for phytocompounds in wound care, with the presentation of the state-of-art in this field. The methods of preparation, characterization, and evaluation are also described, underlining the properties that ensure good in vitro and in vivo performance. Finally, future directions of topical systems in which vesicle-bearing herbal extracts or phytocompounds can be incorporated are pointed out, as their development is emerging as a promising strategy.
Collapse
|
10
|
Hao J, Xu J, Zhang W, Li X, Liang D, Xu D, Cao Y, Sun B. The improvement of the physicochemical properties and bioaccessibility of lutein microparticles by electrostatic complexation. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107381] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
11
|
Gautam L, Shrivastava P, Yadav B, Jain A, Sharma R, Vyas S, Vyas SP. Multicompartment systems: A putative carrier for combined drug delivery and targeting. Drug Discov Today 2021; 27:1184-1195. [PMID: 34906689 DOI: 10.1016/j.drudis.2021.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 10/27/2021] [Accepted: 12/08/2021] [Indexed: 12/11/2022]
Abstract
In this review, we discuss recent developments in multicompartment systems commonly referred to as vesosomes, as well as their method of preparation, surface modifications, and clinical potential. Vesosomal systems are able to entrap more than one drug moiety and can be customized for site-specific delivery. We focus in particular on the possible reticuloendothelial system (RES) - mediated accumulation of vesosomes, and their application in tumor targeting, as areas for further investigation.
Collapse
Affiliation(s)
- Laxmikant Gautam
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Priya Shrivastava
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Bhavana Yadav
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Anamika Jain
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Rajeev Sharma
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP 470003, India
| | - Sonal Vyas
- Shri Chaitanya Hospital, Sagar, MP 470003, India
| | - S P Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, MP 470003, India.
| |
Collapse
|
12
|
Stefanov SR, Andonova VY. Lipid Nanoparticulate Drug Delivery Systems: Recent Advances in the Treatment of Skin Disorders. Pharmaceuticals (Basel) 2021; 14:1083. [PMID: 34832865 PMCID: PMC8619682 DOI: 10.3390/ph14111083] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
The multifunctional role of the human skin is well known. It acts as a sensory and immune organ that protects the human body from harmful environmental impacts such as chemical, mechanical, and physical threats, reduces UV radiation effects, prevents moisture loss, and helps thermoregulation. In this regard, skin disorders related to skin integrity require adequate treatment. Lipid nanoparticles (LN) are recognized as promising drug delivery systems (DDS) in treating skin disorders. Solid lipid nanoparticles (SLN) together with nanostructured lipid carriers (NLC) exhibit excellent tolerability as these are produced from physiological and biodegradable lipids. Moreover, LN applied to the skin can improve stability, drug targeting, occlusion, penetration enhancement, and increased skin hydration compared with other drug nanocarriers. Furthermore, the features of LN can be enhanced by inclusion in suitable bases such as creams, ointments, gels (i.e., hydrogel, emulgel, bigel), lotions, etc. This review focuses on recent developments in lipid nanoparticle systems and their application to treating skin diseases. We point out and consider the reasons for their creation, pay attention to their advantages and disadvantages, list the main production techniques for obtaining them, and examine the place assigned to them in solving the problems caused by skin disorders.
Collapse
Affiliation(s)
- Stefan R. Stefanov
- Department of Pharmaceutical Technologies, Faculty of Pharmacy, Medical University of Varna, 9002 Varna, Bulgaria;
| | | |
Collapse
|