1
|
An X, Ma C, Gong L, Liu C, Li N, Liu Z, Li X. Ionic-physical-chemical triple cross-linked all-biomass-based aerogel for thermal insulation applications. J Colloid Interface Sci 2024; 668:678-690. [PMID: 38710124 DOI: 10.1016/j.jcis.2024.04.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
Aerogels, as a unique porous material, are expected to be used as insulation materials to solve the global environmental and energy crisis. Using chitosan, citric acid, pectin and phytic acid as raw materials, an all-biomass-based aerogel with high modulus was prepared by the triple strategy of ionic, physical and chemical cross-linking through directional freezing technique. Based on this three-dimensional network, the aerogel exhibited excellent compressive modulus (24.89 ± 1.76 MPa) over a wide temperature range and thermal insulation properties. In the presence of chitosan, citric acid and phytic acid, the aerogel obtained excellent fire safety (LOI value up to 31.2%) and antibacterial properties (antibacterial activity against Staphylococcus aureus and Escherichia coli reached 81.98% and 67.43%). In addition, the modified aerogel exhibited excellent hydrophobicity (hydrophobic angle of 146°) and oil-water separation properties. More importantly, the aerogel exhibited a biodegradation rate of up to 40.31% for 35 days due to its all-biomass nature. This work provides a green and sustainable strategy for the production of highly environmentally friendly thermal insulation materials with high strength, flame retardant, antibacterial and hydrophobic properties.
Collapse
Affiliation(s)
- Xinyu An
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Chang Ma
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Ling Gong
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Chang Liu
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Ning Li
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Zhiming Liu
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| | - Xu Li
- Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
2
|
Su Y, Chen Y, Qin Y, Qin R, Ahmad A, Yao S. Pectin extracted from Premna Microphylla Turcz for preparation of a "sandwich" multi-property sensor film involved with deep eutectic solvent. Int J Biol Macromol 2023; 253:127171. [PMID: 37788731 DOI: 10.1016/j.ijbiomac.2023.127171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
An acidic deep eutectic solvent (DES, choline chloride/citric acid) was used to efficiently extract edible pectin from Premna microphylla Turcz (PMTP) and further prepare the film sensor with the purpose of "four birds with one stone" with the roles of extractant, coalescent, conductivity promoter and bacteriostatic agent. The optimized extraction process accorded with pseudo second-order kinetics, which was carried out at 78.2 °C for 1.29 h with the solid-liquid ratio of 1:34.66 g/mL with the yield up to 0.8210 g/g. After comprehensive characterizations of pectin product, a simple casting method was used to prepare the PMTP-DES based composite film. It showed that the composite film has promising compatibility, smooth surface, good breathability and ideal homogeneity. After 30 power on/power off cycles at 10 V, it exhibited satisfied conductivity stability. Moreover, the PMTP-DES film could be simply assembled as the flexible visual temperature sensor, with sensitive response at breathing or finger touch; it exhibited the highest sensitivity of 134 %/°C when the external temperature changed from 15 to 55 °C. Besides, the composite film also has preferable antimicrobial activity. The whole results and findings were aimed to contribute for the raw material, composition, preparation, and functions of the existing flexible functional materials.
Collapse
Affiliation(s)
- Yadi Su
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yu Chen
- South Sichuan Institute of Translational Medicine, College of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Yuting Qin
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ruixuan Qin
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Ali Ahmad
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Shun Yao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
3
|
Bayer G, Shayganpour A, Bayer IS. Efficacy of a New Alcohol-Free Organic Acid-Based Hand Sanitizer against Foodborne Pathogens. TOXICS 2023; 11:938. [PMID: 37999590 PMCID: PMC10674435 DOI: 10.3390/toxics11110938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
In light of the global health crisis triggered by the COVID-19 pandemic, numerous experts have deemed the utilization of hand sanitizers imperative as a precautionary measure against the virus. Consequently, the demand for hand sanitizers has experienced a substantial surge. Since the beginning of 2020, the utilization of alcohol-free hand sanitizers has been increasingly favored due to the potential risks associated with alcohol poisoning, flammability, as well as the adverse effects on skin lipid dissolution, dehydration, and sebum reduction, which can lead to severe cases of eczema and norovirus infections. In this study, we developed an aqueous hand sanitizer that does not contain alcohol. The sanitizer consists of naturally occurring, food-grade organic acids, including lactic, citric, and azelaic acids. Additionally, food-grade ammonium sulfate and a small amount of povidone-iodine (PVPI) were included in the formulation to create a synergistic and potent antibacterial effect. The effectiveness of the hand sanitizer was evaluated against four common foodborne pathogens, namely Clostridium botulinum, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus, via in vitro testing. The organic acids exhibited a synergistic inhibitory function, resulting in a 3-log reduction in CFU/mL. Furthermore, the presence of povidone-iodine and ammonium sulfate enhanced their antibacterial effect, leading to a 4-log reduction in CFU/mL. The hand sanitizer solution remained stable even after 60 days of storage. During this period, the detection of additional triiodide (I3-) ions occurred, which have the ability to release broad-spectrum molecular iodine upon penetrating the cell walls. This alcohol-free hand sanitizer may offer extended protection and is anticipated to be gentle on the skin. This is attributed to the presence of citric and lactic acids, which possess cosmetic properties that soften and smoothen the skin, along with antioxidant properties.
Collapse
Affiliation(s)
- Gözde Bayer
- DS Bio ve Nanoteknoloji A. Ş, Lavida City Plaza 45/7, 06530 Ankara, Türkiye;
| | - Amirreza Shayganpour
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
| | - Ilker S. Bayer
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy;
| |
Collapse
|
4
|
Inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on stainless steel by synergistic effects of tap water-based neutral electrolyzed water and lactic acid. Food Microbiol 2023; 112:104233. [PMID: 36906304 DOI: 10.1016/j.fm.2023.104233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/05/2023]
Abstract
Contaminated food contact surface is one of the most important transmission routes for foodborne pathogens. Stainless steel is one such food-contact surface that is widely used in food-processing environments. The present study aimed to evaluate the synergistic antimicrobial efficacy of a combination of tap water-based neutral electrolyzed water (TNEW) and lactic acid (LA) against the foodborne pathogens Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes on stainless steel. The results revealed that simultaneous treatment with TNEW (ACC of 4.60 mg/L) and 0.1% LA (TNEW-LA) for 5 min resulted in 4.99-, 4.34-, and >5.4- log CFU/cm2 reductions in E. coli O157:H7, S. Typhimurium, and L. monocytogenes on stainless steel, respectively. Of these, 4.00-, 3.57-, and >4.76-log CFU/cm2 reductions in E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively were exclusively attributed to the synergistic action of the combined treatments after factoring out the reductions due to individual treatments. Furthermore, five mechanistic investigations revealed that the key mechanisms underlying the synergistic antibacterial effect of TNEW-LA were reactive oxygen species (ROS) production, cell membrane damage resulting from membrane lipid oxidation, DNA damage, and inactivation of intracellular enzymes. Overall, our findings suggest that the TNEW-LA combination treatment could be effectively used in the sanitization of food processing environments, especially the food contact surfaces, to control major pathogens and enhance food safety.
Collapse
|
5
|
Treesuwan K, Jirapakkul W, Tongchitpakdee S, Chonhenchob V, Mahakarnchanakul W, Tongkhao K. Antimicrobial Mechanism of Salt/Acid Solution on Microorganisms Isolated from Trimmed Young Coconut. Microorganisms 2023; 11:microorganisms11040873. [PMID: 37110296 PMCID: PMC10140939 DOI: 10.3390/microorganisms11040873] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
This study investigated the inhibitory activity of organic solutions containing 5, 10, 15, 20 and 30% (w/v) sodium chloride and citric acid solution and 15:10, 15:15, 15:20 and 15:30% (w/v) sodium chloride (NaCl) combined with citric acid (CA) solution (salt/acid solution) for 10 min against microorganisms isolated from trimmed young coconut: Bacillus cereus, B. subtilis, Staphylococcus aureus, S. epidermidis, Enterobacter aerogenes, Serratia marcescens, Candida tropicalis, Lodderromyces elongisporus, Aspergillus aculeatus and Penicillium citrinum. Commercial antimicrobial agents such as potassium metabisulfite and sodium hypochlorite (NaOCl) were used as the controls. Results showed that 30% (w/v) NaCl solution displayed antimicrobial properties against all microorganisms, with s reduction range of 0.00–1.49 log CFU/mL. Treatment of 30% (w/v) CA solution inhibited all microorganisms in the reduction range of 1.50–8.43 log CFU/mL, while 15:20% (w/v) salt/acid solution was the minimum concentration that showed a similar antimicrobial effect with NaOCl and strong antimicrobial effect against Gram-negative bacteria. The mode of action of this solution against selected strains including B. cereus, E. aerogenes and C. tropicalis was also determined by scanning electron microscopy and transmission electron microscopy. B. cereus and E. aerogenes revealed degradation and detachment of the outer layer of the cell wall and cytoplasm membrane, while cytoplasmic inclusion in treated C. tropicalis cells changed to larger vacuoles and rough cell walls. The results suggested that a 15:20% (w/v) salt/acid solution could be used as an alternative antimicrobial agent to eliminate microorganisms on fresh produce.
Collapse
|
6
|
Hu M, Dong Q, Liu Y, Sun T, Gu M, Zhu H, Xia X, Li Z, Wang X, Ma Y, Yang S, Qin X. A Meta-Analysis and Systematic Review of Listeria monocytogenes Response to Sanitizer Treatments. Foods 2022; 12:foods12010154. [PMID: 36613373 PMCID: PMC9818549 DOI: 10.3390/foods12010154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/15/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous organism that can be found in food-related environments, and sanitizers commonly prevent and control it. The aim of this study is to perform a meta-analysis of L. monocytogenes response to sanitizer treatments. According to the principle of systematic review, we extracted 896 records on the mean log-reduction of L. monocytogenes from 84 publications as the dataset for this study. We applied a mixed-effects model to describe L. monocytogenes response to sanitizer treatment by considering sanitizer type, matrix type, biofilm status, sanitizer concentration, treatment time, and temperature. Based on the established model, we compared the response of L. monocytogenes under different hypothetical conditions using forest plots. The results showed that environmental factors (i.e., sanitizer concentration, temperature, and treatment time) affected the average log-reduction of L. monocytogenes (p < 0.05). L. monocytogenes generally exhibited strong resistance to citric acid and sodium hypochlorite but had low resistance to electrolyzed water. The planktonic cells of L. monocytogenes were less resistant to peracetic acid and sodium hypochlorite than the adherent and biofilm cells. Additionally, the physical and chemical properties of the contaminated or inoculated matrix or surface also influenced the sanitizer effectiveness. This review may contribute to increasing our knowledge of L. monocytogenes resistance to sanitizers and raising awareness of appropriate safety precautions.
Collapse
Affiliation(s)
- Minmin Hu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yangtai Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence:
| | - Tianmei Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Mingliang Gu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Huajian Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xuejuan Xia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yue Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shuo Yang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaojie Qin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| |
Collapse
|
7
|
Combined Biocidal Effect of Gaseous Ozone and Citric Acid on Acinetobacter baumannii Biofilm Formed on Ceramic Tiles and Polystyrene as a Novel Approach for Infection Prevention and Control. Processes (Basel) 2022. [DOI: 10.3390/pr10091788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Acinetobacter baumannii is a prominent emerging pathogen responsible for a variety of hospital-acquired infections. It can contaminate inanimate surfaces and survive in harsh environmental conditions for prolonged periods of time in the form of biofilm. Biofilm is difficult to remove with only one method of disinfection, so combined disinfection methods and biocidal active substances are needed for biofilm eradication. Additionally, having in mind ecological demands, legislators are more prone using fewer toxic substances for disinfection that produce less solid waste and hazardous disinfection byproducts. Gaseous ozone and citric acid are natural biocidal compounds, and the purpose of this study was to determine their combined biocidal effects on A. baumannii biofilm formed on ceramics and polystyrene. Twenty-four-hour A. baumannii biofilm formed on ceramic tiles and polystyrene was exposed to different combinations of disinfection protocols with 25 ppm of gaseous ozone for 1 h exposure time and 15% citric acid for 10 min exposure. The total number of bacteria was counted afterwards and expressed as CFU/cm2. The determined disinfection protocols of A. baumannii biofilm with combined citric acid and gaseous ozone caused reduction of 2.8 to 5.89 log10 CFU (99.99% inhibition rate) of total viable bacteria for each method, with the citric acid–ozone–citric acid disinfection protocol being most successful in eradication of viable bacteria on both ceramics and polystyrene. In conclusion, gaseous ozone and citric acid showed good combined biocidal effects on A. baumannii biofilm and successfully reduced early A. baumannii biofilm from ceramic and polystyrene surfaces. The given combination of active substances can be a good option for eco-friendly disinfection of hospital inanimate surfaces from A. baumannii biofilm contamination with prior mechanical cleaning.
Collapse
|
8
|
Zhang W, Shen J, Gao P, Jiang Q, Xia W. Sustainable chitosan films containing a betaine-based deep eutectic solvent and lignin: Physicochemical, antioxidant, and antimicrobial properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Edible coatings and application of photodynamics in ricotta cheese preservation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Photodynamic inactivation of Staphylococcus aureus in the system of titanium dioxide nanoparticles sensitized by hypocrellin B and its application in food preservation. Food Res Int 2022; 156:111141. [DOI: 10.1016/j.foodres.2022.111141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 11/20/2022]
|
11
|
Unal Turhan E, Polat S, Erginkaya Z, Konuray G. Investigation of synergistic antibacterial effect of organic acids and ultrasound against pathogen biofilms on lettuce. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Synergistic Antimicrobial Effect of UV-A Irradiation and Malic Acid Combination Treatment Against Foodborne Pathogens on Spinach and the Underlying Mechanism. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-021-02662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|