1
|
Wang Y, Fu Y, Zhang Q, Zhu Y, Yang Q, Bian C, Zhao LL, Chen Q, Bi HJ, Yang XH, Gao XL. Enhancement of ester biosynthesis in blueberry wines through co-fermentation via cell-cell contact between Torulaspora delbrueckii and Saccharomyces cerevisiae. Food Res Int 2024; 179:114029. [PMID: 38342548 DOI: 10.1016/j.foodres.2024.114029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/13/2024]
Abstract
This study investigated the effects of co-fermentation of T. delbrueckii and S. cerevisiae on the volatile composition and sensory characteristics of blueberry wines. Mixed fermentation led to higher levels of terpenes, higher alcohols, and esters compared to wines fermented with each yeast individually. Conversely, when T. delbrueckii were physically separated from S. cerevisiae in the double-compartment fermenter, contrasting outcomes emerged. The stronger fruity aroma induced by mixed fermentation were linked to higher ester concentrations, including isoamyl acetate, ethyl isovalerate, ethyl hexanoate, and diethyl succinate. The enhanced esters in mixed fermentation can be attributed to the upregulated alcohol acyltransferase activity and the expressions of ACC1, FAS2, ELO1 and ATF1 genes in late fermentation stage via the cell-cell contact between T. delbrueckii and S. cerevisiae. These findings can deepen the understanding of the interaction between non-Saccharomyces and S. cerevisiae in ester production, assisting wineries in effectively controlling wine aroma through mixed fermentations.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Yu Fu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qi Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yue Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qin Yang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chen Bian
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Lu-Lu Zhao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qi Chen
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hai-Jun Bi
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiao-Hui Yang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xue-Ling Gao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, Food Processing Research Institute, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Zhou C, Zhang X, Liu Y, Ni X, Wang H, Liu Y. Research on hyperspectral regression method of soluble solids in green plum based on one-dimensional deep convolution network. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 303:123151. [PMID: 37523846 DOI: 10.1016/j.saa.2023.123151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/19/2023] [Accepted: 07/12/2023] [Indexed: 08/02/2023]
Abstract
Soluble solids content is an important evaluation index affecting the quality of greengage fruit. The SSC content of green plum determines the picking time of green plum and what products are finally made into the market, such as preserves or fruit wine. The traditional destructive experiment is not conducive to the subsequent processing of green plum, and the efficiency is low and the labor cost is high. In this paper, hyperspectral images of green plums are analyzed based on the DenseNet network model, and a sugar content prediction model for green plums is established. After experimental collection and screening, 366 samples were obtained for the prediction of sugar content. According to the ratio of 3:1, 274 samples were obtained for the training set and 92 samples for the test set. In the prediction of sugar content, compared with the PLSR and MobileNetV2 model, the Rp of the 1D-DenseNet121 model in this experiment increased by 8.95%, and 6.27% respectively. and the MAEp was reduced by 15.44% and 10.35% respectively. The 1D-DenseNet121 model had a faster iterative convergence rate than the MobileNetV2 model, showing better prediction performance, which is more in line with the actual demand for green plum sorting, effectively improving the low efficiency of traditional physical and chemical detection.
Collapse
Affiliation(s)
- Chenxin Zhou
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 20037, China
| | - Xiao Zhang
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 20037, China
| | - Ying Liu
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 20037, China.
| | - Xiaoyu Ni
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 20037, China
| | - Honghong Wang
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 20037, China
| | - Yang Liu
- College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 20037, China
| |
Collapse
|
3
|
Li S, Wang S, Wang L, Liu X, Wang X, Cai R, Yuan Y, Yue T, Wang Z. Unraveling symbiotic microbial communities, metabolomics and volatilomics profiles of kombucha from diverse regions in China. Food Res Int 2023; 174:113652. [PMID: 37981364 DOI: 10.1016/j.foodres.2023.113652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023]
Abstract
Kombucha is a natural fermented beverage (mixed system). This study aimed to unravel the signatures of kombucha in China to achieve tailor-made microbial consortium. Here, biochemical parameters, microbiome, metabolite production and volatile profile were comprehensively compared and characterized across four regions (AH, HN, SD, SX), both commonalities and distinctions were highlighted. The findings revealed that yeast species yeast Starmerella, Zygosaccharomyces, Dekkera, Pichia and bacterium Komagataeibacter, Gluconobacter were the most common microbes. Additionally, the composition, distribution and stability of microbial composition in liquid phase were superior to those in biofilm. The species diversity, differences, marker and association were analyzed across four areas. Metabolite profiles revealed a total of 163 bioactive compounds (23 flavonoids, 13 phenols), and 68 differential metabolites were screened and identified. Moreover, the metabolic pathways of phenylpropanoids biosynthesis were closely linked with the highest number of metabolites, followed by flavonoid biosynthesis. Sixty-five volatile compounds (23 esters) were identified. Finally, the correlation analysis among the microbial composition and volatile and functional metabolites showed that Komagataeibacter, Gluconolactone, Zygosacchaaromycess, Starmerella and Dekkera seemed closely related to bioactive compounds, especially Komagataeibacter displayed positive correlations with 1-hexadecanol, 5-keto-D-gluconate, L-malic acid, 6-aminohexanoate, Starmerella contributed greatly to gluconolactone, thymidine, anabasine, 2-isopropylmalic acid. Additionally, Candida was related to β-damascenone and α-terpineol, and Arachnomyces and Butyricicoccus showed the consistency of associations with specific esters and alcohols. These findings provided crucial information for creating a stable synthetic microbial community structure, shedding light on fostering stable kombucha and related functional beverages.
Collapse
Affiliation(s)
- Shiqi Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Saiqun Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Leran Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xiaoshuang Liu
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xingnan Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
4
|
Chen L, Li K, Chen H, Li Z. Reviewing the Source, Physiological Characteristics, and Aroma Production Mechanisms of Aroma-Producing Yeasts. Foods 2023; 12:3501. [PMID: 37761210 PMCID: PMC10529235 DOI: 10.3390/foods12183501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Flavor is an essential element of food quality. Flavor can be improved by adding flavoring substances or via microbial fermentation to impart aroma. Aroma-producing yeasts are a group of microorganisms that can produce aroma compounds, providing a strong aroma to foods and thus playing a great role in the modern fermentation industry. The physiological characteristics of aroma-producing yeast, including alcohol tolerance, acid tolerance, and salt tolerance, are introduced in this article, beginning with their origins and biological properties. The main mechanism of aroma-producing yeast is then analyzed based on its physiological roles in the fermentation process. Functional enzymes such as proteases, lipases, and glycosidase are released by yeast during the fermentation process. Sugars, fats, and proteins in the environment can be degraded by these enzymes via pathways such as glycolysis, methoxylation, the Ehrlich pathway, and esterification, resulting in the production of various aromatic esters (such as ethyl acetate and ethyl caproate), alcohols (such as phenethyl alcohol), and terpenes (such as monoterpenes, sesquiterpenes, and squalene). Furthermore, yeast cells can serve as cell synthesis factories, wherein specific synthesis pathways can be introduced into cells using synthetic biology techniques to achieve high-throughput production. In addition, the applications of aroma yeast in the food, pharmaceutical, and cosmetic industries are summarized, and the future development trends of aroma yeasts are discussed to provide a theoretical basis for their application in the food fermentation industry.
Collapse
Affiliation(s)
- Li Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.C.); (K.L.)
| | - Ke Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.C.); (K.L.)
| | - Huitai Chen
- Hunan Guoyuan Liquor Industry Co., Ltd., Yueyang 414000, China;
| | - Zongjun Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.C.); (K.L.)
| |
Collapse
|
5
|
Li S, Liu X, Wang L, Wang K, Li M, Wang X, Yuan Y, Yue T, Cai R, Wang Z. Innovative beverage creation through symbiotic microbial communities inspired by traditional fermented beverages: current status, challenges and future directions. Crit Rev Food Sci Nutr 2023; 64:10456-10483. [PMID: 37357963 DOI: 10.1080/10408398.2023.2225191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Fermented beverages (FBs) are facing challenges in functional performance and flavor complexity, necessitating the development of new multi-functional options. Traditional fermented beverages (TFBs), both alcoholic and nonalcoholic, have gained increased attention for their health-promoting effects during the COVID-19 pandemic. This review summarized the primary commercially available probiotics of FBs, along with the limitations of single and mixed probiotic FBs. It also examined the recent research progress on TFBs, emphasizing the typical microbial communities (MC) of TFBs, and TFBs made from crops (grains, vegetables, fruits, etc.) worldwide and their associated functions and health benefits. Furthermore, the construction, technical bottlenecks of the synthetic MC involved in developing innovative FBs were presented, and the promising perspective of FBs was described. Drawing inspiration from the MC of TFBs, developing of stable and multifunctional FBs using synthetic MC holds great promise for beverage industry. However, synthetic MC suffers from structural instability and poorly acknowledged interaction mechanisms, resulting in disappointing results in FBs. Future researches should prioritize creating synthetic MC fermentation that closely resemble natural fermentation, tailored to meet the needs of different consumers. Creating personalized FBs with high-tech intelligence is vital in attracting potential consumers and developing novel beverages for the future.
Collapse
Affiliation(s)
- Shiqi Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xiaoshuang Liu
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Leran Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Kai Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Menghui Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Xingnan Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi, China
- Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
6
|
Zhao P, Liu C, Qiu S, Chen K, Wang Y, Hou C, Huang R, Li J. Flavor Profile Evaluation of Soaked Greengage Wine with Different Base Liquor Treatments Using Principal Component Analysis and Heatmap Analysis. Foods 2023; 12:foods12102016. [PMID: 37238834 DOI: 10.3390/foods12102016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
The selection of base liquor plays a crucial role in the flavor of soaked greengage wine. This study aimed to investigate the effects of different base liquor treatments on the physicochemical characteristics and aroma composition of greengage wine. We carried out a comprehensive analysis using HPLC for the determination of organic acids and GC-MS for the determination of volatile aroma compounds, combined with sensory evaluation. The results showed that the red and yellow colors were the darkest in the high-alcohol group, while the citric acid content was the highest in the sake group (21.95 ± 2.19 g/L). In addition, the greengage wine steeped in 50% edible alcohol had more terpenes, a significantly higher concentration of acid-lipid compounds, and a more intense aroma compared to that of the low-alcohol group, whose typical aroma compounds were greatly reduced. The sensory results showed that the greengage wine treated with baijiu had a distinct alcoholic flavor, while almond flavors were more intense in the greengage wine treated with 15% edible alcohol. In this study, base liquor was used as the main influencing factor to provide new research ideas for the flavor optimization of soaked greengage wine.
Collapse
Affiliation(s)
- Peipei Zhao
- CAU Sichuan Chengdu Advanced Agricultural Industrial Institute, Chengdu 611430, China
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Beijing 100083, China
| | - Chang Liu
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Beijing 100083, China
| | - Shuang Qiu
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Beijing 100083, China
| | - Kai Chen
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Beijing 100083, China
- College of Food Science & Technology, Henan Agricultural University, No. 63 Nongye Road, Zhengzhou 450002, China
| | - Yingxiang Wang
- Sichuan Mehe Wine Industry Co., Ltd., No. 551 Xiling Avenue, Jinyuan Town, Dayi County, Chengdu 611330, China
| | - Caiyun Hou
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Beijing 100083, China
| | - Rui Huang
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China
| | - Jingming Li
- CAU Sichuan Chengdu Advanced Agricultural Industrial Institute, Chengdu 611430, China
- College of Food Science & Nutritional Engineering, China Agricultural University, No. 17 Tsinghua Dong Road, Beijing 100083, China
| |
Collapse
|
7
|
Yan X, Li S, Tu T, Li Y, Niu M, Tong Y, Yang Y, Xu T, Zhao J, Shen C, Wang S. Free amino acids identification and process optimization in greengage wine fermentation and flavor formation. J Food Sci 2023; 88:988-1003. [PMID: 36691797 DOI: 10.1111/1750-3841.16452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/09/2022] [Accepted: 12/20/2022] [Indexed: 01/25/2023]
Abstract
Greengage wine with low alcohol content is increasing in popularity owing to its fruity taste and rich nutrition. The key to wine aroma and taste is flavor substances like free amino acids (FAAs), volatile fatty acids, higher alcohols, and esters. Amino acid (AA) metabolisms in yeast are an important source of these secondary compounds, which vary with the fermentation conditions. This study explored and optimized the impact of different parameters (carbon source, inoculum, pH, temperature) on FAA contents and dynamics in greengage wine. The results demonstrated that total and essential amino acid (EAA) content rose with a higher proportion of glucose, less yeast inoculation, higher temperature, and higher initial pH. With the results obtained it was concluded that the condition of 22.4°C, pH 4.5, and 3% inoculation was optimum for a 14.9-fold increase of EAAs in fermented greengage wine. In the long run, the research will aid in the development of the greengage brewing industry.
Collapse
Affiliation(s)
- Xin Yan
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
| | - Shu Li
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China.,Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
| | - Tingyao Tu
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Yiqin Li
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Mansi Niu
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Yuqin Tong
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Yang Yang
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Tao Xu
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Jian Zhao
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
| | - Caihong Shen
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| | - Songtao Wang
- Luzhou Pinchuang Technology Co., Ltd., (National Engineering Research Center of Solid-State Brewing), Luzhou, China
| |
Collapse
|
8
|
Zhang L, Liu Q, Li Y, Liu S, Tu Q, Yuan C. Characterization of wine volatile compounds from different regions and varieties by HS-SPME/GC-MS coupled with chemometrics. Curr Res Food Sci 2022; 6:100418. [PMID: 36588783 PMCID: PMC9801081 DOI: 10.1016/j.crfs.2022.100418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
HS-SPME/GC-MS and aroma descriptive analysis were used to gain insights into the volatile and sensory details of 99 red wine samples collected from four varieties in five regions. The general volatile fingerprints of Cabernet Sauvignon and Merlot wine samples in Xinjiang and Ningxia regions were similar, even though chemometric models could not discriminate between them. The main drivers of the diversity were secondary metabolites of grape such as terpenes, benzene-derivatives, and ketones. Fermentation-derivatives (esters and alcohols) were also responsible for region and variety-related differences in wines. Analysis of volatile compounds also showed that the primary factor accounting for diversity in wines in this study was region rather than variety. These results highlight the sensory attributes and volatiles of different regions and varieties, and provide a quantitative basis for screening for differential metabolites and potential markers in wines.
Collapse
Affiliation(s)
- Lin Zhang
- College of Enology, Northwest A&F University, Yangling, 712100, China
| | - Qianqian Liu
- College of Enology, Northwest A&F University, Yangling, 712100, China
| | - Yuanyuan Li
- College of Enology, Northwest A&F University, Yangling, 712100, China
| | - Shuzhen Liu
- College of Enology, Northwest A&F University, Yangling, 712100, China
| | - Qian Tu
- College of Enology, Northwest A&F University, Yangling, 712100, China
| | - Chunlong Yuan
- College of Enology, Northwest A&F University, Yangling, 712100, China,Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia, 750104, China,Corresponding author. College of Enology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
9
|
Abiotic factors play important roles in complexity and characterization of aroma precursors in Vidal blanc grape. Food Res Int 2022; 162:112015. [DOI: 10.1016/j.foodres.2022.112015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022]
|
10
|
Impact of Inoculating with Indigenous Bacillus marcorestinctum YC-1 on Quality and Microbial Communities of Yibin Yacai (Fermented Mustard) during the Fermentation Process. Foods 2022; 11:foods11223593. [PMID: 36429185 PMCID: PMC9689668 DOI: 10.3390/foods11223593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Bacillus species play an important role in improving the quality of some fermented foods and are also one of the dominant bacteria in Yibin Yacai (fermented mustard). However, little is known about their effects on the quality of Yibin Yacai. Here, the effect of Bacillus marcorestinctum YC-1 on the quality and microbial communities of Yibin Yacai during the fermentation process was investigated. Results indicated that the inoculation of Bacillus marcorestinctum YC-1 promoted the growth of Weissella spp. and Lactobacillus spp. and inhibited the growth of pathogens, accelerating the synthesis of free amino acids and organic acids and the degradation of nitrite. Furthermore, inoculating Yibin Yacai with YC-1 could effectively enhance the synthesis of alcohols and terpenoids in yeasts, thus producing more linalool, terpinen-4-ol, and α-muurolen in Yibin Yacai, and endowing it with pleasant floral, fruity, woody, and spicy aromas. These findings reveal that the inoculation of B. marcorestinctum YC-1 can improve the quality and safety of Yibin Yacai by changing microbial communities as fermentation proceeds.
Collapse
|
11
|
Enhancing antioxidant activity and fragrant profile of low-ethanol kiwi wine via sequential culture of indigenous Zygosaccharomyces rouxii and Saccharomyces cerevisiae. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Wang D, Chen G, Tang Y, Ming J, Huang R, Li J, Ye M, Fan Z, Yin L, Zhang Q, Zhang W. Effect of non-core microbes on the key odorants of paocai. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
13
|
Liu C, Liu M, Yang L, Zhang X. Influence of ripening stage and meteorological parameters on the accumulation pattern of polyphenols in greengages ( Prunus mume Sieb. Et Zucc) by widely targeted metabolomic. Curr Res Food Sci 2022; 5:1837-1844. [PMID: 36276245 PMCID: PMC9579437 DOI: 10.1016/j.crfs.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/19/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Greengage is a Chinese traditional medicine food homology plant that contains abundant polyphenols. Greengages with different levels of maturity have different medicinal functions and applications. Therefore, this study comprehensively analysed the phenolic compounds in greengage of whole mature stage. Notably, the influence of climate conditions on greengage polyphenol synthesis was deeply explored. The polyphenols of greengages were profiled based on the widely targeted metabolomic technology using ultra-performance liquid chromatography-electrospray ionisation triple quadrupole mass spectrometry (UPLC-QTRAP-MS/MS). A total of 214 polyphenols were detected, covering 11 subclasses. During the ripening of greengages, these polyphenols first increased and then decreased, peaking during the swell stage. Multivariate statistical methods, including redundancy analysis (RDA), random forest analysis, Mantel test, and Spearman's correlation indicated that temperature, sunshine hours, humidity, and radiation were important factors driving the formation and changes in the polyphenols of greengages. In particular, flavanones and flavonols, showed a structure-dependent response to temperature and radiation.
Collapse
Affiliation(s)
- Chang Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Minxin Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Lili Yang
- Department of Horticulture, Beijing Changping Vocational School, Beijing, 102206, China
| | - Xiaoxu Zhang
- Department of Nutrition and Health, China Agricultural University, Beijing, 100193, China,Corresponding author.
| |
Collapse
|
14
|
Freeze–thaw cycles characterize varietal aroma of Vidal blanc grape during late harvest by shaping self-assembled microeukaryotic communities. Food Chem 2022; 384:132553. [DOI: 10.1016/j.foodchem.2022.132553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/07/2022] [Accepted: 02/22/2022] [Indexed: 11/23/2022]
|
15
|
Zou Y, Zhong Y, Huang L, Xu W, Wu Y, Gao J, Zhong K, Gao H. Effects of brown sugar addition and fermentation time on metabolites and microbial communities of Yibin Yacai. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Qiu S, Chen K, Liu C, Wang Y, Chen T, Yan G, Li J. Non-Saccharomyces Yeasts Highly Contribute to Characterisation of Flavour Profiles in Greengage Fermentation. Food Res Int 2022; 157:111391. [DOI: 10.1016/j.foodres.2022.111391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/05/2022] [Accepted: 05/18/2022] [Indexed: 12/01/2022]
|
17
|
Isolation and identification of aroma-producing non-Saccharomyces yeast strains and the enological characteristic comparison in wine making. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Wei Q, Liu G, Zhang C, Sun J, Zhang Y. Identification of characteristic volatile compounds and prediction of fermentation degree of pomelo wine using partial least squares regression. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|