1
|
Sun R, Li Y, Su R, Cai X, Kong Y, Jiang T, Cheng S, Yang H, Song L, Al-Asmari F, Sameeh MY, Lü X, Shi C. Antibacterial effect of ultrasound combined with Litsea cubeba essential oil nanoemulsion on Salmonella Typhimurium in kiwifruit juice. Int J Food Microbiol 2025; 426:110898. [PMID: 39241544 DOI: 10.1016/j.ijfoodmicro.2024.110898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/14/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
This study investigated the antibacterial effect of ultrasound (US) combined with Litsea cubeba essential oil nanoemulsion (LEON) on Salmonella Typhimurium in kiwifruit juice and effect on the quality and sensory properties of kiwifruit juice. In this study, LEON prepared by ultrasonic emulsification method had a good particle size distribution and high stability. The US+LEON treatment significantly (P < 0.05) improved antibacterial efficacy, compared to the control, and would not destroy the nutritional components containing ascorbic acid, flavonoids, total phenol and total soluble solids. Meanwhile, US+LEON treatment enhanced 2, 2-diphenyl-1-picrylhydrazyl (DPPH), 2, 2'-azino-bis-(3-ethylbenzothiazoline-6 sulfonic acid) (ABTS) radical scavenging capacity and ferric ion reducing antioxidant power (FRAP). In terms of sensory properties, US and LEON had a significant (P < 0.05) effect on the odor and overall morphology of kiwifruit juice. The enhance of antibacterial efficacy and the retention of nutrients by combined treatments shows that US+LEON is a promising antibacterial method that will provide new ideas for the processing and safety of fruit juices, and the US parameters and LEON concentration should be adjusted to reduce the effect on food sensory properties in future studies.
Collapse
Affiliation(s)
- Runyang Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Yimeng Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong 518057, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaolin Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yajing Kong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tongyu Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fahad Al-Asmari
- Department of Food and Nutrition Sciences, College of Agricultural and Food Sciences, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Manal Y Sameeh
- Department of chemistry, Al-Leith University College, Umm Al Qura University, Makkah 25100, Saudi Arabia
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Northwest A&F University ShenZhen Research Institute, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
2
|
Kaboudari A, Aliakbarlu J, Mehdizadeh T. Simultaneous Effects of Food-related Stresses on the Antibiotic Resistance of Foodborne Salmonella Serotypes. J Food Prot 2024; 87:100350. [PMID: 39168450 DOI: 10.1016/j.jfp.2024.100350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/21/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Antibiotic resistance has become one of the most critical issues in the field of public health in recent years. Exposure to food environment stresses may result in the development of antibiotic resistance in Salmonella. The present study aimed to investigate the simultaneous effects of food-related stresses (osmotic pressure, acid, heat, cold, and freezing stresses) on the antibiotic resistance changes in Salmonella Enteritidis and Salmonella Typhimurium. A factorial design with five factors at two levels was used to evaluate the main and interactive effects of stress factors on the antibiotic resistance of Salmonella serotypes. The changes in the antibiotic resistance of Salmonella serotypes were evaluated using the disc diffusion assay. The results showed that the different stresses had different effects on the antibiotic resistance of Salmonella serotypes. The freezing time and osmotic stresses had the most significant effects on the antibiotic resistance (P < 0.05). S. Enteritidis showed the slightest changes after exposure to stresses. The results also showed that a low level (24 h) of freezing time decreased the antibiotic resistance, but at a high level (96 h) increased it. The results emphasized that food processing and storage conditions should be considered as crucial factors in developing antibiotic resistance in Salmonella.
Collapse
Affiliation(s)
- Ata Kaboudari
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia 5756151818, Iran
| | - Javad Aliakbarlu
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia 5756151818, Iran.
| | - Tooraj Mehdizadeh
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia 5756151818, Iran
| |
Collapse
|
3
|
Mahmud Z, Manik MRK, Rahman A, Karim MM, Islam LN. Impact of untreated tannery wastewater in the evolution of multidrug-resistant bacteria in Bangladesh. Sci Rep 2024; 14:20379. [PMID: 39223208 PMCID: PMC11369239 DOI: 10.1038/s41598-024-71472-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024] Open
Abstract
The tannery industry produces one of the worst contaminants, and unsafe disposal in nearby waterbodies and landfills has become an imminent threat to public health, especially when the resulting multidrug-resistant bacteria and heavy metals enter community settings and animal food chains. In this study, we have collected 10 tannery wastewater (TWW) samples and 10 additional non-tannery wastewater (NTW) samples to compare the chemical oxygen demand (COD), pH, biological oxygen demand (BOD), dissolved oxygen (DO), total dissolved solids (TDS), chromium concentration, bacterial load, and antibiotic resistance profiles. While COD, pH, and chromium concentration data were previously published from our lab, this part of the study uncovers that TWW samples had a significantly higher bacterial load, compared to the non-tannery wastewater samples (5.89 × 104 and 9.38 × 103 cfu/mL, respectively), higher BOD and TDS values, and significantly lower DO values. The results showed that 53.4, 46.7, 40.0, and 40.0% of the TWW isolates were resistant to ceftriaxone, erythromycin, nalidixic acid, and azithromycin, respectively. On the other hand, 20.0, 30.0, 50.0, and 40.0% of the NTW isolates were resistant to the same antibiotics, respectively. These findings suggest that the TWW isolates were more resistant to antibiotics than the NTW isolates. Moreover, the TWW isolates exhibited higher multidrug resistance than the NTW isolates, 33.33, and 20.00%, respectively. Furthermore, spearman correlation analysis depicts that there is a negative correlation between BOD and bacterial load up to a certain level (r = - 0.7749, p = 0.0085). In addition, there is also a consistent negative correlation between COD and bacterial load (r = - 0.7112, p = 0.0252) and TDS and bacterial load (r = - 0.7621, p = 0.0104). These findings suggest that TWW could pose a significant risk to public health and the environment and highlight the importance of proper wastewater treatment in tannery industries.
Collapse
Affiliation(s)
- Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Md Rasel Khan Manik
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Adua Rahman
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | | | - Laila N Islam
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
4
|
Gao X, Han J, Zhu L, Nychas GJE, Mao Y, Yang X, Liu Y, Jiang X, Zhang Y, Dong P. The Effect of the PhoP/PhoQ System on the Regulation of Multi-Stress Adaptation Induced by Acid Stress in Salmonella Typhimurium. Foods 2024; 13:1533. [PMID: 38790833 PMCID: PMC11121531 DOI: 10.3390/foods13101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Acidic stress in beef cattle slaughtering abattoirs can induce the acid adaptation response of in-plant contaminated Salmonella. This may further lead to multiple resistance responses threatening public health. Therefore, the acid, heat, osmotic and antibiotic resistances of Salmonella typhimurium (ATCC14028) were evaluated after a 90 min adaption in a pH = 5.4 "mild acid" Luria-Bertani medium. Differences in such resistances were also determined between the ∆phoP mutant and wild-type Salmonella strains to confirm the contribution of the PhoP/PhoQ system. The transcriptomic differences between the acid-adapted and ∆phoP strain were compared to explore the role of the PhoP/Q two-component system in regulating multi-stress resistance. Acid adaptation was found to increase the viability of Salmonella to lethal acid, heat and hyperosmotic treatments. In particular, acid adaptation significantly increased the resistance of Salmonella typhimurium to Polymyxin B, and such resistance can last for 21 days when the adapted strain was stored in meat extract medium at 4 °C. Transcriptomics analysis revealed 178 up-regulated and 274 down-regulated genes in the ∆phoP strain. The Salmonella infection, cationic antimicrobial peptide (CAMP) resistance, quorum sensing and two-component system pathways were down-regulated, while the bacterial tricarboxylic acid cycle pathways were up-regulated. Transcriptomics and RT-qPCR analyses revealed that the deletion of the phoP gene resulted in the down-regulation of the expression of genes related to lipid A modification and efflux pumps. These changes in the gene expression result in the change in net negative charge and the mobility of the cell membrane, resulting in enhanced CAMP resistance. The confirmation of multiple stress resistance under acid adaptation and the transcriptomic study in the current study may provide valuable information for the control of multiple stress resistance and meat safety.
Collapse
Affiliation(s)
- Xu Gao
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Jina Han
- Shandong Provincial Key Laboratory of Poultry Diseases Diagnosis and Immunology, Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250023, China;
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - George-John E. Nychas
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Xiaoyin Yang
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Yunge Liu
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Xueqing Jiang
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| | - Pengcheng Dong
- Lab of Beef Processing and Quality Control, Shandong Agricultural University, Taian 271018, China; (X.G.); (L.Z.); (G.-J.E.N.); (Y.M.); (X.Y.); (Y.L.); (X.J.); (Y.Z.)
- International Joint Research Lab (China and Greece) of Digital Transformation as an Enabler for Food Safety and Sustainability, Taian 271018, China
| |
Collapse
|
5
|
Yi L, Xu R, Yuan X, Ren Z, Song H, Lai H, Sun Z, Deng H, Yang B, Yu D. Heat stress enhances the occurrence of erythromycin resistance of Enterococcus isolates in mice feces. J Therm Biol 2024; 120:103786. [PMID: 38428103 DOI: 10.1016/j.jtherbio.2024.103786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 03/03/2024]
Abstract
Heat stress is a common environmental factor in livestock breeding that has been shown to impact the development of antibiotic resistance within the gut microbiota of both human and animals. However, studies investigating the effect of temperature on antibiotic resistance in Enterococcus isolates remain limited. In this study, specific pathogen free (SPF) mice were divided into a control group maintained at normal temperature and an experimental group subjected to daily 1-h heat stress at 38 °C, respectively. Gene expression analysis was conducted to evaluate the activation of heat shock responsive genes in the liver of mice. Additionally, the antibiotic-resistant profile and antibiotic resistant genes (ARGs) in fecal samples from mice were analyzed. The results showed an upregulation of heat-inducible proteins HSP27, HSP70 and HSP90 following heat stress exposure, indicating successful induction of cellular stress within the mice. Furthermore, heat stress resulted in an increase in the proportion of erythromycin-resistant Enterococcus isolates, escalating from 0 % to 0.23 % over a 30-day duration of heat stress. The resistance of Enterococcus isolates to erythromycin also had a 128-fold increase in minimum inhibitory concentration (MIC) within the heated-stressed group compared to the control group. Additionally, a 2∼8-fold rise in chloramphenicol MIC was observed among these erythromycin-resistant Enterococcus isolates. The acquisition of ermB genes was predominantly responsible for mediating the erythromycin resistance in these Enterococcus isolates. Moreover, the abundance of macrolide, lincosamide and streptogramin (MLS) resistant-related genes in the fecal samples from the heat-stressed group exhibited a significant elevation compared to the control group, primarily driven by changes in bacterial community composition, especially Enterococcaceae and Planococcaceae, and the transfer of mobile genetic elements (MGEs), particularly insertion elements. Collectively, these results highlight the role of environmental heat stress in promoting antibiotic resistance in Enterococcus isolates and partly explain the increasing prevalence of erythromycin-resistant Enterococcus isolates observed among animals in recent years.
Collapse
Affiliation(s)
- Lingxian Yi
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rui Xu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaowu Yuan
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zining Ren
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huihui Song
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huamin Lai
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhihua Sun
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hui Deng
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bo Yang
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Daojin Yu
- Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
6
|
Wu S, Ji J, Carole NVD, Yang J, Yang Y, Sun J, Ye Y, Zhang Y, Sun X. Combined metabolomics and transcriptomics analysis reveals the mechanism of antibiotic resistance of Salmonella enterica serovar Typhimurium after acidic stress. Food Microbiol 2023; 115:104328. [PMID: 37567621 DOI: 10.1016/j.fm.2023.104328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 08/13/2023]
Abstract
Drug-resistant Salmonella is widely distributed in the meat production chain, endangering food safety and public health. Acidification of meat products during processing can induce acid stress, which may alter antibiotic resistance. Our study investigated the effects of acid stress on the antibiotic resistance and metabolic profile of Salmonella Typhimurium, and explored the underlying mechanisms using metabolomic and transcriptomic analysis. We found that acid-stressed 14028s was more sensitive to small molecule hydrophobic antibiotics (SMHA) while more resistant to meropenem (MERO). Metabolomic analysis revealed that enhanced sensitivity to SMHA was correlated with increased purine metabolism and tricarboxylic acid cycle. Transcriptomic analysis revealed the downregulation of chemotaxis-related genes, which are also associated with SMHA sensitivity. We also found a significant downregulation of the ompF gene, which encodes a major outer membrane protein OmpF of Salmonella. The decreased expression of OmpF porin hindered the influx of MERO, leading to enhanced resistance of the bacteria to the drug. Our findings contribute to greatly improve the understanding of the relationship between Salmonella metabolism, gene expression, and changes in drug resistance after acid stress, while providing a structural framework for exploring the relationship between bacterial stress responses and antibiotic resistance.
Collapse
Affiliation(s)
- Shang Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Nanfack V D Carole
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jia Yang
- Yangzhou Center for Food and Drug Control, Yangzhou, 225000, China
| | - Yang Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
7
|
Ji J, Wu S, Sheng L, Sun J, Ye Y, Zhang Y, Zhang Y, Gong Y, Zhou J, Sun X. Metabolic reprogramming of the glutathione biosynthesis modulates the resistance of Salmonella Derby to ceftriaxone. iScience 2023; 26:107263. [PMID: 37599819 PMCID: PMC10432962 DOI: 10.1016/j.isci.2023.107263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/21/2023] [Accepted: 06/27/2023] [Indexed: 08/22/2023] Open
Abstract
Salmonella, a foodborne pathogen, has become a major public health concern because of its widespread drug resistance, including resistance to multiple drugs such as third-generation cephalosporin, ceftriaxone (CRO). However, the metabolic profile changes and associated mechanisms engendered by cephalosporin-resistant mutations remain uncharted. In this study, we have employed the LC-MS/MS metabolomics platform to determine the metabolic profiles of 138 strains of Salmonella. Our results show that metabolic profiles correspond to specific serotypes, sources, processing stages, and antibiotic resistance patterns. Notably, we observed that Salmonella Derby (S. Derby) with drug resistance to CRO has a different metabolic status with changes in glutathione biosynthesis. Specifically, glutathione oxidized (GSSG) and citrulline abundances are greatly suppressed in CRO-resistant S. Derby. Furthermore, exogenous GSSG or citrulline, but not glutathione reduced (GSH), restored the susceptibility of multidrug-resistant S. Derby to CRO. This study establishes a strategy based on functional metabolomics to manage the survival of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Jian Ji
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
- College of Food Science and Pharmacy, Xinjiang Agricultural University, No. 311 Nongda Dong Road, Ürümqi, Xinjiang Uygur Autonomous Region 830052, P.R. China
| | - Shang Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lina Sheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yiyun Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yajun Gong
- College of Food Science and Pharmacy, Xinjiang Agricultural University, No. 311 Nongda Dong Road, Ürümqi, Xinjiang Uygur Autonomous Region 830052, P.R. China
| | - Jianzhong Zhou
- College of Food Science and Pharmacy, Xinjiang Agricultural University, No. 311 Nongda Dong Road, Ürümqi, Xinjiang Uygur Autonomous Region 830052, P.R. China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, China
- Yixing Institute of Food and Biotechnology, No. 19, Wenzhuang Road, Qiting Street, Yixing City, Wuxi 214200, China
| |
Collapse
|
8
|
Zhang B, Fu Y, Wang F, Yang J, Pan Z, Huang M, Shen K, Shen C. Multidrug-resistant enteroaggregative Escherichia coli (EAEC) enters dormant state during heat treatment: A potential hazard in municipal sludge. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119312. [PMID: 35439600 DOI: 10.1016/j.envpol.2022.119312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/15/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Reuse of sewage sludge is a general trend and land application is an essential way to reuse sludge. The outbreak of coronavirus disease has raised concerns about human pathogens and their serious threat to public health. The risk of pathogenic bacterial contamination from land application of municipal sludge has not been well assessed. The purpose of this study was to investigate the presence of pathogenic bacteria in municipal sewage sludge and to examine the survival potential of certain multidrug-resistant enteroaggregative Escherichia coli (EAEC) strain isolated from sewage sludge during heat treatment. The sewage sludge produced in the two wastewater treatment plants contained pathogenic bacteria such as pathogenic E. coli, Shigella flexneri, and Citrobacter freundii. The environmental strain of EAEC isolated from the sludge was resistant to eight types of antibiotics. It could also enter the dormant state after 4.5 h of treatment at 55 °C and regrow at 37 °C, while maintaining its antibiotic resistance. Our results indicate that the dormancy of EAEC might be why it is heat-resistant and could not be killed completely during the sludge heat treatment process. Owing to the regrowth of the dormant pathogenic bacteria, it is risky to apply the sludge to land even if the sludge is heat-treated, and there is also a risk of spreading antibiotic resistance.
Collapse
Affiliation(s)
- Bingni Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yulong Fu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Feiyu Wang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiawen Yang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Grande Environmental Technology Co., Ltd., Hangzhou, 310051, China
| | - Zhiyu Pan
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meiling Huang
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kewei Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Responses of Issatchenkia terricola WJL-G4 upon Citric Acid Stress. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092664. [PMID: 35566015 PMCID: PMC9102369 DOI: 10.3390/molecules27092664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 12/01/2022]
Abstract
This study aimed to elucidate the responses of a novel characterized Issatchenkia terricola WJL-G4 against citric acid stress by performing physiological analysis, morphology observation, and structural and membrane fatty acid composition analysis. The results showed that under citric acid stress, the cell vitality of I. terricola WJL-G4 was reduced. The cell morphology changed with the unclear, uncompleted and thinner cell wall, and degraded the cell structure. When the citric acid concentration was 20 g/L, I. terricola WJL-G4 could tolerate citric acid and maintain the cell structure by increasing the intracellular pH, superoxide dismutase activity, and contents of unsaturated fatty acids. As the citric acid concentration was ≥80 g/L, the stress has exceeded the cellular anti-stress ability, causing substantial cell damage. The cell membrane permeability, the content of membrane lipids, malondialdehyde and superoxide anion increased, but the intracellular pH and superoxide dismutase activities decreased, accompanying the increase of citric acid concentrations. The findings of this work provided a theoretical basis for the responsive mechanism of I. terricola WJL-G4 under high concentrations of citric acid, and can serve as a reference for biological acid reduction in fruit processing.
Collapse
|