1
|
Liang W, Wang X, Zhang L, Jiao S, Song H, Sun J, Wang D. Changes and biotransformation mechanism of main functional compounds during kombucha fermentation by the pure cultured tea fungus. Food Chem 2024; 458:140242. [PMID: 38943965 DOI: 10.1016/j.foodchem.2024.140242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/09/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
Kombucha was fermented by the pure cultured tea fungus, and the changes of functional compounds and their transformation were explored. After fermentation, the contents of total polyphenols, total flavonoids, quercetin, kaempferol and catechins respectively enhanced by 77.14%, 69.23%, 89.11%, 70.32% and 45.77% compared with the control, while flavonol glycosides reduced by 38.98%. The bioavailability of polyphenols and flavonoids respectively increased by 29.52% and 740.6%, and DPPH and ABTS respectively increased by 43.81% and 35.08% compared with the control. Correlation analysis showed that microorganisms and the antioxidant activity were highly positive correlation with total polyphenols, total flavonoids, EGC, EC, EGCG, ECG, quercetin and kaempferol, and negative correlation with kaempferol-3-glucoside. The constructed models confirmed that organic acids were more likely to damage the structure of tea leaves, and enzymes (polygalacturonidase and tannase) and solvents (acids, alcohols and esters) had a synergistic effect on the biotransformation of functional compounds.
Collapse
Affiliation(s)
- Weina Liang
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang 471023, China
| | - Xiaotong Wang
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang 471023, China
| | - Luyao Zhang
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang 471023, China
| | - Shiyang Jiao
- Tongliao Agricultural and Animal Husbandry Science Research Institute, Tongliao 028015, China
| | - Hairu Song
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang 471023, China
| | - Jianrui Sun
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang 471023, China; Henan Engineering Research Center of Food Microbiology, Luoyang 471023, China
| | - Dahong Wang
- College of Food and Bioengineering, Henan University of Science & Technology, Luoyang 471023, China; Henan Engineering Research Center of Food Microbiology, Luoyang 471023, China.
| |
Collapse
|
2
|
Phan Van T, Nguyen QD, Nguyen NN, Do AD. Efficiency of freeze- and spray-dried microbial preparation as active dried starter culture in kombucha fermentation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8707-8719. [PMID: 38924118 DOI: 10.1002/jsfa.13697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/17/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Kombucha is a widely consumed fermented beverage produced by fermenting sweet tea with a symbiotic culture of bacteria and yeast (SCOBY). The dynamic nature of microbial communities in SCOBY may pose challenges to production scale-up due to unpredictable variations in microbial composition. Using identified starter strains is a novel strategy to control microorganism composition, thereby ensuring uniform fermentation quality across diverse batches. However, challenges persist in the cultivation and maintenance of these microbial strains. This study examined the potential of microencapsulated kombucha fermentation starter cultures, specifically Komagataeibacter saccharivorans, Levilactobacillus brevis and Saccharomyces cerevisiae, through spray-drying and freeze-drying. RESULTS Maltodextrin and gum arabic-maltodextrin were employed as carrier agents. Our results revealed that both spray-dried and freeze-dried samples adhered to physicochemical criteria, with low moisture content (2.18-7.75%) and relatively high solubility (65.75-87.03%) which are appropriate for food application. Freeze-drying demonstrated greater effectiveness in preserving bacterial strain viability (88.30-90.21%) compared to spray drying (74.92-78.66%). Additionally, the freeze-dried starter strains demonstrated similar efficacy in facilitating kombucha fermentation, compared to the SCOBY group. The observations included pH reduction, acetic acid production, α-amylase inhibition and elevated total polyphenol and flavonoid content. Moreover, the biological activity, including antioxidant potential and in vitro tyrosinase inhibition activity, was enhanced in the same pattern. The freeze-dried strains exhibited consistent kombucha fermentation capabilities over a three-month preservation, regardless of storage temperature at 30 or 4 °C. CONCLUSION These findings highlight the suitability of freeze-dried starter cultures for kombucha production, enable microbial composition control, mitigate contamination risks and ensure consistent product quality. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Thach Phan Van
- Department of Biotechnology, NTT Hi-tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Quoc-Duy Nguyen
- Department of Food Technology, Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Nhu-Ngoc Nguyen
- Department of Food Technology, Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Anh Duy Do
- Department of Biotechnology, NTT Hi-tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| |
Collapse
|
3
|
de Oliveira Duarte FA, Ramos KK, Gini C, Morasi RM, Silva NCC, Efraim P. Microbiological characterization of kombucha and biocellulose film produced with black tea and cocoa bean shell infusion. Food Res Int 2024; 190:114568. [PMID: 38945598 DOI: 10.1016/j.foodres.2024.114568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 07/02/2024]
Abstract
The food industry is increasingly striving to produce probiotics-based food and beverages using sustainable processes. Therefore, the use of by-products in product development has been investigated by several authors. The aim of this work was to investigate the effects of cocoa bean shell infusion in the production of kombucha through microbiological and genetic characterization. Three beverage formulations were prepared, one based on black tea (KBT), one based on cocoa bean shell infusion (KCS) and one containing 50 % black tea and 50 % cocoa shell infusion (KBL). The infusions were prepared with water, filtered, and sucrose was added. They were then homogenized and a portion of finished kombucha and SCOBY (symbiotic culture of bacteria and yeast) were added. Fermentation took place for 13 days and aliquots were collected every three days for physicochemical and microbial count analyses. Samples from the last day of fermentation were sent for DNA sequencing, extraction and quantification. The results were subjected to analysis of variance and compared by using Tukey's test (p < 0.05). The results show that there was a significant decrease in pH over time in all samples, while the titratable acidity increased, indicating an acidification of the beverage due to the production of organic acids. There was an increase in lactic acid bacterial colonies in all the formulations, which have a probiotic nature and are not always found in this type of beverage. Regarding the taxonomic classification of the samples, microorganisms of the kingdoms Fungi and Bacteria, of the families Saccharomycetaceae and Acetobacteraceae, were found in KBT, KCS and KBL, but with different microbiological compositions, with different amounts of yeasts and bacteria. Therefore, the use of by-products such as cocoa bean shell in the production of kombucha can contribute to the reduction of waste in the food industry and, at the same time, accelerate fermentation increasing the presence of lactic acid bacteria when compared to black tea.
Collapse
Affiliation(s)
| | - Kazumi Kawazaki Ramos
- Department of Food Engineering and Technology, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil; Mombora, 05409-000 São Paulo, SP, Brazil
| | - Chiara Gini
- Department of Veterinary Medicine and Animal Sciences, Università Degli Studi di Milano, Lodi, Italy; Centre for Genetic Improvement of Livestock (CGIL), Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Rafaela Martins Morasi
- Department of Food Science and Nutrition, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil
| | | | - Priscilla Efraim
- Department of Food Engineering and Technology, Universidade Estadual de Campinas, 13083-862 Campinas, SP, Brazil.
| |
Collapse
|
4
|
Jiang X, Peng Z, Zhang J. Starting with screening strains to construct synthetic microbial communities (SynComs) for traditional food fermentation. Food Res Int 2024; 190:114557. [PMID: 38945561 DOI: 10.1016/j.foodres.2024.114557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 07/02/2024]
Abstract
With the elucidation of community structures and assembly mechanisms in various fermented foods, core communities that significantly influence or guide fermentation have been pinpointed and used for exogenous restructuring into synthetic microbial communities (SynComs). These SynComs simulate ecological systems or function as adjuncts or substitutes in starters, and their efficacy has been widely verified. However, screening and assembly are still the main limiting factors for implementing theoretic SynComs, as desired strains cannot be effectively obtained and integrated. To expand strain screening methods suitable for SynComs in food fermentation, this review summarizes the recent research trends in using SynComs to study community evolution or interaction and improve the quality of food fermentation, as well as the specific process of constructing synthetic communities. The potential for novel screening modalities based on genes, enzymes and metabolites in food microbial screening is discussed, along with the emphasis on strategies to optimize assembly for facilitating the development of synthetic communities.
Collapse
Affiliation(s)
- Xinyi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
5
|
Kilmanoglu H, Yigit Cinar A, Durak MZ. Evaluation of microbiota-induced changes in biochemical, sensory properties and volatile profile of kombucha produced by reformed microbial community. Food Chem X 2024; 22:101469. [PMID: 38808165 PMCID: PMC11130685 DOI: 10.1016/j.fochx.2024.101469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024] Open
Abstract
Kombucha is a traditional beverage produced by a living culture known as SCOBY or "symbiotic culture of bacteria and yeast". Culture-dependent production is essential for stable kombucha fermentation. The aim of this study was to design a microbial community and to determine the effect of that community on the flavor and chemical properties of kombucha. The fermentations were carried out using combinations of selected species including Pichia kudriavzevii, Brettanomyces bruxellensis, Dekkera bruxellensis, Komagataeibacter saccharivorans, Komagataeibacter xylinus, and Acetobacter papayae, which were previously isolated from kombucha. The effects of monocultures and cocultures on fermentation were investigated. The highest acetic acid producer was A. papayae, which has strong antioxidant properties. In the monoculture and coculture fermentations, aldehydes, acids, and esters were generally observed at the end of fermentation. This study confirms that microbiota reconstruction is a viable approach for achieving the production of kombucha with increased bioactive constituents and consumer acceptance.
Collapse
Affiliation(s)
- Hilal Kilmanoglu
- Department of Food Processing, Pazarlar Vocational School, Kutahya Dumlupinar University, Kutahya, Türkiye
| | - Aycan Yigit Cinar
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa, Türkiye
| | - Muhammed Zeki Durak
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Türkiye
| |
Collapse
|
6
|
Njieukam JA, Ciccone M, Gottardi D, Ricci A, Parpinello GP, Siroli L, Lanciotti R, Patrignani F. Microbiological, Functional, and Chemico-Physical Characterization of Artisanal Kombucha: An Interesting Reservoir of Microbial Diversity. Foods 2024; 13:1947. [PMID: 38928888 PMCID: PMC11202501 DOI: 10.3390/foods13121947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Kombucha is a trending tea fermented via a complex microflora of yeasts and acetic acid bacteria. It can be a valid low-calorie substitute for soft drinks due to its sour, naturally carbonated, and sweet taste. Despite increased interest, the microflora and functional properties of kombucha have not yet been fully understood. The aim of this work was to characterize, from a microbiological, chemico-physical, and functional point of view, three types of artisanal kombucha obtained by fermenting green tea containing sugar by means of different starter cultures. Metagenomic analysis revealed a predominance of yeasts compared to bacteria, regardless of the sample. In particular, Brettanomyces spp. was found to be the dominant yeast. Moreover, the different types of kombucha had different microbial patterns in terms of acetic acid bacteria and yeasts. Ethanol and acetic acid were the dominant volatile molecules of the kombucha volatilome; the samples differed from each other in terms of their content of alcohols, esters, and acids. All the samples showed a high antioxidant potential linked to the high content of phenols. This study confirmed the positive chemico-physical and functional properties of kombucha and indicated that the microflora responsible for the fermentation process can significantly affect the characteristics of the final product.
Collapse
Affiliation(s)
- Joel Armando Njieukam
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
| | - Marianna Ciccone
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
| | - Davide Gottardi
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Arianna Ricci
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Giuseppina Paola Parpinello
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; (J.A.N.); (M.C.); (D.G.); (A.R.); (G.P.P.); (R.L.); (F.P.)
- Interdepartmental Centre for Agri-Food Industrial Research, Campus of Food Science, Alma Mater Studiorum, University of Bologna, Via Quinto Bucci 336, 47521 Cesena, Italy
| |
Collapse
|
7
|
Gänzle MG, Monnin L, Zheng J, Zhang L, Coton M, Sicard D, Walter J. Starter Culture Development and Innovation for Novel Fermented Foods. Annu Rev Food Sci Technol 2024; 15:211-239. [PMID: 38052450 DOI: 10.1146/annurev-food-072023-034207] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Interest in fermented foods is increasing because fermented foods are promising solutions for more secure food systems with an increased proportion of minimally processed plant foods and a smaller environmental footprint. These developments also pertain to novel fermented food for which no traditional template exists, raising the question of how to develop starter cultures for such fermentations. This review establishes a framework that integrates traditional and scientific knowledge systems for the selection of suitable cultures. Safety considerations, the use of organisms in traditional food fermentations, and the link of phylogeny to metabolic properties provide criteria for culture selection. Such approaches can also select for microbial strains that have health benefits. A science-based approach to the development of novel fermented foods can substantially advance their value through more secure food systems, food products that provide health-promoting microbes, and the provision of foods that improve human health.
Collapse
Affiliation(s)
- Michael G Gänzle
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada;
- College of Bioengineering and Food Science, Hubei University of Technology, Wuhan, Hubei, People's Republic of China
| | - Ludovic Monnin
- SPO, Université Montpellier, INRAE, Institut Agro, Montpellier, France
- Lallemand Oenology, Blagnac, France
| | - Jinshui Zheng
- National Key Laboratory for Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China
| | - Lingxiao Zhang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada;
| | - Monika Coton
- Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Université de Brest, INRAE, Plouzané, France
| | - Delphine Sicard
- SPO, Université Montpellier, INRAE, Institut Agro, Montpellier, France
| | - Jens Walter
- APC Microbiome Ireland, School of Microbiology, and Department of Medicine, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Wang H, Wang Y, Ruan Y, Ma D, Wang H, Yang S, Lyu L, Yang F, Wu X, Chen Y. Core microbes identification and synthetic microbiota construction for the production of Xiaoqu light-aroma Baijiu. Food Res Int 2024; 183:114196. [PMID: 38760131 DOI: 10.1016/j.foodres.2024.114196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/27/2024] [Accepted: 03/03/2024] [Indexed: 05/19/2024]
Abstract
Baijiu production has relied on natural inoculated Qu as a starter culture, causing the unstable microbiota of fermentation grains, which resulted in inconsistent product quality across batches. Therefore, revealing the core microbes and constructing a synthetic microbiota during the fermentation process was extremely important for stabilizing product quality. In this study, the succession of the microbial community was analyzed by high-throughput sequencing technology, and ten core microbes of Xiaoqu light-aroma Baijiu were obtained by mathematical statistics, including Acetobacter, Bacillus, Lactobacillus, Weissella, Pichia,Rhizopus, Wickerhamomyces, Issatchenkia, Saccharomyces, and Kazachstania. Model verification showed that the core microbiota significantly affected the composition of non-core microbiota (P < 0.01) and key flavor-producing enzymes (R > 0.8, P < 0.01), thus significantly affecting the flavor of base Baijiu. Simulated fermentation validated that the core microbiota can reproduce the fermentation process and quality of Xiaoqu light-aroma Baijiu. The succession of bacteria was mainly regulated by acidity and ethanol, while the fungi, especially non-Saccharomyces cerevisiae, were mainly regulated by the initial dominant bacteria (Acetobacter, Bacillus, and Weissella). This study will play an important role in the transformation of Xiaoqu light-aroma Baijiu fermentation from natural fermentation to controlled fermentation and the identification of core microbes in other fermented foods.
Collapse
Affiliation(s)
- Huan Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yumei Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yulei Ruan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Dan Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Han Wang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | | | - Linjie Lyu
- Jing Brand Co., Ltd, HuangShi, HuBei 435100, China.
| | - Fengjun Yang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xiaole Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yefu Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
9
|
Daval C, Tran T, Verdier F, Martin A, Alexandre H, Grandvalet C, Tourdot-Maréchal R. Identification of Key Parameters Inducing Microbial Modulation during Backslopped Kombucha Fermentation. Foods 2024; 13:1181. [PMID: 38672854 PMCID: PMC11049054 DOI: 10.3390/foods13081181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
The aim of this study was to assess the impact of production parameters on the reproducibility of kombucha fermentation over several production cycles based on backslopping. Six conditions with varying oxygen accessibility (specific interface surface) and initial acidity (through the inoculation rate) of the cultures were carried out and compared to an original kombucha consortium and a synthetic consortium assembled from yeasts and bacteria isolated from the original culture. Output parameters monitored were microbial populations, biofilm weight, key physico-chemical parameters and metabolites. Results highlighted the existence of phases in microbial dynamics as backslopping cycles progressed. The transitions between phases occurred faster for the synthetic consortium compared to the original kombucha. This led to microbial dynamics and fermentative kinetics that were reproducible over several cycles but that could also deviate and shift abruptly to different behaviors. These changes were mainly induced by an increase in the Saccharomyces cerevisiae population, associated with an intensification of sucrose hydrolysis, sugar consumption and an increase in ethanol content, without any significant acceleration in the rate of acidification. The study suggests that the reproducibility of kombucha fermentations relies on high biodiversity to slow down the modulations of microbial dynamics induced by the sustained rhythm of backslopping cycles.
Collapse
Affiliation(s)
- Claire Daval
- Institut Agro, Université Bourgogne Franche-Comté, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France (H.A.); (C.G.); (R.T.-M.)
| | - Thierry Tran
- Institut Agro, Université Bourgogne Franche-Comté, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France (H.A.); (C.G.); (R.T.-M.)
| | | | - Antoine Martin
- Biomère, 10B Rue du Nouveau Bêle, 44470 Carquefou, France
| | - Hervé Alexandre
- Institut Agro, Université Bourgogne Franche-Comté, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France (H.A.); (C.G.); (R.T.-M.)
| | - Cosette Grandvalet
- Institut Agro, Université Bourgogne Franche-Comté, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France (H.A.); (C.G.); (R.T.-M.)
| | - Raphaëlle Tourdot-Maréchal
- Institut Agro, Université Bourgogne Franche-Comté, Université Bourgogne, INRAE, UMR PAM 1517, 21000 Dijon, France (H.A.); (C.G.); (R.T.-M.)
| |
Collapse
|
10
|
Wang B, Rutherfurd-Markwick K, Liu N, Zhang XX, Mutukumira AN. Evaluation of the probiotic potential of yeast isolated from kombucha in New Zealand. Curr Res Food Sci 2024; 8:100711. [PMID: 38524400 PMCID: PMC10958227 DOI: 10.1016/j.crfs.2024.100711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 03/26/2024] Open
Abstract
The current study investigated the in vitro probiotic potential of yeast isolated from kombucha, a tea beverage fermented with a symbiotic culture of acetic acid bacteria and yeast. A total of 62 yeast strains were previously isolated from four different commercial kombucha samples sold in New Zealand. Fifteen representative isolates belonging to eight different species were evaluated for their growth under different conditions (temperature, low pH, concentrations of bile salts, and NaCl). Cell surface characteristics, functional and enzymatic activities of the selected strains were also studied in triplicate experiments. Results showed that six strains (Dekkera bruxellensis LBY1, Sachizosaccharomyces pombe LBY5, Hanseniaspora valbyensis DOY1, Brettanomyces anomalus DOY8, Pichia kudraivzevii GBY1, and Saccharomyces cerevisiae GBY2) were able to grow under low-acid conditions (at pH 2 and pH 3) and in the presence of bile salts. This suggests their potential to survive passage through the human gut. All 15 strains exhibited negative enzymatic activity reactions (haemolytic, gelatinase, phospholipase, and protease activities), and thus, they can be considered safe to consume. Notably, two of the fifteen strains (Pichia kudraivzevii GBY1 and Saccharomyces cerevisiae GBY2) exhibited desirable cell surface hydrophobicity (64.60-83.87%), auto-aggregation (>98%), co-aggregation, resistance to eight tested antibiotics (ampicillin, chloramphenicol, colistin sulphate, kanamycin, nalidixic acid, nitrofurantoin, streptomycin, and tetracycline), and high levels of antioxidant activities (>90%). Together, our data reveal the probiotic activities of two yeast strains GBY1 and GBY2 and their potential application in functional food production.
Collapse
Affiliation(s)
- Boying Wang
- School of Food and Advanced Technology, Massey University, Auckland, 0745, New Zealand
| | | | - Ninghui Liu
- School of Food and Advanced Technology, Massey University, Auckland, 0745, New Zealand
| | - Xue-Xian Zhang
- School of Natural Sciences, Massey University, Auckland, 0745, New Zealand
| | - Anthony N. Mutukumira
- School of Food and Advanced Technology, Massey University, Auckland, 0745, New Zealand
| |
Collapse
|
11
|
Li S, Wang S, Wang L, Liu X, Wang X, Cai R, Yuan Y, Yue T, Wang Z. Unraveling symbiotic microbial communities, metabolomics and volatilomics profiles of kombucha from diverse regions in China. Food Res Int 2023; 174:113652. [PMID: 37981364 DOI: 10.1016/j.foodres.2023.113652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023]
Abstract
Kombucha is a natural fermented beverage (mixed system). This study aimed to unravel the signatures of kombucha in China to achieve tailor-made microbial consortium. Here, biochemical parameters, microbiome, metabolite production and volatile profile were comprehensively compared and characterized across four regions (AH, HN, SD, SX), both commonalities and distinctions were highlighted. The findings revealed that yeast species yeast Starmerella, Zygosaccharomyces, Dekkera, Pichia and bacterium Komagataeibacter, Gluconobacter were the most common microbes. Additionally, the composition, distribution and stability of microbial composition in liquid phase were superior to those in biofilm. The species diversity, differences, marker and association were analyzed across four areas. Metabolite profiles revealed a total of 163 bioactive compounds (23 flavonoids, 13 phenols), and 68 differential metabolites were screened and identified. Moreover, the metabolic pathways of phenylpropanoids biosynthesis were closely linked with the highest number of metabolites, followed by flavonoid biosynthesis. Sixty-five volatile compounds (23 esters) were identified. Finally, the correlation analysis among the microbial composition and volatile and functional metabolites showed that Komagataeibacter, Gluconolactone, Zygosacchaaromycess, Starmerella and Dekkera seemed closely related to bioactive compounds, especially Komagataeibacter displayed positive correlations with 1-hexadecanol, 5-keto-D-gluconate, L-malic acid, 6-aminohexanoate, Starmerella contributed greatly to gluconolactone, thymidine, anabasine, 2-isopropylmalic acid. Additionally, Candida was related to β-damascenone and α-terpineol, and Arachnomyces and Butyricicoccus showed the consistency of associations with specific esters and alcohols. These findings provided crucial information for creating a stable synthetic microbial community structure, shedding light on fostering stable kombucha and related functional beverages.
Collapse
Affiliation(s)
- Shiqi Li
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Saiqun Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Leran Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xiaoshuang Liu
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Xingnan Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Rui Cai
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest University, Xi'an, Shaanxi 710069, China
| | - Zhouli Wang
- College of Food Science and Engineering, Northwest A&F University, YangLing, Shaanxi 712100, China; Laboratory of Quality & Safety Risk Assessment for Agro-products (YangLing), Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
12
|
Dartora B, Hickert LR, Fabricio MF, Ayub MAZ, Furlan JM, Wagner R, Perez KJ, Sant'Anna V. Understanding the effect of fermentation time on physicochemical characteristics, sensory attributes, and volatile compounds in green tea kombucha. Food Res Int 2023; 174:113569. [PMID: 37986521 DOI: 10.1016/j.foodres.2023.113569] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Kombuchas are a trend in the fermented beverage field and the effect of fermentation time on their characteristics is necessary to better understand the process, mainly concerning volatile compounds, which are scarce information in the current literature. Thus, the present work aimed to evaluate the features of green tea kombucha during fermentation, monitoring the changes in pH, acidity, turbidity, polyphenols, ethanol, acetic acid, volatile compounds, and sensory profile and acceptance up to 14 days of fermentation. Kombuchas' pH and acidity decreased through time as expected, but after 4 days of fermentation, the beverage exceeded the Brazilian legal limits of acidity (130 mEq/L) and produced more than 0.5% AVB, which labels the beverage as alcoholic. Total polyphenols and condensed tannins content enhanced until the seventh day of fermentation and remained constant. Fermentation highly impacted the aroma of the infusion with a high formation of volatile acids, such as alcohols, esters, and ketones. Aldehydes were degraded during the bioprocess. Sensory characterization of kombucha showed that fermentation of 4 days increased perceived turbidity; vinegar, citric fruit, acid, and alcoholic aroma; and produced the beverage with sour, bitter, and vinegar flavor. Thus, the fermentation time of kombuchas must be controlled as they rapidly change and impact on the physicochemical parameters and sensory profile of the beverage can be negative.
Collapse
Affiliation(s)
- Bruna Dartora
- Life and Environmental Area, State University of Rio Grande do Sul, Encantado, Rio Grande do Sul, Brazil
| | - Lilian Raquel Hickert
- Life and Environmental Area, State University of Rio Grande do Sul, Encantado, Rio Grande do Sul, Brazil
| | | | - Marco Antônio Zachia Ayub
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Roger Wagner
- Department of Food Technology and Science, Federal University of Santa Maria, Camobi, Santa Maria, RS, Brazil
| | - Karla Joseane Perez
- Life and Environmental Area, State University of Rio Grande do Sul, Encantado, Rio Grande do Sul, Brazil
| | - Voltaire Sant'Anna
- Life and Environmental Area, State University of Rio Grande do Sul, Encantado, Rio Grande do Sul, Brazil.
| |
Collapse
|
13
|
Andreson M, Kazantseva J, Malv E, Kuldjärv R, Priidik R, Kütt ML. Evaluation of Microbial Dynamics of Kombucha Consortia upon Continuous Backslopping in Coffee and Orange Juice. Foods 2023; 12:3545. [PMID: 37835198 PMCID: PMC10572523 DOI: 10.3390/foods12193545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The kombucha market is diverse, and competitors constantly test new components and flavours to satisfy customers' expectations. Replacing the original brewing base, adding flavours, or using "backslopping" influence the composition of the symbiotic starter culture of bacteria and yeast (SCOBY). Yet, deep characterisation of microbial and chemical changes in kombucha consortia in coffee and orange juice during backslopping has not been implemented. This study aimed to develop new kombucha beverages in less-conventional matrices and characterise their microbiota. We studied the chemical properties and microbial growth dynamics of lactic-acid-bacteria-tailored (LAB-tailored) kombucha culture by 16S rRNA next-generation sequencing in coffee and orange juice during a backslopping process that spanned five cycles, each lasting two to four days. The backslopping changed the culture composition and accelerated the fermentation. This study gives an overview of the pros and cons of backslopping technology for the production of kombucha-based beverages. Based on research conducted using two different media, this work provides valuable information regarding the aspects to consider when using the backslopping method to produce novel kombucha drinks, as well as identifying the main drawbacks that need to be addressed.
Collapse
Affiliation(s)
- Maret Andreson
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618 Tallinn, Estonia; (M.A.); (E.M.); (R.K.); (R.P.); (M.-L.K.)
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Ehitajate Tee 5, 19086 Tallinn, Estonia
| | - Jekaterina Kazantseva
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618 Tallinn, Estonia; (M.A.); (E.M.); (R.K.); (R.P.); (M.-L.K.)
| | - Esther Malv
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618 Tallinn, Estonia; (M.A.); (E.M.); (R.K.); (R.P.); (M.-L.K.)
| | - Rain Kuldjärv
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618 Tallinn, Estonia; (M.A.); (E.M.); (R.K.); (R.P.); (M.-L.K.)
| | - Reimo Priidik
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618 Tallinn, Estonia; (M.A.); (E.M.); (R.K.); (R.P.); (M.-L.K.)
| | - Mary-Liis Kütt
- Center of Food and Fermentation Technologies, Mäealuse 2/4, 12618 Tallinn, Estonia; (M.A.); (E.M.); (R.K.); (R.P.); (M.-L.K.)
| |
Collapse
|
14
|
Sales AL, Cunha SC, Morgado J, Cruz A, Santos TF, Ferreira IM, Fernandes JO, Miguel MAL, Farah A. Volatile, Microbial, and Sensory Profiles and Consumer Acceptance of Coffee Cascara Kombuchas. Foods 2023; 12:2710. [PMID: 37509803 PMCID: PMC10379779 DOI: 10.3390/foods12142710] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/01/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Given the substantial world coffee production, tons of coffee fruit cascara rich in bioactive compounds are discarded annually. Using this by-product to produce potentially healthy and acceptable foods is a sustainable practice that aggregates value to coffee production and may help improve people's lives. This study aimed to elaborate kombuchas from coffee cascara tea, evaluate their microbial profile, and monitor the changes in the volatile profile during fermentation, together with sensory attributes and acceptance by consumers from Rio de Janeiro (n = 113). Arabica coffee cascaras from Brazil and Nicaragua were used to make infusions, to which black tea kombucha, a Symbiotic Culture of Bacteria and Yeasts (SCOBY), and sucrose were added. Fermentation of plain black tea kombucha was also monitored for comparison. The volatile profile was analyzed after 0, 3, 6, and 9 days of fermentation via headspace solid phase microextraction GC-MS. A total of 81 compounds were identified considering all beverages, 59 in coffee cascara kombuchas and 59 in the black tea kombucha, with 37 common compounds for both. An increase mainly in acids and esters occurred during fermentation. Despite the similarity to black tea kombucha, some aldehydes, esters, alcohols, and ketones in coffee cascara kombucha were not identified in black tea kombucha. Potential impact compounds in CC were linalool, decanal, nonanal, octanal, dodecanal, ethanol, 2-ethylhexanol, ethyl acetate, ethyl butyrate, ethyl acetate, β-damascenone, γ-nonalactone, linalool oxide, phenylethyl alcohol, geranyl acetone, phenylacetaldehyde, isoamyl alcohol, acetic acid, octanoic acid, isovaleric acid, ethyl isobutyrate, ethyl hexanoate, and limonene. The mean acceptance scores for cascara kombuchas varied between 5.7 ± 0.53 and 7.4 ± 0.53 on a nine-point hedonic scale, with coffee cascara from three-day Nicaragua kombucha showing the highest score, associated with sweetness and berry, honey, woody, and herbal aromas and flavors. The present results indicate that coffee cascara is a promising by-product for elaboration of fermented beverages, exhibiting exotic and singular fingerprinting that can be explored for applications in the food industry.
Collapse
Affiliation(s)
- Amanda Luísa Sales
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil; (A.L.S.); (J.M.); (T.F.S.)
- Laboratório de Microbiologia de Alimentos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. I, Rio de Janeiro 21941-902, Brazil
| | - Sara C. Cunha
- LAQV-REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal; (S.C.C.); (J.O.F.)
| | - Jéssika Morgado
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil; (A.L.S.); (J.M.); (T.F.S.)
| | - Adriano Cruz
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro 20260-100, Brazil;
| | - Thiago F. Santos
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil; (A.L.S.); (J.M.); (T.F.S.)
| | - Isabel M.P.L.V.O. Ferreira
- LAQV-REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal; (S.C.C.); (J.O.F.)
| | - José O. Fernandes
- LAQV-REQUIMTE, Laboratório de Bromatologia e Hidrologia, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4099-030 Porto, Portugal; (S.C.C.); (J.O.F.)
| | - Marco Antonio L. Miguel
- Laboratório de Microbiologia de Alimentos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. I, Rio de Janeiro 21941-902, Brazil
| | - Adriana Farah
- Núcleo de Pesquisa em Café Prof. Luiz Carlos Trugo (NUPECAFÉ), Laboratório de Química e Bioatividade de Alimentos, Instituto de Nutrição, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho, 373, CCS, Bl. J, Rio de Janeiro 21941-902, Brazil; (A.L.S.); (J.M.); (T.F.S.)
| |
Collapse
|
15
|
Yao L, Zhang J, Lu J, Chen D, Song S, Wang H, Sun M, Feng T. Revealing the influence of microbiota on the flavor of kombucha during natural fermentation process by metagenomic and GC-MS analysis. Food Res Int 2023; 169:112909. [PMID: 37254344 DOI: 10.1016/j.foodres.2023.112909] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/23/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
In this work, raw Pu-erh tea (RAPT) was employed for kombucha preparation, and the microbial composition and volatile flavor compounds of the fermented tea had been investigated during natural fermentation process. The head space-solid phase microextraction-gas chromatograph mass spectrometry (HS-SPME-GC-MS) was performed for volatiles analysis of unfermented tea and kombucha fermented for 3 days (KF-3) and 6 days (KF-6). Meanwhile, the microbial community of KF-3 and KF-6 were evaluated by metagenomic analysis. A total of 72 volatile compounds were identified and obvious changes in volatiles were observed during the fermentation process based on the results of GC-MS and principal component analysis (PCA). Metagenomic sequencing analysis demonstrated that bacterium Komagataeibacter saccharivorans and unclassified-g-komagataeibacter and yeast Saccharomyces cerevisiae and Brettanomyces bruxellensis were the most common microbes contained in the sampled kombucha communities. Furthermore, the relevance among microbial community and volatile compounds was evaluated through correlation heatmap analysis. The results suggested that the main flavor volatiles of kombucha (i.e., acids, esters and terpenes) were closely related to species of genus Komagataeibacter, Gluconacetobacter, Saccharomyces, Brettanomyces, Acetobacter, Novacetimonas and Pichia microorganisms. The obtained results would help to better understand microbial communities and volatile compounds of kombucha, which could provide useful information for enhancing the flavor quality of kombucha products.
Collapse
Affiliation(s)
- Lingyun Yao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jing Zhang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Jun Lu
- Auckland Bioengineering Institute, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Da Chen
- Department of Animal, Veterinary and Food Sciences, University of Idaho, 875 Perimeter Drive, Moscow, ID 83844, USA
| | - Shiqing Song
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Huatian Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
16
|
Wang B, Rutherfurd-Markwick K, Naren N, Zhang XX, Mutukumira AN. Microbiological and Physico-Chemical Characteristics of Black Tea Kombucha Fermented with a New Zealand Starter Culture. Foods 2023; 12:2314. [PMID: 37372525 DOI: 10.3390/foods12122314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Kombucha is a popular sparkling sugared tea, fermented by a symbiotic culture of acetic acid bacteria (AAB) and yeast. The demand for kombucha continues to increase worldwide, mainly due to its perceived health benefits and appealing sensory properties. This study isolated and characterised the dominant AAB and yeast from a starter culture and kombucha broth after 0, 1, 3, 5, 7, 9, 11, and 14 days of fermentation at ambient temperature (22 °C). Yeast and AAB were isolated from the Kombucha samples using glucose yeast extract mannitol ethanol acetic acid (GYMEA) and yeast extract glucose chloramphenicol (YGC) media, respectively. The phenotypic and taxonomic identification of AAB and yeast were determined by morphological and biochemical characterisation, followed by a sequence analysis of the ribosomal RNA gene (16S rRNA for AAB and ITS for yeast). The changes in the microbial composition were associated with variations in the physico-chemical characteristics of kombucha tea, such as pH, titratable acidity, and total soluble solids (TSS). During fermentation, the acidity increased and the TSS decreased. The yield, moisture content, and water activity of the cellulosic pellicles which had developed at the end of fermentation were attributed to the presence of AAB. The dominant AAB species in the cellulosic pellicles and kombucha broth were identified as Komagataeibacter rhaeticus. The yeast isolates belonged to Debaryomyces prosopidis and Zygosaccharomyces lentus.
Collapse
Affiliation(s)
- Boying Wang
- School of Food and Advanced Technology, Massey University, Auckland 0745, New Zealand
| | | | - Naran Naren
- School of Natural Sciences, Massey University, Auckland 0745, New Zealand
| | - Xue-Xian Zhang
- School of Natural Sciences, Massey University, Auckland 0745, New Zealand
| | - Anthony N Mutukumira
- School of Food and Advanced Technology, Massey University, Auckland 0745, New Zealand
| |
Collapse
|
17
|
van Wyk N, Binder J, Ludszuweit M, Köhler S, Brezina S, Semmler H, Pretorius IS, Rauhut D, Senz M, von Wallbrunn C. The Influence of Pichia kluyveri Addition on the Aroma Profile of a Kombucha Tea Fermentation. Foods 2023; 12:foods12101938. [PMID: 37238757 DOI: 10.3390/foods12101938] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Traditional kombucha is a functional tea-based drink that has gained attention as a low or non-alcoholic beverage. The fermentation is conducted by a community of different microorganisms, collectively called SCOBY (Symbiotic Culture of Bacteria and Yeast) and typically consists of different acetic acid bacteria and fermenting yeast, and in some cases lactic acid bacteria that would convert the sugars into organic acids-mostly acetic acid. In this study, the effect of including a Pichia kluyveri starter culture in a kombucha fermentation was investigated. P. kluyveri additions led to a quicker accumulation of acetic acid along with the production of several acetate esters including isoamyl acetate and 2-phenethyl acetate. A subsequent tasting also noted a significant increase in the fruitiness of the kombucha. The significant contribution to the aroma content shows the promise of this yeast in future microbial formulations for kombucha fermentations.
Collapse
Affiliation(s)
- Niël van Wyk
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, 65366 Geisenheim, Germany
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Julia Binder
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, 65366 Geisenheim, Germany
| | - Marie Ludszuweit
- Department Bioprocess Engineering and Applied Microbiology, Research and Teaching Institute for Brewing in Berlin, Seestraße 13, 13353 Berlin, Germany
| | - Sarah Köhler
- Department Bioprocess Engineering and Applied Microbiology, Research and Teaching Institute for Brewing in Berlin, Seestraße 13, 13353 Berlin, Germany
| | - Silvia Brezina
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, 65366 Geisenheim, Germany
| | - Heike Semmler
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, 65366 Geisenheim, Germany
| | - Isak S Pretorius
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Doris Rauhut
- Department of Microbiology and Biochemistry, Hochschule Geisenheim University, 65366 Geisenheim, Germany
| | - Martin Senz
- Department Bioprocess Engineering and Applied Microbiology, Research and Teaching Institute for Brewing in Berlin, Seestraße 13, 13353 Berlin, Germany
| | - Christian von Wallbrunn
- ARC Centre of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
18
|
Guo W, Chen M, Cui S, Tang X, Zhang Q, Zhao J, Mao B, Zhang H. Dynamics changes in physicochemical properties, volatile metabolites, non-volatile metabolites, and physiological functions of barley juice during Bifidobacterium infantis fermentation. Food Chem 2023; 407:135201. [PMID: 36525807 DOI: 10.1016/j.foodchem.2022.135201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/20/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The purpose of this research was to explore the potential of Bifidobacterium infantis fermentation to modify the composition and physiological properties of barley juices. B. infantis JFM12 showed a potent capability to decrease the total sugar contents from 0.39 ± 0.01 mg/mL to 0.35 ± 0.01 mg/mL within 24 h of fermentation. The volatile metabolite profiles were enriched after B. infantis JFM12 fermentation, leading to the changes of 13 aldehydes, 11 ketones, 10 acids, 7 alcohols, and 6 esters. A total of 98 key non-volatile metabolites were identified in the barley juice between before and after B. infantis JFM12 fermentation, including 80 non-volatile metabolites that were remarkably increased and 18 non-volatile metabolites that were remarkably reduced. Furthermore, the antioxidant activities and lipase inhibitory activities of fermented barley juice were higher than those of unfermented barley juice. Overall, B. infantis JFM12 was beneficial in increasing the quality of barley juice.
Collapse
Affiliation(s)
- Weiling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Minxuan Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
19
|
Wang B, Rutherfurd-Markwick K, Zhang XX, Mutukumira AN. Kombucha: Production and Microbiological Research. Foods 2022; 11:3456. [PMID: 36360067 PMCID: PMC9658962 DOI: 10.3390/foods11213456] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
Kombucha is a sparkling sugared tea commonly prepared using a sugared tea infusion and fermented at ambient temperature for several days using a cellulose pellicle also called tea fungus that is comprised of acetic acid bacteria and yeast. Consumption of Kombucha has been reported as early as 220 B.C. with various reported potential health benefits and appealing sensory properties. During Kombucha fermentation, sucrose is hydrolysed by yeast cells into fructose and glucose, which are then metabolised to ethanol. The ethanol is then oxidised by acetic acid bacteria (AAB) to produce acetic acid which is responsible for the reduction of the pH and also contributes to the sour taste of Kombucha. Characterisation of the AAB and yeast in the Kombucha starter culture can provide a better understanding of the fermentation process. This knowledge can potentially aid in the production of higher quality products as these microorganisms affect the production of metabolites such as organic acids which are associated with potential health benefits, as well as sensory properties. This review presents recent advances in the isolation, enumeration, biochemical characteristics, conventional phenotypic identification system, and modern genetic identification techniques of AAB and yeast present in Kombucha to gain a better understanding of the microbial diversity of the beverage.
Collapse
Affiliation(s)
- Boying Wang
- School of Food and Advanced Technology, Massey University, Auckland 0745, New Zealand
| | | | - Xue-Xian Zhang
- School of Natural Sciences, Massey University, Auckland 0745, New Zealand
| | - Anthony N. Mutukumira
- School of Food and Advanced Technology, Massey University, Auckland 0745, New Zealand
| |
Collapse
|
20
|
Flyurik E, Ermakova O. Medusomyces gisevii: cultivation, composition, and application. FOODS AND RAW MATERIALS 2022. [DOI: 10.21603/2308-4057-2023-1-563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Tea fungus (Medusomyces gisevii) is a natural symbiotic consortium of yeast-like fungi and bacteria. Scientific literature provides a lot of information about the consortium, but it is largely fragmentary. We aimed to review and systematize the information on the research topic.
We studied scientific publications, conference proceedings, intellectual property, regulatory documents, and Internet resources on the M. gisevii consortium using Scopus, Web of Science, e.LIBRARY.RU, and Google Academy. The methods applied included registration, grouping, classification, comparative analysis, and generalization.
We described the origin and composition of tea fungus, specifying the microorganisms that make up its symbiotic community depending on the place of origin. Then, we reviewed the stages of fermentation and cultivation conditions in various nutrient media and presented the composition of the culture liquid. Finally, we analyzed the antimicrobial effect of M. gisevii on a number of microorganisms and delineated some practical uses of the fungus.
The data presented in this article can be used to analyze or develop new methods for the cultivation and application of M. gisevii. We specified some possibilities for using not only the culture liquid but also the fruit body of the fungus in various industries.
Collapse
|
21
|
Reconstruction of Simplified Microbial Consortia to Modulate Sensory Quality of Kombucha Tea. Foods 2022; 11:foods11193045. [PMID: 36230121 PMCID: PMC9563716 DOI: 10.3390/foods11193045] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/20/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
Kombucha is a fermented tea with a long history of production and consumption. It has been gaining popularity thanks to its refreshing taste and assumed beneficial properties. The microbial community responsible for tea fermentation—acetic acid bacteria (AAB), yeasts, and lactic acid bacteria (LAB)—is mainly found embedded in an extracellular cellulosic matrix located at the liquid–air interphase. To optimize the production process and investigate the contribution of individual strains, a collection of 26 unique strains was established from an artisanal-scale kombucha production; it included 13 AAB, 12 yeasts, and one LAB. Among these, distinctive strains, namely Novacetimonas hansenii T7SS-4G1, Brettanomyces bruxellensis T7SB-5W6, and Zygosaccharomyces parabailii T7SS-4W1, were used in mono- and co-culture fermentations. The monocultures highlighted important species-specific differences in the metabolism of sugars and organic acids, while binary co-cultures demonstrated the roles played by bacteria and yeasts in the production of cellulose and typical volatile acidity. Aroma complexity and sensory perception were comparable between reconstructed (with the three strains) and native microbial consortia. This study provided a broad picture of the strains’ metabolic signatures, facilitating the standardization of kombucha production in order to obtain a product with desired characteristics by modulating strains presence or abundance.
Collapse
|
22
|
Kim D, Wang Y. Health-beneficial aroma and taste compounds in a newly developed kombucha using a Huanglongbing-tolerant mandarin hybrid. J Food Sci 2022; 87:2595-2615. [PMID: 35534223 DOI: 10.1111/1750-3841.16170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/23/2022] [Accepted: 04/11/2022] [Indexed: 02/05/2023]
Abstract
Huanglongbing (HLB) is a destructive citrus greening disease; no commercially applicable measures exist. 'LB8-9' Sugar Belle® (SB), originally developed for the fresh market, is the most HLB-tolerant cultivar among commercially available varieties. Due to the limited capacity of the fresh fruit market, there is a need to increase the demand for SB juice. Kombucha is a fermented tea beverage with black tea and sugar, and is considered a healthy drink with an increasing market. Therefore, we aim to study the potential of using SB juice in kombucha production. Regular (black tea with no citrus juice added), Hamlin (black tea with Hamlin juice added), and SB kombucha (black tea with SB juice added) were prepared and analyzed to observe the composition of aroma and taste compounds in the kombuchas. Aroma and taste compounds in the kombuchas were analyzed using gas chromatography-mass spectrometry/olfactometry and liquid chromatography-triple quadrupole mass spectrometry, respectively. For aroma compounds, SB kombucha was characterized by high concentrations of terpenes and their derivatives, which have mandarin-like aroma characteristics and health benefits such as antidiabetic and antioxidant effects. For taste compounds, SB kombucha contained higher amount of fructose and organic acids, which have the potential to increase the intensity of sweetness and sourness, and flavonoids. This would support the potential benefits of using SB to make kombucha. This study provides valuable information about the aroma and taste compounds in SB kombucha and its potential health benefits, compared with regular and Hamlin kombucha. PRACTICAL APPLICATION: This experiment provided valuable information on the elevated aroma and taste compounds, their potential health benefits, and the changes of those compounds during kombucha fermentation in 'LB8-9' Sugar Belle® kombucha, compared to regular and Hamlin kombucha. In the absence of an effective cure or therapy for HLB, this can be the first step for developing alternative citrus product to help the citrus industry mitigate the negative impacts from HLB.
Collapse
Affiliation(s)
- Dongjoo Kim
- Citrus Research and Education Center, Food Science and Human Nutrition, University of Florida, Lake Alfred, Florida, USA
| | - Yu Wang
- Citrus Research and Education Center, Food Science and Human Nutrition, University of Florida, Lake Alfred, Florida, USA
| |
Collapse
|
23
|
Liang S, Gao Y, Fu YQ, Chen JX, Yin JF, Xu YQ. Innovative technologies in tea beverage processing for quality improvement. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
24
|
Barakat N, Beaufort S, Rizk Z, Bouajila J, Taillandier P, El Rayess Y. Kombucha analogues around the world: A review. Crit Rev Food Sci Nutr 2022; 63:10105-10129. [PMID: 35486588 DOI: 10.1080/10408398.2022.2069673] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Kombucha is a traditional healthy beverage usually made by the fermentation of sweetened tea with a symbiotic culture of bacteria and yeast. The consumption of kombucha is associated with numerous health benefits and therefore the beverage has attracted the attention of consumers worldwide. Non-typical substrates (fruits, vegetables, plants, herbs, dairy, and by-products) are being inoculated with the kombucha consortium in an attempt to develop new products. This review paper reviews the fermentation parameters for different non-tea substrates used to make kombucha, in addition to the findings obtained in terms of physico-chemical analysis, biological activities and sensory evaluation.
Collapse
Affiliation(s)
- Nathalie Barakat
- INPT, UPS, CNRS, Laboratoire de Génie Chimique, Université de Toulouse, Toulouse, France
| | - Sandra Beaufort
- INPT, UPS, CNRS, Laboratoire de Génie Chimique, Université de Toulouse, Toulouse, France
| | - Ziad Rizk
- Wine Department, Lebanese Agricultural Research Institute, Jdeideh, Lebanon
| | - Jalloul Bouajila
- INPT, UPS, CNRS, Laboratoire de Génie Chimique, Université de Toulouse, Toulouse, France
| | - Patricia Taillandier
- INPT, UPS, CNRS, Laboratoire de Génie Chimique, Université de Toulouse, Toulouse, France
| | - Youssef El Rayess
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| |
Collapse
|
25
|
Tran T, Billet K, Torres-Cobos B, Vichi S, Verdier F, Martin A, Alexandre H, Grandvalet C, Tourdot-Maréchal R. Use of a Minimal Microbial Consortium to Determine the Origin of Kombucha Flavor. Front Microbiol 2022; 13:836617. [PMID: 35387069 PMCID: PMC8978889 DOI: 10.3389/fmicb.2022.836617] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/27/2022] [Indexed: 11/16/2022] Open
Abstract
Microbiological, chemical, and sensory analyses were coupled to understand the origins of kombucha organoleptic compounds and their implication in the flavor of the kombucha beverage. By isolating microorganisms from an original kombucha and comparing it to monocultures and cocultures of two yeasts (Brettanomyces bruxellensis and Hanseniaspora valbyensis) and an acetic acid bacterium (Acetobacter indonesiensis), interaction effects were investigated during the two phases of production. 32 volatile compounds identified and quantified by Headspace-Solid Phase-MicroExtraction-Gas Chromatography/Mass Spectrometry (HS-SPME-GC/MS) were classified according to their origin from tea or microorganisms. Many esters were associated to H. valbyensis, while alcohols were associated to both yeasts, acetic acid to A. indonesiensis, and saturated fatty acids to all microorganisms. Concentration of metabolites were dependent on microbial activity, yeast composition, and phase of production. Sensory analysis showed that tea type influenced the olfactive perception, although microbial composition remained the strongest factor. Association of B. bruxellensis and A. indonesiensis induced characteristic apple juice aroma.
Collapse
Affiliation(s)
- Thierry Tran
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Equipe Vin Alimentation Micro-Organismes Stress (VAlMiS), Université de Bourgogne Franche-Comté, Dijon, France
| | - Kevin Billet
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Equipe Vin Alimentation Micro-Organismes Stress (VAlMiS), Université de Bourgogne Franche-Comté, Dijon, France
| | - Berta Torres-Cobos
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona, Barcelona, Spain
| | - Stefania Vichi
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Institut de Recerca en Nutrició i Seguretat Alimentària (INSA), Universitat de Barcelona, Barcelona, Spain
| | | | | | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Equipe Vin Alimentation Micro-Organismes Stress (VAlMiS), Université de Bourgogne Franche-Comté, Dijon, France
| | - Cosette Grandvalet
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Equipe Vin Alimentation Micro-Organismes Stress (VAlMiS), Université de Bourgogne Franche-Comté, Dijon, France
| | - Raphaëlle Tourdot-Maréchal
- UMR Procédés Alimentaires et Microbiologiques, Institut Agro Dijon, Equipe Vin Alimentation Micro-Organismes Stress (VAlMiS), Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
26
|
Harrouard J, Eberlein C, Ballestra P, Dols-Lafargue M, Masneuf-Pomarede I, Miot-Sertier C, Schacherer J, Albertin W. Brettanomyces bruxellensis: Overview of the genetic and phenotypic diversity of an anthropized yeast. Mol Ecol 2022; 32:2374-2395. [PMID: 35318747 DOI: 10.1111/mec.16439] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 12/24/2022]
Abstract
Human-associated microorganisms are ideal models to study the impact of environmental changes on species evolution and adaptation because of their small genome, short generation time, and their colonization of contrasting and ever-changing ecological niches. The yeast Brettanomyces bruxellensis is a good example of organism facing anthropogenic-driven selective pressures. It is associated with fermentation processes in which it can be considered either as a spoiler (e.g. winemaking, bioethanol production) or as a beneficial microorganism (e.g. production of specific beers, kombucha). Besides its industrial interests, noteworthy parallels and dichotomies with Saccharomyces cerevisiae propelled B. bruxellensis as a valuable complementary yeast model. In this review, we emphasize that the broad genetic and phenotypic diversity of this species is only beginning to be uncovered. Population genomic studies have revealed the co-existence of auto- and allotriploidization events with different evolutionary outcomes. The different diploid, autotriploid and allotriploid subpopulations are associated with specific fermented processes, suggesting independent adaptation events to anthropized environments. Phenotypically, B. bruxellensis is renowned for its ability to metabolize a wide variety of carbon and nitrogen sources, which may explain its ability to colonize already fermented environments showing low-nutrient contents. Several traits of interest could be related to adaptation to human activities (e.g. nitrate metabolization in bioethanol production, resistance to sulphite treatments in winemaking). However, phenotypic traits are insufficiently studied in view of the great genomic diversity of the species. Future work will have to take into account strains of varied substrates, geographical origins as well as displaying different ploidy levels to improve our understanding of an anthropized yeast's phenotypic landscape.
Collapse
Affiliation(s)
- Jules Harrouard
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Chris Eberlein
- Université de Strasbourg, CNRS, GMGM, UMR 7156, Strasbourg, France
| | - Patricia Ballestra
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Marguerite Dols-Lafargue
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,ENSCBP, Bordeaux INP, 33600, Pessac, France
| | - Isabelle Masneuf-Pomarede
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,BSA, 33170, Gradignan
| | - Cécile Miot-Sertier
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, GMGM, UMR 7156, Strasbourg, France.,Institut Universitaire de France (IUF), Paris, France
| | - Warren Albertin
- UMR 1366 OENOLOGIE, Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, Institut des Sciences de la Vigne et du Vin, 33140, Villenave d'Ornon, France.,ENSCBP, Bordeaux INP, 33600, Pessac, France
| |
Collapse
|
27
|
Non-Targeted Metabolomic Analysis of the Kombucha Production Process. Metabolites 2022; 12:metabo12020160. [PMID: 35208234 PMCID: PMC8878552 DOI: 10.3390/metabo12020160] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/03/2022] [Accepted: 02/07/2022] [Indexed: 02/04/2023] Open
Abstract
Kombucha is a traditional fermented beverage obtained from the transformation of sugared black tea by a community of yeasts and bacteria. Kombucha production recently became industrialized, but its quality standards remain poorly defined. Metabolomic analyses were applied using FT-ICR-MS to characterize the impacts of production phases and the type of tea on the non-volatile chemical composition of kombucha. Independently from tea type, the first phase of acidification in open vessel was characterized by the release of gluconate and gallate from acetic acid bacteria metabolism and probably from polymeric polyphenols, respectively. The second phase of carbonation in closed vessel induced a consumption or transformation of oleic acid that could be consecutive of oxygen limitation. The first phase had the most impact on molecular diversity, but tea type mainly influenced the global composition in polyphenol profile. Black tea polyphenols were more impacted by microbial activity compared to green tea polyphenols.
Collapse
|
28
|
Abstract
Kombucha is a carbonated, slightly acidic beverage traditionally produced by the fermentation of sweetened tea by a symbiotic culture of bacteria and yeast (SCOBY). The microbial community of kombucha is a complex one, whose dynamics are still not fully understood; however, the emergence of culture-independent techniques has allowed a more comprehensive insight into kombucha microbiota. In recent times, advancements have been made towards the optimisation of the fermentation process, including the use of alternative substrates, defined starter cultures and the modification of fermentation parameters, with the aim of producing an innovative beverage that is improved in terms of its physiochemical, sensory and bioactive properties. The global kombucha market is rapidly increasing, with the rising popularity of the tea attributed in part to its purported health benefits, despite the lack of research in human subjects to substantiate such claims. Accordingly, the incidence of kombucha home-brewing has increased, meaning there is a requirement for individuals to recognise the potential hazards associated with fermentation and the relevant preventative measures to be undertaken to ensure the safe preparation of kombucha. The aim of this review is to provide an update regarding the current knowledge of kombucha production, microbiology, safety and marketing.
Collapse
|