1
|
Chen X, Gu Q, Chu B, Zhang Y, Chen Z, Ma M, Li D, Lu J, Wu D. Inhibition mechanism of fusarium graminearum growth by g-C 3N 4 homojunction and its application in barley malting. Int J Food Microbiol 2024; 413:110578. [PMID: 38246024 DOI: 10.1016/j.ijfoodmicro.2024.110578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
The increase of deoxynivalenol (DON) caused by Fusarium graminearum (F. graminearum) during the malting process is a serious safety problem. In our work, the inhibition mechanism of F. graminearum growth by g-C3N4 homojunction and its application in barley malting were studied. The reason why the growth activity of F. graminearum decreased after photocatalysis by g-C3N4 homojunction was that under visible light irradiation, a large amount of •O2- elicited by g-C3N4 homojunction destroyed the cell structure of F. graminearum, leading to the deficiency of cell membrane selective permeability and serious disorder of intracellular metabolism. The application of photocatalysis technology in malting can effectively inhibit the growth of F. graminearum and the accumulation of ergosterol was reduced by 30.55 %, thus reducing the DON content in finished malt by 31.82 %. Meanwhile, the physicochemical indexes of barley malt after photocatalytic treatment still met the requirements of second class barley malt in Chinese light industry standard QB/T 1686-2008. Our work provides a new idea for the control of fungal contamination in barley malt.
Collapse
Affiliation(s)
- Xingguang Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Qianhui Gu
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, PR China
| | - Beibei Chu
- Fengchu (Tianjin) Investment Co., Ltd, Tianjin 300000, PR China
| | - Yongxin Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Ziqiang Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Mingtao Ma
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Dingding Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Jian Lu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China
| | - Dianhui Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
2
|
Chen L, Zhao Y, Wu W, Zeng Q, Wang JJ. New trends in the development of photodynamic inactivation against planktonic microorganisms and their biofilms in food system. Compr Rev Food Sci Food Saf 2023; 22:3814-3846. [PMID: 37530552 DOI: 10.1111/1541-4337.13215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023]
Abstract
The photodynamic inactivation (PDI) is a novel and effective nonthermal inactivation technology. This review provides a comprehensive overview on the bactericidal ability of endogenous photosensitizers (PSs)-mediated and exogenous PSs-mediated PDI against planktonic bacteria and their biofilms, as well as fungi. In general, the PDI exhibited a broad-spectrum ability in inactivating planktonic bacteria and fungi, but its potency was usually weakened in vivo and for eradicating biofilms. On this basis, new strategies have been proposed to strengthen the PDI potency in food system, mainly including the physical and chemical modification of PSs, the combination of PDI with multiple adjuvants, adjusting the working conditions of PDI, improving the targeting ability of PSs, and the emerging aggregation-induced emission luminogens (AIEgens). Meanwhile, the mechanisms of PDI on eradicating mono-/mixed-species biofilms and preserving foods were also summarized. Notably, the PDI-mediated antimicrobial packaging film was proposed and introduced. This review gives a new insight to develop the potent PDI system to combat microbial contamination and hazard in food industry.
Collapse
Affiliation(s)
- Lu Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai, China
| | - Weiliang Wu
- Food Safety and Health Research Center, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qiaohui Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- Foshan Research Center for Quality Safety of the Whole Industry Chain of Agricultural Products, Foshan University, Foshan, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products, Foshan University, Foshan, China
- Foshan Research Center for Quality Safety of the Whole Industry Chain of Agricultural Products, Foshan University, Foshan, China
| |
Collapse
|
3
|
Chen L, Shi Q, Dong Q, Du Y, Peng Z, Zeng Q, Lin Z, Qiu J, Zhao Y, Wang JJ. Covalent Grafting of 5-Aminolevulinic Acid onto Polylactic Acid Films and Their Photodynamic Potency in Preserving Salmon. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:905-919. [PMID: 36548110 DOI: 10.1021/acs.jafc.2c08340] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A novel photodynamic inactivation (PDI)-mediated antimicrobial film of polylactic acid/5-aminolevulinic acid (PLA/ALA) was successfully fabricated by a covalent grafting method using low-temperature plasma. The chemical structure, surface morphology, hydrophilic ability, and mechanical and barrier properties of the films were characterized, and their antibacterial, anti-biofilm potency and preservation effects on ready-to-eat salmon were investigated during storage. Results showed that the amino group of ALA was covalently grafted with the carboxyl group on the surface of PLA after the plasma treatment, with the highest grafting rate reaching ∼50%. The fabricated PLA/ALA films displayed an enhanced barrier ability against water vapor and oxygen. Under blue light-emitting diode illumination, the PLA/ALA films generated massive reactive oxygen species from the endogenous porphyrins in cells induced by ALA and then fatally destroyed the cell wall of planktonic cells and the architectural structures of sessile biofilms of the pathogens (Listeria monocytogenes and Vibrio parahaemolyticus) and spoilage bacterium (Shewanella putrefaciens). More importantly, the PDI-mediated PLA/ALA films potently inhibited 99.9% native bacteria on ready-to-eat salmon and significantly suppressed the changes of its drip loss, pH, and lipid oxidation (MDA) during storage, and on this basis, the shelf life of salmon was extended by 4 days compared with that of the commercial polyethylene film. Therefore, the PDI-mediated PLA/ALA films are valid in inactivating harmful bacterial and preserving the quality of seafood.
Collapse
Affiliation(s)
- Lu Chen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai201306, China
| | - Qiandai Shi
- School of Chemical and Material Engineering, Jiangnan University, Wuxi214122, China
| | - Qingfeng Dong
- College of Food Science and Technology, Shanghai Ocean University, Shanghai201306, China
| | - Yu Du
- Data Information Center, Polar Research Institute of China, Shanghai200136, China
| | - Zhiyun Peng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai201306, China
| | - Qiaohui Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan528225, China
| | - Zihao Lin
- Guang Zhou Institute for Food Inspection, Guangzhou511410, China
| | - Jieer Qiu
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan528225, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai201306, China
| | - Jing Jing Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai201306, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan528225, China
| |
Collapse
|
4
|
Chen X, Chu B, Gu Q, Li W, Lin R, Chu J, Peng Z, Lu J, Wu D. Inhibition of Fusarium graminearum growth and deoxynivalenol accumulation in barley malt by protonated g-C3N4/oxygen-doped g-C3N4 homojunction. Food Res Int 2022; 162:112025. [DOI: 10.1016/j.foodres.2022.112025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/27/2022]
|
5
|
Abe C, Miyazawa T, Miyazawa T. Current Use of Fenton Reaction in Drugs and Food. Molecules 2022; 27:molecules27175451. [PMID: 36080218 PMCID: PMC9457891 DOI: 10.3390/molecules27175451] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Iron is the most abundant mineral in the human body and plays essential roles in sustaining life, such as the transport of oxygen to systemic organs. The Fenton reaction is the reaction between iron and hydrogen peroxide, generating hydroxyl radical, which is highly reactive and highly toxic to living cells. “Ferroptosis”, a programmed cell death in which the Fenton reaction is closely involved, has recently received much attention. Furthermore, various applications of the Fenton reaction have been reported in the medical and nutritional fields, such as cancer treatment or sterilization. Here, this review summarizes the recent growing interest in the usefulness of iron and its biological relevance through basic and practical information of the Fenton reaction and recent reports.
Collapse
|
6
|
Tan L, Zhao Y, Li Y, Peng Z, He T, Liu Y, Zeng Q, Wang JJ. Potent eradication of mixed-species biofilms using photodynamic inactivation coupled with slightly alkaline electrolyzed water. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|