1
|
Shu L, Yang G, Liu S, Huang N, Wang R, Yang M, Chen C. A comprehensive review on arsenic exposure and risk assessment in infants and young children diets: Health implications and mitigation interventions in a global perspective. Compr Rev Food Sci Food Saf 2025; 24:e70063. [PMID: 39731717 DOI: 10.1111/1541-4337.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/29/2024] [Accepted: 10/23/2024] [Indexed: 12/30/2024]
Abstract
The early stages of human development are critical for growth, and exposure to arsenic, particularly through the placenta and dietary sources, poses significant health risks. Despite extensive research, significant gaps remain in our comprehension of regional disparities in arsenic exposure and its cumulative impacts during these developmental stages. We hypothesize that infants in certain regions are at greater risk of arsenic exposure and its associated health complications. This review aims to fill these gaps by providing a comprehensive synthesis of epidemiological evidence related to arsenic exposure during early life, with an emphasis on the underlying mechanisms of arsenic toxicity that contribute to adverse health outcomes, including neurodevelopmental impairments, immune dysfunction, cardiovascular diseases, and cancer. Further, by systematically comparing dietary arsenic exposure in infants across Asia, the Americas, and Europe, our findings reveal that infants in Bangladesh, Pakistan, and India, exposed to levels significantly exceeding the health reference value range of 0.3-8 µg/kg/day, are particularly vulnerable to dietary inorganic arsenic. This comparative analysis not only highlights geographic disparities in exposure but also underscores the variability in regulatory frameworks. Finally, the review identifies early life as a critical window for dietary arsenic exposure and offers evidence-based recommendations for mitigating arsenic contamination in infant foods. These strategies include improved agricultural practices, dietary modifications, stricter regulatory limits on arsenic in infant products, and encouragement of low-arsenic dietary alternatives. Our work establishes the framework for future research and policy development aimed at reducing the burden of arsenic exposure from source to table and effectively addressing this significant public health challenge.
Collapse
Affiliation(s)
- Lin Shu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | | | - Shufang Liu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Nan Huang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruike Wang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengxue Yang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Chen
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
2
|
Huang M, Liu Y, Bian Q, Zhao W, Zhao J, Liu Q. OsbHLH6, a basic helix-loop-helix transcription factor, confers arsenic tolerance and root-to-shoot translocation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2485-2499. [PMID: 39506610 DOI: 10.1111/tpj.17124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/03/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024]
Abstract
Arsenic (As) is extremely toxic to plants, posing a serious concern for food safety. Identification of genes responsive to As is significative for figuring out this issue. Here, we identified a bHLH transcription factor OsbHLH6 that was involved in mediating the processes of As tolerance, uptake, and root-to-shoot translocation in rice. The expression of OsbHLH6 gene was strongly induced after 3 and 48 h of arsenite [As(III)] treatment. The OsbHLH6-overexpressed transgenic rice (OE-OsbHLH6) was sensitive to, while the knockout mutant of OsbHLH6 gene (Osbhlh6) was tolerant to As(III) stress by affecting the contents of reactive oxygen species (ROS) and non-protein thiols (NPT), etc. Knockout of OsbHLH6 gene increased significantly the As concentration in roots, but decreased extensively As accumulation in shoots, compared to that in OE-OsbHLH6 and WT plants. The transcripts of phytochelatins (PCs) synthetase encoding genes OsPCS1 and OsPCS2, as well as As(III) transporter encoding genes OsLsi1 and OsABCC1 were greatly abundant in Osbhlh6 mutants than in OE-OsbHLH6 and WT plants under As(III) stress. In contrast, the expression of OsLsi2 gene was extensively suppressed by As(III) in Osbhlh6 mutants. OsbHLH6 acted as a transcriptional activator to bind directly to the promoter and regulate the expression of OsPrx2 gene that encodes a peroxidase precursor. Moreover, overexpression of OsbHLH6 gene resulted in significant change of expression of amounts of abiotic stress-related genes, which might partially contribute to the As sensitivity of OE-OsbHLH6 plants. These findings may broaden our understanding of the molecular mechanism of OsbHLH6-mediated As response in rice and provide novel useful genes for rice As stress-resistant breeding.
Collapse
Affiliation(s)
- Menghan Huang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, P. R. China
| | - Yang Liu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, P. R. China
| | - Qianwen Bian
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, P. R. China
| | - Wenjing Zhao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, P. R. China
| | - Juan Zhao
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, P. R. China
| | - Qingpo Liu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Lin'an, Hangzhou, 311300, P. R. China
| |
Collapse
|
3
|
Lin Q, Wang X, Huang M, Ren G, Chen X, Li L, Lv T, Xie H. Reducing starch digestibility using a domestic rice cooking method: Structural changes in starch during cooking. Int J Biol Macromol 2024; 282:136986. [PMID: 39471929 DOI: 10.1016/j.ijbiomac.2024.136986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/13/2024] [Accepted: 10/25/2024] [Indexed: 11/01/2024]
Abstract
In this study, a domestic cooking process based on two soaking stages was designed to reduce starch digestibility in japonica, indica, and waxy rice. Compared with the control rice prepared via a conventional method, each cooked rice prepared under optimal conditions (treated rice) exhibited lower protein and lipid content, similar starch levels but with a higher amylose ratio, and greater sensory acceptability. In vitro digestion assessments indicated that each treated rice had less rapidly digested starch (RDS) and more slowly digestible starch (SDS) and resistant starch (RS) than the control rice. The in vivo trial showed that compared with the corresponding control rice, the glycemic index (GI) of treated indica and waxy rice decreased by 9.11 % and 9.02 %, respectively. Scanning electron microscopy reported an increased presence of pores within the treated rice grains. Fourier-transform infrared spectroscopy and X-ray diffraction results revealed that each treated rice exhibited a higher short-range order and larger relative crystallinity than the corresponding control rice. The decrease in the starch digestibility and GI values of rice might be attributable to the enhancement of short-range order and relative crystallinity of starch caused by soaking.
Collapse
Affiliation(s)
- Quanquan Lin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Zhejiang Tianxi Kitchen Appliance Co., Ltd, Lishui 321404, China; School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xin Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Min Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Gerui Ren
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xiyan Chen
- Zhejiang Tianxi Kitchen Appliance Co., Ltd, Lishui 321404, China
| | - Liang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Ting Lv
- Zhejiang Tianxi Kitchen Appliance Co., Ltd, Lishui 321404, China.
| | - Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
4
|
Sharma BM, Komprdová K, Lörinczová K, Kuta J, Přibylová P, Scheringer M, Šebejová L, Piler P, Zvonař M, Klánová J. Human biomonitoring of essential and toxic trace elements (heavy metals and metalloids) in urine of children, teenagers, and young adults from a Central European Cohort in the Czech Republic. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024:10.1038/s41370-024-00724-4. [PMID: 39414997 DOI: 10.1038/s41370-024-00724-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024]
Abstract
BACKGROUND Exposure to toxic trace elements, which include metals and metalloids, can induce adverse health effects, including life-threatening diseases. Conversely, essential trace elements are vital for bodily functions, yet their excessive (or inadequate) intake may pose health risks. Therefore, identifying levels and determinants of exposure to trace elements is crucial for safeguarding human health. METHODS The present study analyzed urinary concentrations of 14 trace elements (arsenic, cadmium, cobalt, chromium, copper, mercury, manganese, molybdenum, nickel, lead, antimony, selenium, thallium, and zinc) and their exposure determinants in 711 individuals, spanning from children to young adults from a Central European population from the Czech Republic. Multivariate linear regression and non-parametric Kruskal-Wallis ANOVA were used to investigate exposure determinants. Estimates of 95th percentile concentrations and confidence intervals were carried out to establish reference values (RV95). The study also assessed the percentage of population exceeding health-based guidance values (GVs) to gauge health risks. RESULTS Young adults showed elevated toxic element concentrations, whereas children exhibited higher concentrations of essential elements. Mercury concentrations were associated with both dental amalgam filling count and seafood intake; arsenic concentrations were associated with seafood, rice, and mushroom consumption. Mushroom consumption also influenced lead concentrations. Sex differences were found for cadmium, zinc, nickel, and cobalt. Between 17.9% and 25% of the participants exceeded recommended GV for arsenic, while 2.4% to 2.8% exceeded GV for cadmium. Only one participant exceeded the GV for mercury, and none exceeded GVs for chromium and thallium. Essential trace elements' GVs were surpassed by 38% to 68.5% participants for zinc, 1.3% to 1.8% for molybdenum, and 0.2% to 0.3% for selenium. IMPACT The present study examines trace element exposure in a Central European population from the Czech Republic, unveiling elevated exposure levels of toxic elements in young adults and essential elements in children. It elucidates key determinants of trace element exposure, including dietary and lifestyle indicators as well as dental amalgam fillings. Additionally, the study establishes novel reference values and a comparison with established health-based human biomonitoring guidance values, which are crucial for public health decision-making. This comprehensive biomonitoring study provides essential data to inform public health policies and interventions.
Collapse
Affiliation(s)
- Brij Mohan Sharma
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092, Zürich, Switzerland
| | - Klára Komprdová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Katarína Lörinczová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Jan Kuta
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Petra Přibylová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Martin Scheringer
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092, Zürich, Switzerland
| | - Ludmila Šebejová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Pavel Piler
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Martin Zvonař
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
- Faculty of Sports Studies, Masaryk university, Kamenice 753/5, Brno, Czech Republic
| | - Jana Klánová
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| |
Collapse
|
5
|
Chen X, Jiang Y, Wang C, Yue L, Li X, Cao X, White JC, Wang Z, Xing B. Selenium Nanomaterials Enhance Sheath Blight Resistance and Nutritional Quality of Rice: Mechanisms of Action and Human Health Benefit. ACS NANO 2024; 18:13084-13097. [PMID: 38727520 DOI: 10.1021/acsnano.4c01835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
In the current work, the foliar application of selenium nanomaterials (Se0 NMs) suppressed sheath blight in rice (Oryza sativa). The beneficial effects were nanoscale specific and concentration dependent. Specifically, foliar amendment of 5 mg/L Se0 NMs decreased the disease severity by 68.8% in Rhizoctonia solani-infected rice; this level of control was 1.57- and 2.20-fold greater than that of the Se ions with equivalent Se mass and a commercially available pesticide (Thifluzamide). Mechanistically, (1) the controlled release ability of Se0 NMs enabled a wider safe concentration range and greater bioavailability to Se0 NMs, and (2) transcriptomic and metabolomic analyses demonstrated that Se0 NMs simultaneously promoted the salicylic acid- and jasmonic-acid-dependent acquired disease resistance pathways, antioxidative system, and flavonoid biosynthesis. Additionally, Se0 NMs improved rice yield by 31.1%, increased the nutritional quality by 6.4-7.2%, enhanced organic Se content by 44.8%, and decreased arsenic and cadmium contents by 38.7 and 42.1%, respectively, in grains as compared with infected controls. Human simulated gastrointestinal tract model results showed that the application of Se0 NMs enhanced the bioaccessibility of Se in grains by 22.0% and decreased the bioaccessibility of As and Cd in grains by 20.3 and 13.4%, respectively. These findings demonstrate that Se0 NMs can serve as an effective and sustainable strategy to increase food quality and security.
Collapse
Affiliation(s)
- Xiaofei Chen
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yi Jiang
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven Connecticut 06511, United States
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
6
|
Moulick D, Ghosh D, Gharde Y, Majumdar A, Upadhyay MK, Chakraborty D, Mahanta S, Das A, Choudhury S, Brestic M, Alahmadi TA, Ansari MJ, Chandra Santra S, Hossain A. An assessment of the impact of traditional rice cooking practice and eating habits on arsenic and iron transfer into the food chain of smallholders of Indo-Gangetic plain of South-Asia: Using AMMI and Monte-Carlo simulation model. Heliyon 2024; 10:e28296. [PMID: 38560133 PMCID: PMC10981068 DOI: 10.1016/j.heliyon.2024.e28296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
The current study was designed to investigate the consequences of rice cooking and soaking of cooked rice (CR) with or without arsenic (As) contaminated water on As and Fe (iron) transfer to the human body along with associated health risk assessment using additive main-effects and multiplicative interaction (AMMI) and Monte Carlo Simulation model. In comparison to raw rice, As content in cooked rice (CR) and soaked cooked rice (SCR) enhanced significantly (at p < 0.05 level), regardless of rice cultivars and locations (at p < 0.05 level) due to the use of As-rich water for cooking and soaking purposes. Whereas As content in CR and SCR was reduced significantly due to the use of As-free water for cooking and soaking purposes. The use of As-free water (AFW) also enhanced the Fe content in CR. The overnight soaking of rice invariably enhanced the Fe content despite the use of As-contaminated water in SCR however, comparatively in lesser amount than As-free rice. In the studied area, due to consumption of As-rich CR and SCR children are more vulnerable to health hazards than adults. Consumption of SCR (prepared with AFW) could be an effective method to minimize As transmission and Fe enrichment among consumers.
Collapse
Affiliation(s)
- Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Kalyani, 741235, West Bengal, India
- Plant Stress Biology & Metabolomics Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Dibakar Ghosh
- ICAR−Indian Institute of Water Management, Bhubaneswar, 751023, Odisha, India
| | - Yogita Gharde
- ICAR-Directorate of Weed Research, Jabalpur, 482004, Madhya Pradesh, India
| | - Arnab Majumdar
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, West Bengal, India
| | - Munish Kumar Upadhyay
- Centre for Environmental Science & Engineering, Department of Civil Engineering, Indian Institute of Technology, Kanpur, 208016, India
| | - Deep Chakraborty
- Department of Environmental Science, Amity School of Life Sciences (ASLS), Amity University, Madhya Pradesh (AUMP), Gwalior, 474005, Madhya Pradesh, India
| | - Subrata Mahanta
- Department of Chemistry, NIT Jamshedpur, Adityapur, Jamshedpur, 831014, Jharkhand, India
| | - Anupam Das
- Department of Soil Science and Agricultural Chemistry, Bihar Agricultural University, Sabour, Bhagalpur, 813210, India
| | - Shuvasish Choudhury
- Plant Stress Biology & Metabolomics Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Marian Brestic
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01, Nitra, Slovak, Slovakia
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, P.O. Box 2925, Riyadh, 11461, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University, Bareilly), Moradabad, 244001, Uttar Pradesh, India
| | - Shubhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur, 5200, Bangladesh
| |
Collapse
|
7
|
Mridha D, Sarkar J, Majumdar A, Sarkar K, Maiti A, Acharya K, Das M, Chen H, Niazi NK, Roychowdhury T. Evaluation of iron-modified biochar on arsenic accumulation by rice: a pathway to assess human health risk from cooked rice. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23549-23567. [PMID: 38421541 DOI: 10.1007/s11356-024-32644-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Arsenic (As) contamination of rice grain poses a serious threat to human health. Therefore, it is crucial to reduce the bioavailability of As in the soil and its accumulation in rice grains to ensure the safety of food and human health. In this study, mango (Mangifera indica) leaf-derived biochars (MBC) were synthesized and modified with iron (Fe) to produce FeMBC. In this study, 0.5 and 1% (w/w) doses of MBC and FeMBC were used. The results showed that 1% FeMBC enhanced the percentage of filled grains/panicle and biomass yield by 17 and 27%, respectively, compared to the control. The application of 0.5 and 1% FeMBC significantly (p < 0.05) reduced bioavailable soil As concentration by 33 and 48%, respectively, in comparison to the control. The even higher As flux in the control group as compared to the biochar-treated groups indicates the lower As availability to biochar-treated rice plant. The concentration of As in rice grains was reduced by 6 and 31% in 1% MBC and 1% FeMBC, respectively, compared to the control. The reduction in As concentration in rice grain under 1% FeMBC was more pronounced due to reduced bioavailability of As and enhanced formation of Fe-plaque. This may restrict the entry of As through the rice plant. The concentrations of micronutrients (such as Fe, Zn, Se, and Mn) in brown rice were also improved after the application of both MBC and FeMBC in comparison to the control. This study indicates that the consumption of parboiled rice reduces the health risk associated with As compared to cooked sunned rice. It emphasizes that 1% MBC and 1% FeMBC have great potential to decrease the uptake of As in rice grains.
Collapse
Affiliation(s)
- Deepanjan Mridha
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Jit Sarkar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, 700019, India
| | - Arnab Majumdar
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Kunal Sarkar
- Department of Zoology, University of Calcutta, Kolkata, 700019, India
| | - Anupam Maiti
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, 700019, India
| | - Madhusudan Das
- Department of Zoology, University of Calcutta, Kolkata, 700019, India
| | - Hao Chen
- School of Agriculture, Fisheries and Human Sciences, The University of Arkansas at Pine Bluff, Pine Bluff, AR, USA
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
8
|
Menon M, Nicholls A, Smalley A, Rhodes E. A comparison of the effects of two cooking methods on arsenic species and nutrient elements in rice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169653. [PMID: 38176556 DOI: 10.1016/j.scitotenv.2023.169653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/06/2024]
Abstract
Rice is one of the major cereal crops in the world, contributing significantly towards the dietary energy and nutrition of more than half of the world's population. However, rice can also be a significant exposure route for inorganic arsenic (iAs). This risk is even greater if rice is cooked with iAs-contaminated water. Here, we quantified the effect of two cooking methods, excess water (EW) and parboiled and absorbed (PBA), on As species and essential nutrient elements (P, K, Mg, Fe, Zn, Mn, Cu, Se and Mo) in white, parboiled and brown rice cooked with As-safe (0.18 μg L-1) and As-spiked (10 and 50 μg L-1) tap water. Furthermore, we calculated the exposure risk using the margin of exposure (MOE) for both low (the UK) and high (Bangladesh) rice per capita consumption scenarios. The total micro and macronutrient content in cooked rice was measured using ICP-MS (Inductively Coupled Plasma Mass Spectrometry). An LC-ICP-MS (liquid chromatography-ICP-MS) method was used to quantify arsenic species. The results demonstrate that EW and PBA methods produced similar efficacy of iAs removal (54-58 %) for white and brown rice. However, the EW method was better at removing iAs from parboiled rice (∼50 %) than PBA (∼39 %). We found that cooked brown rice was superior to other rice types in many essential nutrient elements, and cooking methods significantly affected the loss of K, Fe, Cu and Mo. For both cooking methods, cooking with iAs-spiked water significantly increased iAs in all rice types: white > parboiled > brown. However, when using As-spiked water, the PBA method retained more iAs than EW. Our risk evaluations showed that cooking rice with 50 μg L-1 significantly raises the As-exposure of the Bangladesh population due to the high per capita rice consumption rate, reinforcing the importance of accessing As-safe water for cooking.
Collapse
Affiliation(s)
- Manoj Menon
- Department of Geography, University of Sheffield, Sheffield S10 2TN, United Kingdom.
| | - Andrea Nicholls
- Department of Geography, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Alan Smalley
- Department of Geography, University of Sheffield, Sheffield S10 2TN, United Kingdom; Department of Civil and Structural Engineering, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Edward Rhodes
- Department of Geography, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
9
|
Mondal R, Majumdar A, Sarkar S, Goswami C, Joardar M, Das A, Mukhopadhyay PK, Roychowdhury T. An extensive review of arsenic dynamics and its distribution in soil-aqueous-rice plant systems in south and Southeast Asia with bibliographic and meta-data analysis. CHEMOSPHERE 2024; 352:141460. [PMID: 38364927 DOI: 10.1016/j.chemosphere.2024.141460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Millions of people worldwide are affected by arsenic (As) contamination, particularly in South and Southeast Asian countries, where large-scale dependence on the usage of As-contaminated groundwater in drinking and irrigation is a familiar practice. Rice (Oryza sativa) cultivation is commonly done in South and Southeast Asian countries as a preferable crop which takes up more As than any other cereals. The present article has performed a scientific meta-data analysis and extensive bibliometric analysis to demonstrate the research trend in global rice As contamination scenario in the timeframe of 1980-2023. This study identified that China contributes most with the maximum number of publications followed by India, USA, UK and Bangladesh. The two words 'arsenic' and 'rice' have been identified as the most dominant keywords used by the authors, found through co-occurrence cluster analysis with author keyword association study. The comprehensive perceptive attained about the factors affecting As load in plant tissue and the nature of the micro-environment augment the contamination of rice cultivars in the region. This extensive review analyses soil parameters through meta-data regression assessment that influence and control As dynamics in soil with its further loading into rice grains and presents that As content and OM are inversely related and slightly correlated to the pH increment of the soil. Additionally, irrigation and water management practices have been found as a potential modulator of soil As concentration and bioavailability, presented through a linear fit with 95% confidence interval method.
Collapse
Affiliation(s)
- Rubia Mondal
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Arnab Majumdar
- School of Environmental Studies, Jadavpur University, Kolkata, India
| | - Sukamal Sarkar
- Divison of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, India
| | - Chandrima Goswami
- Department of Environmental Studies, Rabindra Bharati University, Kolkata, India
| | - Madhurima Joardar
- School of Environmental Studies, Jadavpur University, Kolkata, India
| | - Antara Das
- School of Environmental Studies, Jadavpur University, Kolkata, India
| | | | | |
Collapse
|
10
|
Calao-Ramos CR, Marrugo Negrete JL, Urango Cárdenas I, Díez S. Genotoxicity and mutagenicity in blood and drinking water induced by arsenic in an impacted gold mining region in Colombia. ENVIRONMENTAL RESEARCH 2023; 233:116229. [PMID: 37236386 DOI: 10.1016/j.envres.2023.116229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Arsenic (As) is one of the most dangerous substances that can affect human health and long-term exposure to As in drinking water can even cause cancer. The objective of this study was to investigate the concentrations of total As in the blood of inhabitants of a Colombian region impacted by gold mining and to evaluate its genotoxic effect through DNA damage by means of the comet assay. Additionally, the concentration of As in the water consumed by the population as well as the mutagenic activity of drinking water (n = 34) in individuals were determined by hydride generator atomic absorption spectrometry and the Ames test, respectively. In the monitoring, the study population was made up of a group of 112 people, including inhabitants of four municipalities: Guaranda, Sucre, Majagual, and San Marcos from the Mojana region as the exposed group, and Montería as a control group. The results showed DNA damage related to the presence of As in blood (p < 0.05) in the exposed population, and blood As concentrations were above the maximum allowable limit of 1 μg/L established by the ATSDR. A mutagenic activity of the drinking water was observed, and regarding the concentrations of As in water, only one sample exceeded the maximum permissible value of 10 μg/L established by the WHO. The intake of water and/or food containing As is potentially generating DNA damage in the inhabitants of the Mojana region, which requires surveillance and control by health entities to mitigate these effects.
Collapse
Affiliation(s)
- Clelia Rosa Calao-Ramos
- Universidad de Córdoba, Carrera 6 No. 77-305, Montería, Research Group in Water, Applied and Environmental Chemistry, Córdoba, Colombia; Universidad de Córdoba, Carrera 6 No. 76-103, Montería, College of Health Sciences, Bacteriology Department, Córdoba, Colombia
| | - Jose Luis Marrugo Negrete
- Universidad de Córdoba, Carrera 6 No. 77-305, Montería, Research Group in Water, Applied and Environmental Chemistry, Córdoba, Colombia.
| | - Iván Urango Cárdenas
- Universidad de Córdoba, Carrera 6 No. 77-305, Montería, Research Group in Water, Applied and Environmental Chemistry, Córdoba, Colombia
| | - Sergi Díez
- Environmental Chemistry Department, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18-26, 08034, Barcelona, Spain.
| |
Collapse
|
11
|
Huang S, Zhang D, Wang Q, Shang B, Liu J, Xing X, Hong Y, Duan X, Sun H. Shotgun lipidomics reveals the changes in phospholipids of brown rice during accelerated aging. Food Res Int 2023; 171:113073. [PMID: 37330832 DOI: 10.1016/j.foodres.2023.113073] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
Brown rice exhibits higher nutritional value and attracts more and more attentions; however, the change in phospholipid molecular species in brown rice during aging is poorly understood. In this study, shotgun lipidomics was employed to investigate the changes in phospholipid molecular species in four brown rice varieties (two japonica rice and two indica rice) during accelerated aging. A total of 64 phospholipid molecular species were identified, and most of them were rich in polyunsaturated fatty acids. For japonica rice, phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylglycerol (PG) gradually decreased during accelerated aging. However, the content of PC, PE, and PG in indica rice showed no difference during accelerated aging. Significantly different phospholipid molecular species from four brown rice were screened during accelerated aging. Based on these significantly different phospholipids, the metabolic pathways including glycerophospholipid metabolism and linoleic acid metabolism during accelerated aging were depicted. The findings from this study could be helpful in explaining the impact of accelerated aging on phospholipids of brown rice, and offer an understanding on relationships between phospholipids degradation and brown rice deterioration.
Collapse
Affiliation(s)
- Shanshan Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Dong Zhang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Qian Wang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Bo Shang
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Jianlei Liu
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Xiaoting Xing
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Yu Hong
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
| | - Xiaoliang Duan
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| | - Hui Sun
- Academy of National Food and Strategic Reserves Administration, Beijing 100037, China.
| |
Collapse
|
12
|
Gupta A, Tiwari RK, Agnihotri R, Padalia K, Mishra S, Dwivedi S. A critical analysis of various post-harvest arsenic removal treatments of rice and their impact on public health due to nutrient loss. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1073. [PMID: 37615784 DOI: 10.1007/s10661-023-11669-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023]
Abstract
Rice (Oryza sativa L.) is particularly susceptible to arsenic (As) accumulation. Currently, to decrease the level of As accumulated in rice, various post-harvest methods, i.e., polishing, parboiling, pH-dependent soaking, washing, and cooking at different rice-to-water ratios (r/w), are being focused, because it removes significant amount of As from rice grain. Depending upon the rice variety and type, i.e., rough (with husk), husked (without husk/brown), or polished rice, these methods can remove 39-54% As by parboiling, 38-55% by polishing, 37-63% by soaking, and 6-80% by washing and cooking. Infants are highly vulnerable to As exposure; thus, these methods can be helpful for the production of rice-based infant foods. Although concern arises during the use of these methods that apart from decreasing the level of As in rice grain, they also lead to a significant loss of nutrients, such as macro- and micro-elements present in rice. Among these discussed methods, parboiling curtails 5-59%, polishing curtails 6-96%, soaking curtails 33-83%, and washing and cooking in different r/w reduce 8-81% of essential nutrients resulting in 2-90% reduction in contribution to the RDI of these nutrients through rice-based diet. Thus, these post-harvest arsenic removal methods, although reduce arsenic induced health hazard, but may also lead to malnutrition and compromised health in the population based on rice diet. There is a need to explore another way to reduce As from rice without compromising the nutrient availability or to supplement these nutrients through grain enrichment or by introducing additional dietary sources by changing eating habits; however, this may impose an extra economic burden on people.
Collapse
Affiliation(s)
- Apoorv Gupta
- Department of Chemistry, University of Lucknow, Lucknow, 226007, India
| | - Ravi Kumar Tiwari
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Ruchi Agnihotri
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Kalpana Padalia
- Analytical Chemistry Division, CSIR-Indian Institute of Toxicology Research, Lucknow, 226001, India
| | - Seema Mishra
- Department of Chemistry, University of Lucknow, Lucknow, 226007, India.
| | - Sanjay Dwivedi
- Plant Ecology and Climate Change Science Division, CSIR-National Botanical Research Institute, Lucknow, 226001, India.
| |
Collapse
|
13
|
Navaretnam R, Hassan HN, Isa NM, Aris AZ, Looi LJ. Metal(loid) Analysis of Commercial Rice from Malaysia using ICP-MS: Potential Health Risk Evaluation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87695-87720. [PMID: 37423935 DOI: 10.1007/s11356-023-28459-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Rice is a predominant staple food in many countries. It is a great source of energy but can also accumulate toxic and trace metal(loid)s from the environment and pose serious health hazards to consumers if overdosed. This study aims to determine the concentration of toxic metal(loid)s [arsenic (As), cadmium (Cd), nickel (Ni)] and essential metal(loid)s [iron (Fe), selenium (Se), copper (Cu), chromium (Cr), cobalt (Co)] in various types of commercially available rice (basmati, glutinous, brown, local whites, and fragrant rice) in Malaysia, and to assess the potential human health risk. Rice samples were digested following the USEPA 3050B acid digestion method and the concentrations of metal(loid)s were analyzed using an inductively coupled plasma mass spectrometry (ICP-MS). Mean concentrations (mg/kg as dry weight) of metal(loid)s (n=45) across all rice types were found in the order of Fe (41.37)>Cu (6.51)>Cr (1.91)>Ni (0.38)>As (0.35)>Se (0.07)>Cd (0.03)>Co (0.02). Thirty-three percent and none of the rice samples surpassed, respectively, the FAO/WHO recommended limits of As and Cd. This study revealed that rice could be a primary exposure pathway to toxic metal(loid)s, leading to either noncarcinogenic or carcinogenic health problems. The non-carcinogenic health risk was mainly associated with As which contributed 63% to the hazard index followed by Cr (34%), Cd (2%), and Ni (1%). The carcinogenic risk to adults was high (>10-4) for As, Cr, Cd, and Ni. The cancer risk (CR) for each element was 5 to 8 times higher than the upper limit of cancer risk for an environmental carcinogen (<10-4). The findings from this study could provide the metal(loid)s pollution status of various types of rice which are beneficial to relevant authorities in addressing food safety and security-related issues.
Collapse
Affiliation(s)
- Raneesha Navaretnam
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Hadirah Nasuha Hassan
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Noorain Mohd Isa
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia
| | - Ley Juen Looi
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Port Dickson, Negeri Sembilan, Malaysia.
| |
Collapse
|
14
|
Kang B, Liu H, Chen G, Lin H, Chen S, Chen T. Novel covalent organic frameworks based electrospun composite nanofiber membranes as pipette-tip strong anion exchange sorbent for determination of inorganic arsenic in rice. Food Chem 2023; 408:135192. [PMID: 36592546 DOI: 10.1016/j.foodchem.2022.135192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Novel covalent organic frameworks (COFs) based PAN@TpBD(NH2)2 electrospun composite nanofiber membranes (ECNMs) were fabricated as strong anion exchange sorbent by implementing electrospinning technology. The finished sorbent was characterized, and key parameters of pipette-tip solid phase extraction (PTSPE) procedures were investigated. Inorganic arsenic (iAs) was successfully separated from rice under the optimal precondition conditions, and quantified by hydride generation-atomic fluorescence spectrometry (HG-AFS). This PTSPE-HG-AFS methodology achieved 0.015 μg L-1 detection limit, 4.67 % relative standard deviation, and 86.48~99.11 % recoveries. In this work, preparation and characterization of this novel COFs-based anion exchange sorbent, PAN@TpBD(NH2)2 ECNMs, is described and its suitability for PTSPE applications is demonstrated.
Collapse
Affiliation(s)
- Binbin Kang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, PR China; Fujian Vocational College of Bioengineering, Fuzhou 350005, Fujian, PR China
| | - Haoliang Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, PR China
| | - Guoying Chen
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA
| | - Hetong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, PR China
| | - Shaojun Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, PR China.
| | - Tuanwei Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, Fujian, PR China.
| |
Collapse
|
15
|
Joardar M, Mukherjee P, Das A, Mridha D, De A, Chowdhury NR, Majumder S, Ghosh S, Das J, Alam MR, Rahman MM, Roychowdhury T. Different levels of arsenic exposure through cooked rice and its associated benefit-risk assessment from rural and urban populations of West Bengal, India: a probabilistic approach with sensitivity analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27249-x. [PMID: 37156951 DOI: 10.1007/s11356-023-27249-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 04/23/2023] [Indexed: 05/10/2023]
Abstract
Rice arsenic (As) contamination and its consumption poses a significant health threat to humans. The present study focuses on the contribution of arsenic, micronutrients, and associated benefit-risk assessment through cooked rice from rural (exposed and control) and urban (apparently control) populations. The mean decreased percentages of As from uncooked to cooked rice for exposed (Gaighata), apparently control (Kolkata), and control (Pingla) areas are 73.8, 78.5, and 61.3%, respectively. The margin of exposure through cooked rice (MoEcooked rice) < 1 signifies the existence of health risk for all the studied exposed and control age groups. The respective contributions of iAs (inorganic arsenic) in uncooked and cooked rice are nearly 96.6, 94.7, and 100% and 92.2, 90.2, and 94.2% from exposed, apparently control, and control areas. LCR analysis for the exposed, apparently control, and control populations (adult male: 2.1 × 10-3, 2.8 × 10-4, 4.7 × 10-4; adult female: 1.9 × 10-3, 2.1 × 10-4, 4.4 × 10-4; and children: 5.8 × 10-4, 4.9 × 10-5, 1.1 × 10-4) through cooked rice is higher than the recommended value, i.e., 1 × 10-6, respectively, whereas HQ > 1 has been observed for all age groups from the exposed area and adult male group from the control area. Adults and children from rural area showed that ingestion rate (IR) and concentration are the respective influencing factors towards cooked rice As, whereas IR is solely responsible for all age groups from urban area. A vital suggestion is to reduce the IR of cooked rice for control population to avoid the As-induced health risks. The average intake (μg/day) of micronutrients is in the order of Zn > Se for all the studied populations and Se intake is lower for the exposed population (53.9) compared to the apparently control (140) and control (208) populations. Benefit-risk assessment supported that the Se-rich values in cooked rice are effective in avoiding the toxic effect and potential risk from the associated metal (As).
Collapse
Affiliation(s)
- Madhurima Joardar
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Payal Mukherjee
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Antara Das
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Deepanjan Mridha
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Ayan De
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | | | - Sharmistha Majumder
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Swetanjana Ghosh
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Jagyashila Das
- National Institute of Biomedical Genomics, Kalyani, India
| | - Md Rushna Alam
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
16
|
Fu Y, Zhong X, Lu C, Liang K, Pan J, Hu X, Hu R, Li M, Ye Q, Liu Y. Growth, nutrient uptake and transcriptome profiling of rice seedlings in response to mixed provision of ammonium- and nitrate-nitrogen. JOURNAL OF PLANT PHYSIOLOGY 2023; 284:153976. [PMID: 37028191 DOI: 10.1016/j.jplph.2023.153976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Nitrogen (N) is a principal macronutrient and plays a paramount role in mineral nutrition of rice plants. Mixed provision of ammonium- and nitrate-nitrogen (MPAN) at a moderate level could enhance N uptake and translocation and promote growth of rice, but current understanding of their molecular mechanisms is still insufficient. Two rice lines of W6827 and GH751, with contrasting ability of N uptake, were subjected to four levels of MPAN (NH4+/NO3- = 100:0, 75:25, 50:50, 25:75) in hydroponic experiments. In terms of plant height, growth rate and shoot biomass, growth of GH751 tended to increase firstly and then decrease with enhancement in NO3--N ratio. It attained maximal level under 75:25 MPAN, with an 8.3% increase in shoot biomass. In general, W6827 was comparatively less responsive to MPAN. For GH751, the uptake rate of N, phosphor (P) and potassium (K) under 75:25 MPAN was enhanced by 21.1%, 20.8% and 16.1% in comparison with that of control (100:0 MPAN). Meanwhile, the translocation coefficient and content in shoots of N, P and K were all increased significantly. In contrast to transcriptomic profile under control, 288 differentially expressed genes (DEGs) were detected to be up-regulated and 179 DEGs down-regulated in transcription under 75:25 MPAN. Gene Ontology analysis revealed that some DEGs were up-regulated under 75:25 MPAN and they code for proteins mainly located in membrane and integral component of membrane and involved in metal ion binding, oxidoreductase activity and other biological processes. KEGG pathway enrichment analysis indicated that DEGs related to nitrogen metabolism, carbon fixation in photosynthetic organisms, photosynthesis, starch and sucrose metabolism, and zeatin biosynthesis were up- or down-regulated in transcription under 75:25 MPAN, and they are responsible for improved nutrient uptake and translocation and enhanced growth of seedlings.
Collapse
Affiliation(s)
- Youqiang Fu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Rice Engineering Laboratory/ Guangdong Key Laboratory of New Technology in Rice Breeding /Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, PR China
| | - Xuhua Zhong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Rice Engineering Laboratory/ Guangdong Key Laboratory of New Technology in Rice Breeding /Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, PR China
| | - Chusheng Lu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Rice Engineering Laboratory/ Guangdong Key Laboratory of New Technology in Rice Breeding /Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, PR China
| | - Kaiming Liang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Rice Engineering Laboratory/ Guangdong Key Laboratory of New Technology in Rice Breeding /Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, PR China.
| | - Junfeng Pan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Rice Engineering Laboratory/ Guangdong Key Laboratory of New Technology in Rice Breeding /Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, PR China
| | - Xiangyu Hu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Rice Engineering Laboratory/ Guangdong Key Laboratory of New Technology in Rice Breeding /Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, PR China
| | - Rui Hu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Rice Engineering Laboratory/ Guangdong Key Laboratory of New Technology in Rice Breeding /Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, PR China
| | - Meijuan Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Rice Engineering Laboratory/ Guangdong Key Laboratory of New Technology in Rice Breeding /Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, PR China
| | - Qunhuan Ye
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Rice Engineering Laboratory/ Guangdong Key Laboratory of New Technology in Rice Breeding /Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, PR China
| | - Yanzhuo Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Rice Engineering Laboratory/ Guangdong Key Laboratory of New Technology in Rice Breeding /Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, PR China.
| |
Collapse
|
17
|
Wu X, Zhou Y, Lu Q, Liu R. Ultrasonic-assisted immersion of parboiled treatment improves head rice yield and nutrition of black rice and provides a softer texture of cooked black rice. ULTRASONICS SONOCHEMISTRY 2023; 95:106378. [PMID: 36965314 PMCID: PMC10074192 DOI: 10.1016/j.ultsonch.2023.106378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/06/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Parboiling is gaining increasing attention as it can enhance the head rice yield (HRY) and nutritional quality of non-pigmented rice. The traditional parboiling process with high-temperature immersion requires a long immersion period and results in hard texture of cooked parboiled black rice (PBR), which may be addressed by ultrasound-assisted immersion. In this study, we evaluated the effect of power, time and temperature of ultrasonic immersion on the HRY, texture profile and nutritional quality of PBR. Proper ultrasound-assisted immersion could increase the HRY by about 20% and the GABA content by up to 133%, as well as reduce the arsenic and cadmium content by up to 61% and 79% relative to untreated black rice (UBR), respectively. Moreover, it could increase the content of essential minerals such as calcium, iron and zinc to some extent, and free and bound polyphenols, despite of a certain loss of anthocyanins. It could also improve the palatability of cooked rice. Furthermore, response surface experiments based on the Box-Behnken design were performed to obtain and validate the optimal conditions of ultrasound-assisted immersion (540 W, 45 min, 57 °C). On this basis, morphological changes might be one reason for the improved HRY, nutrition and texture of PBR compared with those of UBR, namely the disappearance of cracks near the aleurone layer and formation of new cracks in the interior of rice.
Collapse
Affiliation(s)
- Xin Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yi Zhou
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China; National Engineering Research Center of Rice and Byproduct Deep Processing, Wuhan, China.
| |
Collapse
|
18
|
Juang KW, Chu LJ, Syu CH, Chen BC. Coupling phytotoxicity and human health risk assessment to refine the soil quality standard for As in farmlands. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38212-38225. [PMID: 36580243 DOI: 10.1007/s11356-022-25011-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
In the present study, a field experiment was conducted to investigate arsenic (As) concentrations in soils and in grains of 15 rice varieties in a contaminated site in Taiwan. The studied site was divided into two experimental units, namely plot A and plot B. The results showed that mean total As concentrations were 70.94 and 61.80 mg kg-1 in plot A and plot B, respectively, and thus greater than or approximate to the soil quality standard for total As in Taiwan (60 mg kg-1). The As levels in rhizosphere soil in plot A (19.71-32.33 mg kg-1) were much higher than in plot B (6.41-8.60 mg kg-1); however, As accumulation in brown rice did not significantly differ between the plots. These results implied that a significant variation in the bioconcentration factor (BCF) value of As existed among different rice genotypes, and a negative correlation was observed between BCF value and rhizosphere As level in the soil. In phytotoxicity, the median values of the ecological risk indicator were 104.85 and 103.89 in plot A and plot B, respectively, indicating considerable risk. In human health risk assessment, the median and 97.5%-tile values for cancer risk for both male and female residents were markedly higher than the acceptable risk (1 × 10-4). Furthermore, non-cancer and cancer risks were higher for males than females, mainly due to the greater rice ingestion rate of males. Sensitivity analysis showed that total As concentration in soil was the main factor affecting health risks, suggesting that priority should be given to the reduction of soil As levels. To better manage the phytotoxicity of As on rice, as well as the health risk to residents resulting from exposure to As-contaminated soils, the soil quality standard for As in farmland soils should be set between 5 and 10 mg kg-1. The methodology developed in this study could also be applied to provide the basis for refining and revising the soil quality standard for heavy metals in farmland in other regions and countries.
Collapse
Affiliation(s)
- Kai-Wei Juang
- Department of Agronomy, National Chiayi University, Chiayi, Taiwan
| | - Li-Jia Chu
- Department of Agronomy, National Chiayi University, Chiayi, Taiwan
- Department of Natural Biotechnology, Nanhua University, 622 No. 55, Sec. 1, Nanhua Rd., Dalin Township, Chiayi, Taiwan
| | - Chien-Hui Syu
- Agricultural Chemistry Division, Taiwan Agricultural Research Institute, Taichung, Taiwan
| | - Bo-Ching Chen
- Department of Natural Biotechnology, Nanhua University, 622 No. 55, Sec. 1, Nanhua Rd., Dalin Township, Chiayi, Taiwan.
| |
Collapse
|
19
|
Ray I, Mridha D, Sarkar J, Joardar M, Das A, Chowdhury NR, De A, Acharya K, Roychowdhury T. Application of potassium humate to reduce arsenic bioavailability and toxicity in rice plants (Oryza sativa L.) during its course of germination and seedling growth. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120066. [PMID: 36067973 DOI: 10.1016/j.envpol.2022.120066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 06/04/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Arsenic (As), a metalloid is a class I carcinogen and is a major problem in various parts of the world. Food crops are severely affected due to As poisoning and suffer from low germination, yield and disfiguration of morphological and anatomical traits. To attenuate such adverse effects and tone down As uptake by plants, the present study attempts to explore the role of K-humate (KH) in alleviation of As toxicity in rice. KH was administered in the growth media containing 800 ppb As (III) at varying doses to observe the stress alleviating capacity of the amendment. Five treatments were investigated, viz: (a) 800 ppb As (control), (b) 800 ppb As + 25 ppm KH, (c) 800 ppb As + 50 ppm KH, (d) 800 ppb As + 75 ppm KH and (e) 800 ppb As + 100 ppm KH. The results of the amendment administration were noted at 14 days after seeding (DAS). Application of KH significantly improved germination percentage, vigour indices and chlorophyll content by reducing the oxidative stress, antioxidant and antioxidant enzyme activities under As stress. In vivo detection of reactive oxygen species (ROS) using DCF-2DA fluorescent dye and scanning electron microscope (SEM) study of root further depicted that KH application effectively reduced ROS formation and improved root anatomical structure under As stress, respectively. Gradually increasing concentrations of KH was capable of decreasing the bioavailability of As to the rice plants, thus minimizing toxic effect of the metalloid.
Collapse
Affiliation(s)
- Iravati Ray
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Deepanjan Mridha
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Jit Sarkar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, 700019, India
| | - Madhurima Joardar
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Antara Das
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | | | - Ayan De
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, 700019, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|