1
|
Marangoni Júnior L, Rodrigues RM, Pereira RN, Augusto PED, Ito D, Teixeira FG, Padula M, Vicente AA. Effect of ohmic heating on the structure and properties of flexible multilayer packaging. Food Chem 2024; 456:140038. [PMID: 38876069 DOI: 10.1016/j.foodchem.2024.140038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Food-packaging-processing interactions define packaging materials' performance properties and product quality. This study evaluated the effect of ohmic heating (OH) processing and different food simulants on the properties of four multilayer flexible packaging materials (PETmet/PE, PETmet/PP, PET/Al/PE, and PET/Al/PA/PP). OH treatment was applied to the sealed packages containing the food simulants using a voltage gradient of 3.7 V/cm at a frequency of 20 kHz, resulting in a thermal process of at 80 °C for 1 min. The structure and performance of the different packages were then evaluated. The materials did not show changes in chemical groups nor thermal properties. However, the simulant-packaging-processing interaction resulted in changes in crystallinity, morphology, mechanical and barrier properties (water and oxygen), especially for metallized films in contact with acidic food simulants. The results indicate that although OH resulted in changes in packaging materials, these materials can be used under the conditions applied in this study.
Collapse
Affiliation(s)
- Luís Marangoni Júnior
- Department of Food Engineering and Technology, Faculty of Food Engineering, University of Campinas (Unicamp), 13083-862, Campinas, SP, Brazil; Packaging Technology Center, Institute of Food Technology, 13073-148, Campinas, São Paulo, Brazil.; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Rui M Rodrigues
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, 4710-057, Braga, Guimarães, Portugal
| | - Ricardo N Pereira
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, 4710-057, Braga, Guimarães, Portugal
| | - Pedro Esteves Duarte Augusto
- Université Paris-Saclay, CentraleSupélec, Laboratoire de Génie des Procédés et Matériaux, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges Terres 51110 Pomacle, France
| | - Danielle Ito
- Packaging Technology Center, Institute of Food Technology, 13073-148, Campinas, São Paulo, Brazil
| | - Fábio Gomes Teixeira
- Packaging Technology Center, Institute of Food Technology, 13073-148, Campinas, São Paulo, Brazil
| | - Marisa Padula
- Packaging Technology Center, Institute of Food Technology, 13073-148, Campinas, São Paulo, Brazil
| | - António A Vicente
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; LABBELS - Associate Laboratory, 4710-057, Braga, Guimarães, Portugal
| |
Collapse
|
2
|
Yue S, Zhang T, Wang S, Han D, Huang S, Xiao M, Meng Y. Recent Progress of Biodegradable Polymer Package Materials: Nanotechnology Improving Both Oxygen and Water Vapor Barrier Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:338. [PMID: 38392711 PMCID: PMC10892516 DOI: 10.3390/nano14040338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/24/2024]
Abstract
Biodegradable polymers have become a topic of great scientific and industrial interest due to their environmentally friendly nature. For the benefit of the market economy and environment, biodegradable materials should play a more critical role in packaging materials, which currently account for more than 50% of plastic products. However, various challenges remain for biodegradable polymers for practical packaging applications. Particularly pertaining to the poor oxygen/moisture barrier issues, which greatly limit the application of current biodegradable polymers in food packaging. In this review, various strategies for barrier property improvement are summarized, such as chain architecture and crystallinity tailoring, melt blending, multi-layer co-extrusion, surface coating, and nanotechnology. These strategies have also been considered effective ways for overcoming the poor oxygen or water vapor barrier properties of representative biodegradable polymers in mainstream research.
Collapse
Affiliation(s)
- Shuangshuang Yue
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China (T.Z.)
| | - Tianwei Zhang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China (T.Z.)
| | - Shuanjin Wang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China (T.Z.)
| | - Dongmei Han
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China (T.Z.)
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Sheng Huang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China (T.Z.)
| | - Min Xiao
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China (T.Z.)
| | - Yuezhong Meng
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China (T.Z.)
- School of Chemical Engineering and Technology, Sun Yat-sen University, Guangzhou 510275, China
- Research Center of Green Catalysts, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- China Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450000, China
| |
Collapse
|
3
|
Contreras-López G, Morales-Rodríguez S, Alarcon-Rojo AD, Carrillo-Lopez LM. Effect of packaging thickness and muscle type on ultrasound-assisted beef quality. ULTRASONICS SONOCHEMISTRY 2024; 103:106777. [PMID: 38281446 PMCID: PMC10839587 DOI: 10.1016/j.ultsonch.2024.106777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/08/2024] [Accepted: 01/19/2024] [Indexed: 01/30/2024]
Abstract
High-intensity ultrasound (HIU) can modify muscle structure, leading to improvements in tenderness. However, factors such as packing type and muscle complexity may attenuate the acoustic cavitation. In this research, the effect of packing thickness (40.6-70 μm) on the quality of bovine Gluteus medius and Biceps femoris treated with HIU (37 kHz, 90 W/cm2, 40 min) was evaluated. The hardness of G. medius decreased significantly as the thickness of the packing bag decreased. The wide interfibrillar and intermyofibrillar spaces corroborated the tenderizing effect. These effects are related to damage of cell structure and changes in the collagen content (3.37 ± 0.1 µg/mL). In addition, the HIU decrease the variability in the water holding capacity of the muscle produced by the use of low thickness bags during storage. The trained sensory panel described the sonicated samples in 50.8 μm bags as less hard and juicier. Contrarily, in B. femoris no significant effects were reported in the variables evaluated. B. femoris is a white muscle, with a high amount of collagen (3.59 ± 0.1 µg/mL) and little intramuscular fat. Consequently, the effect of the HIU on muscle quality is associated with the composition of the muscle fibers and the thickness of the packing bag. HIU application is recommended to improve the quality of leg muscles whenever low-thickness bags (50.8 μm or less) are used.
Collapse
Affiliation(s)
- Germán Contreras-López
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Perif. Francisco R. Almada km 1, Zootecnia, Chihuahua 31453, Mexico
| | - Simón Morales-Rodríguez
- Fitosanidad-Fitopatología, Colegio de Postgraduados en Ciencias Agrícolas, Carretera México Texcoco Km. 36.5, Montecillo, Texcoco 56230, México
| | - Alma D Alarcon-Rojo
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Perif. Francisco R. Almada km 1, Zootecnia, Chihuahua 31453, Mexico
| | - Luis M Carrillo-Lopez
- Facultad de Zootecnia y Ecología, Universidad Autónoma de Chihuahua, Perif. Francisco R. Almada km 1, Zootecnia, Chihuahua 31453, Mexico; Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Crédito Constructor, Alcaldía Benito Juárez, Ciudad de México 03940, México.
| |
Collapse
|
4
|
Jacobs E, Chambin O, Debeaufort F, Benbettaieb N. Synergic versus Antagonist Effects of Rutin on Gallic Acid or Coumarin Incorporated into Chitosan Active Films: Impacts on Their Release Kinetics and Antioxidant Activity. Antioxidants (Basel) 2023; 12:1934. [PMID: 38001787 PMCID: PMC10669362 DOI: 10.3390/antiox12111934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
This work deals with the study of the release and antioxidant activity kinetics of three natural antioxidants associated as binary mixture (coumarin, and/or gallic acid and rutin) from chitosan films. Antioxidants were incorporated into film alone or in binary mixture. The aim was to determine the influence of rutin on the phenolic acid and benzopyrone. The UV-visible light transmission spectra of the films were also investigated. Neat chitosan films and chitosan incorporated coumarin exhibited high transmittance in the UV-visible light range, while GA-added chitosan films showed excellent UV light barrier properties. The molecular interactions between chitosan network and antioxidants were confirmed by FTIR where spectra displayed a shift of the amide-III peak. Rutin has a complex structure that can undergo ionization. The chitosan network structure induced change was found to influence the release behavior. The film containing rutin showed the highest antioxidant activity (65.58 ± 0.26%), followed by gallic acid (44.82 ± 3.73%), while coumarin displayed the lowest activity (27.27 ± 4.04%). The kinetic rate against DPPH-free radical of rutin is three times higher than coumarin. The kinetic rates were influenced by the structure and interactions of the antioxidants with chitosan. Rutin exhibited a slow release due to its molecular interactions with chitosan, while coumarin and gallic acid showed faster release. The diffusion coefficient of coumarin is 900 times higher than that of rutin. The rutin presence significantly delayed the release of the gallic acid and coumarin, suggesting an antagonistic effect. However, their presence weakly affects the release behavior of rutin.
Collapse
Affiliation(s)
- Elizabeth Jacobs
- Bioscience Department, Munster Technological University-Cork Campus, T12 P928 Cork, Ireland
| | - Odile Chambin
- Food and Wine Physico-Chemistry Unit, Institut Agro Dijon-Joint Unit Food Processing and Microbiology UMR PAM, Université de Bourgogne, 21000 Dijon, France; (O.C.); (N.B.)
- Department of Pharmaceutical Technology, UFR des Sciences de Santé, Université de Bourgogne, 21079 Dijon, France
| | - Frédéric Debeaufort
- Food and Wine Physico-Chemistry Unit, Institut Agro Dijon-Joint Unit Food Processing and Microbiology UMR PAM, Université de Bourgogne, 21000 Dijon, France; (O.C.); (N.B.)
- Department of BioEngineering, IUT-Dijon-Auxerre, Université de Bourgogne, 20178 Dijon, France
| | - Nasreddine Benbettaieb
- Food and Wine Physico-Chemistry Unit, Institut Agro Dijon-Joint Unit Food Processing and Microbiology UMR PAM, Université de Bourgogne, 21000 Dijon, France; (O.C.); (N.B.)
- Department of BioEngineering, IUT-Dijon-Auxerre, Université de Bourgogne, 20178 Dijon, France
| |
Collapse
|