1
|
Zhang L, Bai R, Jiang S, Li Z, Chen Y, Ye X, Yu J, Ding W. Effect of electron beam irradiation on glycosylation reaction and structural characterization of whey isolate protein. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:179-188. [PMID: 39166742 DOI: 10.1002/jsfa.13816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/13/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024]
Abstract
BACKGROUND Whey protein isolate (WPI) is a high-quality animal protein resource. The modification of WPI through physical, chemical and biological methods can substantially improve the functional properties of proteins. This study investigated the effect of electron beam irradiation (EBI) on the modification of WPI-xylose glycosylation. RESULTS The degree of grafting and browning revealed that EBI promoted WPI glycosylation. The maximum emission wavelength of intrinsic fluorescence was red-shifted and the fluorescence intensity was reduced, suggesting that irradiation induced the unfolding of the WPI structure, thereby promoting glycosylation. Fourier-transformed infrared spectroscopy revealed that the covalent binding of the conjugates occurred on the introduction of the hydrophilic groups, resulting in decreased surface hydrophobicity. When compared with conventional wet-heat glycosylation, irradiation-assisted glycosylation improved the emulsifying activity of WPI from 179.76 ± 0.83 to 277.83 ± 1.44 m2 g-1, and the emulsifying and rheological properties improved. CONCLUSION These results confirmed that EBI can increase the degree of WPI glycosylation and improve the functional properties of proteins, thereby laying a theoretical foundation for the further application of WPI. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Linlu Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Rong Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shengqi Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ziwei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ya Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiang Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiangtao Yu
- Yangling Hesheng Irradiation Technology Co., Ltd, Yangling, China
| | - Wu Ding
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
Zou Y, Wang L, Wang X, Lan Y, Ma J, Yang J, Xu W, Shen Q, Wang D. Effect of ultrasound combined with plasma protein treatment on the structure, physicochemical and rheological properties of myofibrillar protein. ULTRASONICS SONOCHEMISTRY 2025; 112:107151. [PMID: 39616718 PMCID: PMC11650323 DOI: 10.1016/j.ultsonch.2024.107151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 01/13/2025]
Abstract
This study aimed to investigate the effect of ultrasound combined with plasma protein (UPP) treatment on the structure, physicochemical and rheological properties of myofibrillar protein (MP). The results indicated that the UPP group caused changes in the secondary structure, increased fluorescence intensity and enhanced surface hydrophobicity of MP. Then, UPP significantly decreased the content of free and total sulfhydryl group, and high molecular weight protein contents were observed in MP. These findings implied moderate cross-linking and aggregation between plasma protein and MP in this ultrasound treatment. Furthermore, the physical characteristics, stability and rheological properties of MP were improved in UPP, as evidenced by increased storage modulus and decreased loss angle tangent. Therefore, this study suggested that the combined treatment not only had the potential to enhance the product quality in the process of ground meat, but also improved the utilization rate and added value of plasma proteins.
Collapse
Affiliation(s)
- Ye Zou
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Lingjuan Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Xiaowen Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Yibo Lan
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jingjing Ma
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jing Yang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Weimin Xu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Qi Shen
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Daoying Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| |
Collapse
|
3
|
Chen X, He Y, Liu Z, Huang Z, Xu C, Liu Y, Haran Y, Nisar W, Yan S, Li J. Ultrasound-assisted extraction of polyphenols from lotus rhizome epidermis by alcohol/salt-based aqueous two-phase system: Optimization, extraction mechanism and antioxidant activities. Food Chem 2024; 453:139620. [PMID: 38761727 DOI: 10.1016/j.foodchem.2024.139620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
In this study, ultrasonic-assisted (UA) alcohol/salt-based aqueous two-phase system (ATPS) method was constructed to extract lotus rhizome epidermis (LRE) polyphenols. The extraction conditions were optimized as salt concentration 26.75 %, ethanol concentration 25.45 %, ultrasonic power 487 W and liquid-solid ratio 35.33 mL/g by comparing response surface methodology (RSM) and artificial neural network (ANN) models. Then, l-dopa (2.35 ± 0.036 mg/g dw), gallocatechin (1.66 ± 0.0035 mg/g dw) and epigallocatechin (1.37 ± 0.0035 mg/g dw) were determined as major polyphenols in LRE by using UA-ATPS method. Moreover, study showed that ultrasound, van der Waals force, hydrogen bond and salting out could accelerate the mass transfer and extraction of polyphenols in LRE cells. The high-pressure cavity and collapse effect of ultrasound could also accelerate the extraction of polyphenols. In vitro antioxidant experiments showed that LRE polyphenols have good antioxidant ability. In sum, this study developed a green and efficient extraction method to enhance the profitability of LRE in food and medicine industries.
Collapse
Affiliation(s)
- Xianqiang Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan He
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhuo Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenfu Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunfang Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanzhao Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yassin Haran
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Waqar Nisar
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shoulei Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Aquatic Vegetable Preservation and Processing Technology Engineering Center of Hubei Province, Wuhan 430070, China; Hubei Honghu Lotus Rhizome Industry Research Institute, Jingzhou 433299, China.
| | - Jie Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Aquatic Vegetable Preservation and Processing Technology Engineering Center of Hubei Province, Wuhan 430070, China
| |
Collapse
|
4
|
Li Z, Bai R, Zhang L, Jiang S, Chen Y, Yang C, Ye X, Wang S, Madina A, Bai J, Yu J, Ding W. Effect of electron beam irradiation on the structural characteristics and functional properties of goat's milk casein. Int J Biol Macromol 2024; 260:129426. [PMID: 38232888 DOI: 10.1016/j.ijbiomac.2024.129426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
The effects of electron beam irradiation (EBI) at different doses (0, 2, 4, 6, 8, and 10 kGy) were investigated on the structural and functional properties of casein, including their interrelationship. A gradual reduction in the α-helix content of the secondary structure (as a stable structure) indicates that casein under EBI treatment mainly undergoes fragmentation and aggregation from a structural perspective. Furthermore, the hydrophobic group and tryptophan in the tertiary structure were exposed, which opened up the internal structure of the protein. In addition, a continuously increasing irradiation dose led to casein aggregation, as confirmed by electron microscopy. The structural changes affected its functional properties, such as solubility, emulsification, foaming, and rheological properties, all of which increased first and subsequently decreased. Finally, at irradiation doses of 4-6 kGy, casein was modified to exhibit optimal functional properties, which enhanced its food processing value and performance.
Collapse
Affiliation(s)
- Ziwei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Rong Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linlu Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shengqi Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ya Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunjie Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiang Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Siying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Aitmagambetova Madina
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junqing Bai
- Yangling Hesheng Irradiation Technology Co. Ltd., Yangling 712100, China
| | - Jiangtao Yu
- Yangling Hesheng Irradiation Technology Co. Ltd., Yangling 712100, China
| | - Wu Ding
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|