1
|
Wu L, Dang M, Wu R, Isah MB, Zhang X. Development of an ic-CLEIA for precise detection of 3-CQA in herbs and patent medicines: ensuring quality control and therapeutic efficacy. Front Nutr 2024; 11:1439287. [PMID: 39234291 PMCID: PMC11371738 DOI: 10.3389/fnut.2024.1439287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/09/2024] [Indexed: 09/06/2024] Open
Abstract
Background 3-caffeoylquinic acid (3-CQA), a member of the chlorogenic acid family, possesses diverse pharmacological properties, such as scavenging, antioxidant, and antiapoptotic activity, rendering substantial value to alimentary consumables and therapeutic substances. However, the pervasiveness of non-standard practices, notably the misuse and abuse of indigenous botanicals, coupled with the inherent susceptibility of 3-CQA to degradation under light and heat exposure, engenders discernible disparateness in the quality profiles of the same kinds of herbs. Consequently, precise quantification of 3-CQA becomes imperative. Methods In this context, an artificial antigen was synthesized as a specific conjugate of 3-CQA and bovine serum albumin (3-CQA-BSA), followed by the generation of a monoclonal antibody (mAb) against the conjugate. Through optimization, a mAb-based indirect competitive chemiluminescence enzyme immunoassay (ic-CLEIA) was developed. Results It demonstrated an IC50 and the calibration range of 2.97 ng/mL and 0.64-13.75 ng/mL, respectively, outperforming the conventional enzyme-linked immunosorbent assay (ELISA). Notably, the ic-CLEIA displayed 10.71% cross-reactivity with 3,5-dicaffeoylquinic acid, alongside minimal cross-reactivity toward other isomeric counterparts and analogs. Validation experiments on herbs and Chinese patent medicines using ic-CLEIA, confirmed by high-performance liquid chromatography (HPLC) analysis, revealed a robust correlation coefficient of 0.9667 between the two modalities. Conclusion These findings unequivocally demonstrated that the proposed ic-CLEIA represents a viable and reliable analytical method for 3-CQA determination. This method holds significant potential for ensuring the quality control and therapeutic efficacy germane to herbs and patent medicines, spanning diverse therapeutic milieus and applications.
Collapse
Affiliation(s)
- Longjiang Wu
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, China
| | - Mei Dang
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, China
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Rao Wu
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, China
| | - Murtala Bindawa Isah
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, China
- Department of Biochemistry, Faculty of Natural and Applied Sciences, Umaru Musa Yar'adua University Katsina, Katsina, Nigeria
- Biomedical Research and Training Centre, Yobe State University, Damaturu, Nigeria
| | - Xiaoying Zhang
- Chinese-German Joint Institute for Natural Product Research, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, China
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Braga, Portugal
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
2
|
Li Z, Zhang J, Yang L, Li X, Meng Q, Li Y, Yao S, Wei W, Bi Q, Qu H, An Y, Guo DA. Intelligent chemical profiling of 73 edible flowers by liquid chromatography-high resolution mass spectrometry combined with HRMS database and their authentication based on large-scale fingerprints. Food Chem 2024; 446:138683. [PMID: 38428081 DOI: 10.1016/j.foodchem.2024.138683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 03/03/2024]
Abstract
A commercial high-resolution MS database "TCM-PCDL" was innovatively introduced to automatically identify multi-components in 73 edible flowers rapidly and accurately by liquid chromatography-high resolution mass spectrometry, which can be time-consuming and labor-intensive in traditional manual method. The database encompasses over 2565 natural products with various energy levels. Unknown compounds can be identified through direct matching and scoring MS2 spectra with database. A total of 870 compounds were identified from 73 flowers, with polyphenols constituting up to 75%. Focusing on polyphenols, a high performance liquid chromatography (HPLC) method was developed to generate fingerprints from 510 batches, establishing an "HPLC database" that enabled accurate authentication using similarity scores and rankings. This method demonstrated an accuracy rate of 100% when applied to 30 unknown samples. For flowers prone to confusion, additional statistical analysis methods could be employed as aids in authentication. This study provides valuable insights for large-scale sample chemical profiling and authentication.
Collapse
Affiliation(s)
- Ziqing Li
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Jianqing Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Lin Yang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaolan Li
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Qian Meng
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Yun Li
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Shuai Yao
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Wenlong Wei
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Qirui Bi
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Hua Qu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Yaling An
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - De-An Guo
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
| |
Collapse
|
3
|
Meng Q, Zhang J, Li X, Li Y, Shen X, Li Z, Xu M, Yao C, Chu P, Cui YJ, Guo DA. ASAP-MS combined with mass spectrum similarity and binary code for rapid and intelligent authentication of 78 edible flowers. Food Chem 2024; 436:137776. [PMID: 37862980 DOI: 10.1016/j.foodchem.2023.137776] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/11/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
This is the first report to use Atmospheric Pressure Solids Analysis Probe (ASAP) for rapid and intelligent authentication of 78 edible flowers. Mass spectra of 451 batches were collected, with each run for 1-2 min. Experimental raw data was automatically extracted and aligned to create a MS database, based on which flowers were identified by MS similarity scores and rankings. To avoid background interference, top 25 ions of each flower were screened and gathered into an m/z pool containing 292 ions (+) and 399 ions (-). Binary sequence IDs were then generated by automatically assigning "1″ for presence and "0″ for absence, resulting in 78 binary codes. Binary code similarity with 78 IDs was used for authentication. Above two approaches were automatically performed by MATLAB, and compared to k-nearest neighbor model, and samples were all successfully identified (100 %). The proposed method provides a high-throughput authentication approach for large-scale food samples.
Collapse
Affiliation(s)
- Qian Meng
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Cailun Road 1200, Shanghai 201203, China
| | - Jianqing Zhang
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Xiaolan Li
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Yun Li
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Xuanjing Shen
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Ziqing Li
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Meng Xu
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Changliang Yao
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China
| | - Pengfei Chu
- Waters Technology (Shanghai) Co., Ltd., Shanghai 201203, China
| | - Ya-Jun Cui
- Shanghai University of Traditional Chinese Medicine, Cailun Road 1200, Shanghai 201203, China.
| | - De-An Guo
- National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Haike Road #501, Shanghai 201203, China; Shanghai University of Traditional Chinese Medicine, Cailun Road 1200, Shanghai 201203, China.
| |
Collapse
|