1
|
Yang Y, Jin H, Chen B, Zhang Y, Cai Z, Sheng L. Disturbing egg yolk protein structure via pH-shifting treatment for interface reorganization: Improving solubility to enhance oil-water interface adsorption and emulsification properties. Food Chem 2025; 468:142516. [PMID: 39700799 DOI: 10.1016/j.foodchem.2024.142516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 11/01/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
This study explored the impact of varying alkalinity levels in pH-shifting treatments on egg yolk protein (EYP) emulsification and investigated the underlying oil-water interface adsorption mechanism. Increasing alkaline pH-shifting treatment exposed more hydrophobic groups within EYP, altering its tertiary structure. Moreover, pH-shifting treatment reduced solution particle size (P < 0.05), possibly by disintegrating insoluble egg yolk granules (EYG) into smaller subunits. Under pH 12.0-shifting conditions, egg yolk (EY) solution reached minimum turbidity and maximum solubility (81.62 %). During initial adsorption, pH 9.0-shifting solution exhibited maximum diffusion rate (0.049 mN/m/s), correlated with minimum solution particle size (88.36 nm). Subsequently, alkaline pH-shifting induced protein rearrangement at the oil-water interface, leading to maximum interfacial pressure (21.01 mN/m) and viscoelastic modulus (44.55 mN/m) under pH 12.0-shifting conditions. This increased emulsion stability by 23.82 % with the lowest creaming index (21.82 %). These findings were crucial for enhancing EYP utilization and promoting EY as a food emulsifier.
Collapse
Affiliation(s)
- Yaqin Yang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Haobo Jin
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bao Chen
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanyuan Zhang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoxia Cai
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Long Sheng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
2
|
Wu Y, Tang Q, Li Z, Lu Y, Cai Z, Sheng L. Preparation and characterization of natural microcapsules EYG (egg yolk granules) with OPO(1,3-dioleic acid-2-palmitic acid triglyceride): Unique application of EYG riches in low/high-density lipoproteins on OPO stability. Int J Biol Macromol 2025; 288:138667. [PMID: 39674456 DOI: 10.1016/j.ijbiomac.2024.138667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Glycerol 1,3-dioleic acid, 2-palmitate (OPO) structural lipids are one of the important types of breast milk replacement lipids. Due to the presence of polyunsaturated fatty acids (PUFA) in the OPO structure, causing it to be extremely unstable. This study aimed to embed OPO through homogenization and spray drying based on egg yolk granules (EYG, riches in low/high-density lipoproteins) to prepare OPO natural microcap1sules. The embedding rate, structural characteristics, powder properties, thermal stability and nutritional value of the microcapsule product were analyzed. This study found that the highest encapsulation rate was 72.4% for microcapsules containing 6% OPO. The EYG formed an embedding structure with OPO, and the particle size increased with the increase of OPO content. The characteristic peaks of OPO in infrared spectroscopy weaken or disappeared. Some of the unencapsulated OPO and the spray drying conditions during preparation made the particles in a state of accumulation, but the particles were uniform in size and smooth in surface. The DSC results showed that the Tg of the microcapsules increased and higher than room temperature, and there was no glass transition at room temperature, and the thermal stability was relatively improved. The addition of EYG increased the content of PUFA, improved the nutritional value of OPO. In summary, embedded OPO with EYG as a natural single material could effectively improve the stability during storage and processing process, and also provided the possibility for EYG to be used for embedding and delivering other PUFAs.
Collapse
Affiliation(s)
- Yeting Wu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China; College of Animal Sciences and Technology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qinyue Tang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Zhe Li
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Youyou Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoxia Cai
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Long Sheng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China; Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China.
| |
Collapse
|
3
|
Zhou L, Yuan M, Han Y, Yu Y, Liu Y, Wu D, Chen Y, Sheng B, Chen S, Wang J, Xue X. Micellar casein were constructed to improve the encapsulation efficiency of algae oil docosahexaenoic acid by transglutaminase-coupled phosphoserine peptide chelating with Ca 2. Int J Biol Macromol 2025; 297:139939. [PMID: 39824426 DOI: 10.1016/j.ijbiomac.2025.139939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/12/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
Micelle systems using safe food-grade biopolymers are of particular interest for the encapsulation and delivery of nutrition components. Micellar casein (MC) was assembled using transglutaminase (TGase) to couple with phosphoserine peptide, which enhance the stability of docosahexaenoic acid (DHA) from algae oil. The mechanism behind the construction of MC-phosphoserine peptide and the encapsulation of DHA was explored. The results showed that the average particle size of the MC-phosphoserine peptide was 155.09 nm, when the mass ratio of polypeptide was 3 %, TGase activity was 4.5 U and pH 6.5. The recombinant MC-phosphoserine peptide system can improve the emulsification and digestive stability of DHA compared to the control MC. Chelation interaction between phosphoserine peptide and MC played an important role in increasing the stabilization reassembly MC. The phosphoserine peptide high calcium-binding capacity enhances encapsulation efficiency and digestion sustained-release in self-assembled micelles for fat-soluble substances.
Collapse
Affiliation(s)
- Ling Zhou
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Mengtin Yuan
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Yanping Han
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Ya Yu
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Yanan Liu
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Dongxu Wu
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Ya Chen
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Bulei Sheng
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Sihan Chen
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China
| | - Juhua Wang
- College of Veterinary Medicine, Anhui Agriculture University, Hefei, Anhui 230036, China.
| | - Xiuheng Xue
- College of Food and Nutrition, Joint Research Center for Food Nutrition and Health of IHM, Anhui Agriculture University, Hefei, Anhui 230036, China.
| |
Collapse
|
4
|
Liu W, Cao J, Zhang Q, Wang W, Ye Y, Zhang S, Wu L. Interfacial Properties and Structure of Emulsions and Foams Co-Stabilized by Span Emulsifiers of Varying Carbon Chain Lengths and Egg Yolk Granules. Foods 2024; 14:35. [PMID: 39796325 PMCID: PMC11720260 DOI: 10.3390/foods14010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Interfacial properties significantly influence emulsifying and foaming stability. We here explore the interfacial behavior of egg yolk granules (EYGs) combined with various Span emulsifiers (Span 20, 40, 60, 80) to assess their solution properties, interface dynamics, and effects on emulsifying and foaming stability. The results unveiled that as the Span concentration increased, particle size decreased from 7028 to 1200 nm, absolute zeta potential increased from 4.86 to 9.26 mv, and the structure became increasingly loosened. This loose structure of EYGs-Span complexes resulted in reduced interfacial tension (γ), higher adsorption rate (Kd), and improved interfacial composite modulus (E) compared with native EYGs. These effects were more pronounced with shorter hydrophobic chain Spans but diminished with longer chain lengths. Enhanced interfacial properties contributed to better emulsification and foaming stability, with EYGs-Span complexes displaying increased emulsifying ability and stability compared with natural EYGs. Emulsifying and foaming stability improved in the order of Span 20 > Span 40 > Span 60 > Span 80 as the Span concentration increased. The correlation analysis (p > 0.05) indicated that emulsifying stability was positively associated with interfacial composite modulus and negatively correlated with particle size. Consequently, EYGs-Span composites demonstrate considerable potential for use as effective emulsifiers in food industry applications.
Collapse
Affiliation(s)
- Wenyan Liu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (W.L.); (J.C.); (Q.Z.)
| | - Jingxia Cao
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (W.L.); (J.C.); (Q.Z.)
| | - Qixin Zhang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (W.L.); (J.C.); (Q.Z.)
| | - Weiqin Wang
- Jiangxi Riyuan Food Co., Shangrao 334604, China; (W.W.); (Y.Y.)
| | - Yuanping Ye
- Jiangxi Riyuan Food Co., Shangrao 334604, China; (W.W.); (Y.Y.)
| | - Senwang Zhang
- Institute of Applied Chemistry, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Leiyan Wu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China; (W.L.); (J.C.); (Q.Z.)
- Jiangxi Zixi Bread Technology Development Co., Fuzhou 335300, China
| |
Collapse
|
5
|
Xu R, Gao Q, Li J, Su Y, Gu L, Yang Y, Chang C. Characterization of liquid egg yolks hydrolyzed by phospholipase: Structure, thermal stability and emulsification properties. Food Res Int 2024; 198:115325. [PMID: 39643337 DOI: 10.1016/j.foodres.2024.115325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/22/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024]
Abstract
This study aims to clarify the difference between phospholipase A1 (PLA1) and phospholipase A2 (PLA2) in terms of hydrolyzing egg yolk (EY). The results indicated that the disintegration of the lipoprotein micelle structure after phospholipase hydrolysis induced an enhanced solubility of proteins. The solubility after PLA1 and PLA2 treatment (91.36 %/83.49 %) was significantly higher than that of the untreated egg yolk (27.89 %). Simultaneously, the disintegration of the lipoprotein micelle structure induced structural unfolding of proteins with hydrophobic chains buried inside the spatial structure, while charged amino acids and hydrophilic chains exposed on the surface. This structural deformation contributed to the increased thermal stability of EY, thereby increasing intermolecular electrostatic repulsion. In comparison, PLA1 hydrolyzed EY showed relatively better thermal stability than PLA2, due to the lower surface hydrophobicity. However, PLA2 hydrolyzed EY (up to 225 mL) had greatly higher emulsifying capacity than PLA1 (up to 159 mL), due to the better stability and emulsifying ability of the generated 1-lyso-phospholipase. Furthermore, we discovered that proteins and phospholipids jointly functioned at the interface to influence the particle size and stability of emulsions. Specifically, the emulsifying activity of phospholipids may play a more decisive role in determining the particle size, while the interfacial adsorption of proteins or protein particles may be more crucial in ensuring the stability of the emulsions. These findings had significant implications for the application and advancement of phospholipase-catalyzed egg yolk hydrolysis, providing practical guidance for the production of EY with high thermal stability or emulsifying capacity.
Collapse
Affiliation(s)
- Ruolin Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qing Gao
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junhua Li
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yujie Su
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Luping Gu
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanjun Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Cuihua Chang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
6
|
Jiang Y, Sun Y, Wei C, Li X, Deng W, Wu S, Kong F, Sheng L. Development and characterization of curcumin-loaded chitosan/egg yolk freshness-keeping edible films for chilled fresh pork packaging application. Int J Biol Macromol 2024; 276:133907. [PMID: 39019376 DOI: 10.1016/j.ijbiomac.2024.133907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/07/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
In this study, a novel fresh-keeping edible film was prepared using egg yolk (EY) and chitosan (CS) with varying concentrations of curcumin (Cur) for food packaging. The addition of Cur notably enhanced tensile strength, elongation at break, and water resistance from 15.70 MPa to 24.24 MPa, 43.79 % to 63.69 %, and 1.599 g·mm·(m2·h·kPa)-1 to 1.541 g·mm·(m2·h·kPa)-1, respectively. Cur also impacted moisture content, swelling degree, and film color. SEM revealed a uniform distribution of Cur, creating a smooth and dense film surface. FT-IR analysis suggested that hydrogen bonding facilitated Cur integration into the film network. The films demonstrated excellent UV-blocking and antioxidant properties attributed to Cur's chromogenic and phenolic hydroxyl groups. Consequently, they effectively inhibited lipid oxidation and weight loss in meat, thereby prolonging the shelf-life of chilled pork by at least 2 d. In conclusion, this study provided a simple and cost-effective idea to incorporate actives with EY as a natural emulsifier, presenting an effective solution for developing active packaging materials to enhance the safety and quality of meat products.
Collapse
Affiliation(s)
- Yiting Jiang
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Engineering Center of Natural Polymers-based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yunxin Sun
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chengfeng Wei
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Li
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wanqing Deng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sirui Wu
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fandi Kong
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Long Sheng
- National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Lu Y, Jiang Y, Liu J, Yang X, Zhao Y, Fan F. Preparation and Properties of Walnut Protein Isolate-Whey Protein Isolate Nanoparticles Stabilizing High Internal Phase Pickering Emulsions. Foods 2024; 13:2389. [PMID: 39123580 PMCID: PMC11311381 DOI: 10.3390/foods13152389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
To enhance the functional properties of walnut protein isolate (WalPI), hydrophilic whey protein isolate (WPI) was selected to formulate WalPI-WPI nanoparticles (nano-WalPI-WPI) via a pH cycling technique. These nano-WalPI-WPI particles were subsequently employed to stabilize high internal phase Pickering emulsions (HIPEs). By adjusting the mass ratio of WalPI to WPI from 9:1 to 1:1, the resultant nano-WalPI-WPI exhibited sizes ranging from 70.98 to 124.57 nm, with a polydispersity index of less than 0.326. When the mass ratio of WalPI to WPI was 7:3, there were significant enhancements in various functional properties: the solubility, denaturation peak temperature, emulsifying activity index, and emulsifying stability index increased by 6.09 times, 0.54 °C, 318.94 m2/g, and 552.95 min, respectively, and the surface hydrophobicity decreased by 59.23%, compared with that of WalPI nanoparticles (nano-WalPI), with the best overall performance. The nano-WalPI-WPI were held together by hydrophobic interactions, hydrogen bonding, and electrostatic forces, which preserved the intact primary structure and improved resistance to structural changes during the neutralization process. The HIPEs stabilized by nano-WalPI-WPI exhibited an average droplet size of less than 30 μm, with droplets uniformly dispersed and maintaining an intact spherical structure, demonstrating superior storage stability. All HIPEs exhibited pseudoplastic behavior with good thixotropic properties. This study provides a theoretical foundation for enhancing the functional properties of hydrophobic proteins and introduces a novel approach for constructing emulsion systems stabilized by composite proteins as emulsifiers.
Collapse
Affiliation(s)
- Yanling Lu
- College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.J.); (J.L.)
| | - Yuxin Jiang
- College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.J.); (J.L.)
| | - Jiongna Liu
- College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.J.); (J.L.)
| | - Xiaoqin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Kunming 650224, China;
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| | - Yueliang Zhao
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200240, China;
| | - Fangyu Fan
- College of Biological and Food Engineering, Southwest Forestry University, Kunming 650224, China; (Y.L.); (Y.J.); (J.L.)
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Kunming 650224, China;
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming 650224, China
| |
Collapse
|
8
|
Zhang H, Wei A, Zhou S, Zhang H, Xia N, Wang J, Ma Y, Fan M. Effect of the substitution of butter by double cross-linked egg yolk granules/sodium alginate emulsion gel on properties of baking dough during frozen storage. Food Chem 2024; 438:137965. [PMID: 37992605 DOI: 10.1016/j.foodchem.2023.137965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/04/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023]
Abstract
In this study, double cross-linked egg yolk granules (EYGs)/sodium alginate (SA) emulsion gel was constructed and used as butter substitute. The water binding capacity, rheology properties and microstructure of EYGs/SA emulsion gel showed that the network structure tended to be complete when the concentration of SA reached 1% (m/v). SA stabilized the EYGs/SA droplets and enhanced the spatial network structure of emulsion gel. After substitution for butter, the network structure of EYGs/SA emulsion gel with more water bounded and the polyhydroxy structure of SA molecules endowed dough with more water retention capacity. Meanwhile, the destruction of the microstructure of the replaced dough with EYGs/SA emulsion gel was significantly inhibited compared with the un-substituted dough after freezing. The baking ability results showed a satisfactory baking effect after substitution. Overall, this study provides a new avenue in the field of fat replacement and the application of EYGs/SA emulsion gels.
Collapse
Affiliation(s)
- Hong Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China; College of Food Science and Technology, Southwest Minzu University, Chengdu, 610041, PR China
| | - Afeng Wei
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Sijie Zhou
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Huajiang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Ning Xia
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| | - Jing Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Yanqiu Ma
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Min Fan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| |
Collapse
|
9
|
Zhu Q, Chen H, Chen W, Zhang M, Zhong Q, Chen Z, Pei J, Chen W. Effects of glycation method on the emulsifying performance and interfacial behavior of coconut globulins-fucoidan complexes. Food Chem 2024; 430:137033. [PMID: 37542968 DOI: 10.1016/j.foodchem.2023.137033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 08/07/2023]
Abstract
Coconut globulins (CG) possesses potential as an emulsifier but has not been utilized well. In this study, the emulsifying performance of glycated CG-fucoidan (CGF) complexes, and the relationship between emulsifying stability and interfacial behavior were investigated. The results showed that the grafting of fucoidan increased the molecular weight of CG, and decreased the zeta potential and fluorescence intensity. With the higher glycosylation degree, the fucoidan modified CG exhibited better emulsifying stability and higher viscosity. Moreover, the result of adsorption kinetics revealed that elasticity was the main property of the interface layer. Compared to CG, CGF complexes with high degree of glycosylation had thicker interfacial layer on the oil-water interface. A thicker elastic interfacial layer may be beneficial to the emulsion stability, owing to the strong interaction of electrostatic repulsion and steric hindrance between oil droplets. These findings may provide useful information for glycated CGF complexes as emulsifiers in functional food.
Collapse
Affiliation(s)
- Qianqian Zhu
- School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Haiming Chen
- School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Weijun Chen
- School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Ming Zhang
- School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Qiuping Zhong
- School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China
| | - Zixin Chen
- Wenchang Zaineng Industrial Co., Ltd., Dongjiao Town, Wenchang 571300, PR China
| | - Jianfei Pei
- School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China.
| | - Wenxue Chen
- School of Food Science and Engineering, Hainan University, 58 People Road, Haikou 570228, PR China.
| |
Collapse
|
10
|
Anand V, Ksh V, Vasudev S, Kumar M, Kaur C. Investigating the effect of wall material and pressure homogenisation on encapsulation parameters and thermal stability in chia seed oil microcapsules. J Microencapsul 2024; 41:66-78. [PMID: 38096025 DOI: 10.1080/02652048.2023.2292228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 12/04/2023] [Indexed: 12/29/2023]
Abstract
AIM To evaluate the effect of different wall material (WM) matrices followed by homogenisation to encapsulate chia seed oil (CSO) using freeze drying technology. METHODS CSO was encapsulated using three ratios (100/0, 50/50, and 100/0) of two WM matrices: MTS/WPC (modified tapioca starch-whey protein concentrate) and MD/WPC (maltodextrin-whey protein concentrate). The evaluation included encapsulation efficiency (EE), oxidative stability, and α-linolenic acid (ALA) retention. Homogenised microcapsules (-H) were then assessed for storage and thermal stability, along with cumulative oil release. RESULTS The MD-WPC-H 50/50 microcapsules had superior EE (97.32%), higher ALA retention (60.2%), storage stability (up to 30 days), higher thermal stability (up to 700 °C), and desirable oil release in simulated condition. CONCLUSION Selecting suitable WM and homogenisation is key for improving EE, storage, thermal stability, and targeted release. The CSO microcapsule can serve as a functional ingredient to improve the quality of diverse food products.
Collapse
Affiliation(s)
- Vishnu Anand
- Division of Food Science and Postharvest Technology, ICAR-IARI, New Delhi, India
| | - Vikono Ksh
- Division of Food Science and Postharvest Technology, ICAR-IARI, New Delhi, India
| | | | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR - Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Charanjit Kaur
- Division of Food Science and Postharvest Technology, ICAR-IARI, New Delhi, India
| |
Collapse
|