1
|
Ramos LC, Rodríguez-García A, Castagnini JM, Salgado-Ramos M, Martínez-Culebras PV, Barba FJ, Pallarés N. HPLC-MS/MS and ICP-MS for Evaluation of Mycotoxins and Heavy Metals in Edible Insects and Their Defatted Cakes Resulting from Supercritical Fluid Extraction. Foods 2024; 13:3233. [PMID: 39456295 PMCID: PMC11508035 DOI: 10.3390/foods13203233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/04/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
Edible Insects (EIs) are an alternative source of bioactive compounds such as proteins or fatty acids and micronutrients as vitamins or minerals, thus showing potential to replace traditional foodstuffs in an economical and environmentally friendly way. Nonetheless, EIs can accumulate hazardous chemicals such as mycotoxins and heavy metals. The aim of the present study is to determine mycotoxins and heavy metal content in raw insect samples and those resulting products obtained after supercritical fluid extraction (SFE). Insect samples included Acheta domesticus (cricket) meal, Tenebrio molitor (mealworm) meal, Alphitobius diaperinus (buffalo worm), and Locusta migratoria (locust). For this purpose, a QuEChERS method followed by LC-MS/MS analysis was optimized with good results for the analysis of mycotoxins, principally Aflatoxins (AFs), Ochratoxin A (OTA), and Enniatins (ENNs). In contrast, heavy metals (As, Cd, Hg, Pb) were determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The results obtained revealed that Locust was positive for AFG2 at a level of 115.5 μg/kg, and mealworm was only contaminated with OTA at 58.1 μg/kg. Emerging mycotoxins (ENNA, ENNA1, ENNB, and ENNB1) were detected at lower levels < 2.2 µg/Kg. Concerning heavy metals, limits exceeding regulation were detected for Cd in the insect species studied, with levels up to 219 μg/kg, and for Pb in crickets (100.3 μg/kg). Finally, the analysis of the post-extraction solids after SFE processing revealed that heavy metals remained in the resulting SFE cakes, while mycotoxins were detected at negligible levels (up to 1.3 µg/Kg).
Collapse
Affiliation(s)
- Lucia Cuesta Ramos
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Valencia, Spain (A.R.-G.); (J.M.C.); (M.S.-R.); (F.J.B.); (N.P.)
| | - Aroa Rodríguez-García
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Valencia, Spain (A.R.-G.); (J.M.C.); (M.S.-R.); (F.J.B.); (N.P.)
| | - Juan M. Castagnini
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Valencia, Spain (A.R.-G.); (J.M.C.); (M.S.-R.); (F.J.B.); (N.P.)
| | - Manuel Salgado-Ramos
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Valencia, Spain (A.R.-G.); (J.M.C.); (M.S.-R.); (F.J.B.); (N.P.)
- Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 10, 13005 Ciudad Real, Castile-La Mancha, Spain
| | - Pedro V. Martínez-Culebras
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Valencia, Spain (A.R.-G.); (J.M.C.); (M.S.-R.); (F.J.B.); (N.P.)
| | - Francisco J. Barba
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Valencia, Spain (A.R.-G.); (J.M.C.); (M.S.-R.); (F.J.B.); (N.P.)
| | - Noelia Pallarés
- Research Group in Innovative Technologies for Sustainable Food (ALISOST), Department of Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, Valencia, Spain (A.R.-G.); (J.M.C.); (M.S.-R.); (F.J.B.); (N.P.)
| |
Collapse
|
2
|
Zhou G, Shen Z, Fan H, Chang T, Yang Y, Yang L. Innovative plasma treatment of orange juice to improve bioactive concentration: The effects of various parameters using response surface analysis. J Food Sci 2024; 89:5689-5700. [PMID: 39042475 DOI: 10.1111/1750-3841.17256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/16/2024] [Accepted: 06/29/2024] [Indexed: 07/25/2024]
Abstract
Orange juice is a highly nutritious beverage. Traditional pasteurization methods cause nutrient loss and taste changes. Plasma treatment (PT) is an emerging method with a high sterilization rate. This study investigated the effects of corona discharge plasma on the sterilization of orange juice by changes in color difference, total phenol content, and pH value. Single-factor experiments revealed that higher voltage (40 kV) and longer sterilization time (25 min) had better sterilization effects. Response surface analysis indicated that frequency had the greatest impact on sterilization rates, and the optimal sterilization conditions were a voltage of 44.75 kV, a frequency of 9.46 kHz, and a sterilization time of 25 min. Under these conditions, the sterilization rate reached 97.9%, meeting the national standard of 104 colony-forming units/mL (GB7101-2022). Compared to untreated juices, the color difference value was 16.32, the pH value decreased by 0.12, and the total phenol content increased by 0.669 mg/mL. However, the evaporation of water plays an important role in increasing the total phenol co. Moreover, the comparative analysis showed that PT was comparable to pasteurization in terms of sterilization effects, flavor preservation, and the concentration of bioactive components. This study provides a theoretical basis for industrial applications of PT.
Collapse
Affiliation(s)
- Guiling Zhou
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Hao Fan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Tian Chang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - Yiming Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Liu Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
3
|
Li P, Wang J, Xie J. Excitation of Reactive Oxygen Species and Damage to the Cell Membrane, Protein, and DNA are Important Inhibition Mechanisms of CO 2 on Shewanella putrefaciens at 4 °C. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17559-17571. [PMID: 39054619 DOI: 10.1021/acs.jafc.4c04171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
To explore whether oxidative stress caused by 100% CO2 is an inhibitory mechanism against Shewanella putrefaciens, the oxidative stress reaction, antioxidant activity, and damage to the cell membrane, protein, and DNA of CO2-incubated S. putrefaciens at 4 °C were evaluated. Research demonstrated that CO2 caused more severe reactive oxygen species (ROS) accumulation. Simultaneously, weaker •OH/H2O2/O2•--scavenging activity and decreased T-VOC and GSH content were also observed. The activities of antioxidant enzymes (SOD, POD, CAT, and GPX) continuously declined, which might be attributed to the CO2-mediated decrease in the pH value. Correspondingly, the cell membrane was damaged with hyperpolarization, increased permeability, and more severe lipid peroxidation. The expression of total and membrane protein decreased, and the synthesis and activity of extracellular protease were inhibited. DNA was also subjected to oxidative damage and expressed at a lower level. All results collaboratively confirmed that ROS excitation and inhibition of antioxidant activity were important inhibition mechanisms of CO2 on S. putrefaciens.
Collapse
Affiliation(s)
- Peiyun Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jinfeng Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- Key Laboratory of Aquatic Products High-quality Utilization, Storage and Transportation (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China
| |
Collapse
|
4
|
Ma J, Dai J, Cao C, Su L, Cao M, He Y, Li M, Zhang Z, Chen J, Cui S, Yang B. Prevalence, serotype, antimicrobial susceptibility, contamination factors, and control methods of Salmonella spp. in retail fresh fruits and vegetables: A systematic review and meta-analysis. Compr Rev Food Sci Food Saf 2024; 23:e13407. [PMID: 39030802 DOI: 10.1111/1541-4337.13407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/24/2024] [Accepted: 06/22/2024] [Indexed: 07/22/2024]
Abstract
This research presents a comprehensive review of Salmonella presence in retail fresh fruits and vegetables from 2010 to 2023, utilizing data from recognized sources such as PubMed, Scopus, and Web of Science. The study incorporates a meta-analysis of prevalence, serovar distribution, antimicrobial susceptibility, and antimicrobial resistance genes (ARGs). Additionally, it scrutinizes the heterogeneous sources across various food categories and geographical regions The findings show a pooled prevalence of 2.90% (95% CI: 0.0180-0.0430), with an increase from 4.63% in 2010 to 5.32% in 2022. Dominant serovars include S. Typhimurium (29.14%, 95% CI: 0.0202-0.6571) and S. Enteritidis (21.06%, 95% CI: 0.0181-0.4872). High resistance rates were noted for antimicrobials like erythromycin (60.70%, 95% CI: 0.0000-1.0000) and amoxicillin (39.92%, 95% CI: 0.0589-0.8020). The most prevalent ARGs were blaTEM (80.23%, 95% CI: 0.5736-0.9692) and parC mutation (66.67%, 95% CI: 0.3213-0.9429). Factors such as pH, water activity, and nutrient content, along with external factors like the quality of irrigation water and prevailing climatic conditions, have significant implications on Salmonella contamination. Nonthermal sterilization technologies, encompassing chlorine dioxide, ozone, and ultraviolet light, are emphasized as efficacious measures to control Salmonella. This review stresses the imperative need to bolster prevention strategies and control measures against Salmonella in retail fresh fruits and vegetables to alleviate related food safety risks.
Collapse
Affiliation(s)
- Jiaqi Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jinghan Dai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chenyang Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Li Su
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mengyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yuanjie He
- College of Life Science, Northwest A&F University, Yangling, China
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zengfeng Zhang
- Department of Food Science & Technology, School of Agriculture & Biology, and State Key Lab of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Saleh I, Zeidan R, Abu-Dieyeh M. The characteristics, occurrence, and toxicological effects of alternariol: a mycotoxin. Arch Toxicol 2024; 98:1659-1683. [PMID: 38662238 PMCID: PMC11106155 DOI: 10.1007/s00204-024-03743-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/18/2024] [Indexed: 04/26/2024]
Abstract
Alternaria species are mycotoxin-producing fungi known to infect fresh produce and to cause their spoilage. Humans get exposed to fungal secondary metabolites known as mycotoxin via the ingestion of contaminated food. Alternariol (AOH) (C14H10O5) is an isocoumarins produced by different species of Alternaria including Alternaria alternata. AOH is often found in grain, fruits and fruits-based food products with high levels in legumes, nuts, and tomatoes. AOH was first discovered in 1953, and it is nowadays linked to esophagus cancer and endocrine disruption due to its similarity to estrogen. Although considered as an emerging mycotoxin with no regulated levels in food, AOH occurs in highly consumed dietary products and has been detected in various masked forms, which adds to its occurrence. Therefore, this comprehensive review was developed to give an overview on recent literature in the field of AOH. The current study summarizes published data on occurrence levels of AOH in different food products in the last ten years and evaluates those levels in comparison to recommended levels by the regulating entities. Such surveillance facilitates the work of health risk assessors and highlights commodities that are most in need of AOH levels regulation. In addition, the effects of AOH on cells and animal models were summarized in two tables; data include the last two-year literature studies. The review addresses also the main characteristics of AOH and the possible human exposure routes, the populations at risk, and the effect of anthropogenic activities on the widespread of the mycotoxin. The commonly used detection and control methods described in the latest literature are also discussed to guide future researchers to focus on mitigating mycotoxins contamination in the food industry. This review aims mainly to serve as a guideline on AOH for mycotoxin regulation developers and health risk assessors.
Collapse
Affiliation(s)
- Iman Saleh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Randa Zeidan
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mohammed Abu-Dieyeh
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| |
Collapse
|
6
|
Zhang M, Zhou C, Ma L, Su W, Jiang J, Hu X. Influence of ultrasound on the microbiological, physicochemical properties, and sensory quality of different varieties of pumpkin juice. Heliyon 2024; 10:e27927. [PMID: 38515695 PMCID: PMC10955300 DOI: 10.1016/j.heliyon.2024.e27927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/12/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024] Open
Abstract
This study has investigated the effect of ultrasound (US) as an emerging non-thermal sterilization technique on microbial growth and quality changes in three freshly squeezed pumpkin juices (Cucurbita maxima Duchesne, Cucurbita moschata Duchesne, and Cucurbita pepo L.).The three pumpkin juices were ultrasonicated at different ultrasonic power (0-400 W), time (0-20 min), and temperature (0-30 °C), and the total colony counts of the treated pumpkin juices were less than 5 log CFU/mL, which complied with the food safety and consumption standards. Based on these results, we further investigated the effects of different ultrasonic power (25 kHz, 10 min, 20 °C, 0-400 W) on the physicochemical properties and sensory quality of the three pumpkin juices. The physicochemical properties (color, sugar content, organic acid content, soluble solids, and carotenoids) of treated pumpkin juice were retained or improved to some extent. The antioxidant capacity was also increased by 9.09%, 10.25%, and 16.9% compared to the untreated group. During sonication, the particle size of all samples decreased significantly, the microstructure broke down significantly, and the sensory qualities of pumpkin juice were well preserved after sonication.
Collapse
Affiliation(s)
- Manjun Zhang
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Chunli Zhou
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Long Ma
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Wei Su
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Jian Jiang
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| | - Xueyan Hu
- School of Life Science, Jiangxi Science & Technology Normal University, Nanchang, 330013, China
| |
Collapse
|
7
|
Furlong EB, Freire L, Magnani M. Editorial overview of special issue 'VSI: Mycotoxins in foods'. Food Res Int 2024; 175:113691. [PMID: 38128980 DOI: 10.1016/j.foodres.2023.113691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Affiliation(s)
- Eliana Badiale Furlong
- Mycotoxin and Food Science Laboratory, School of Chemistry and Food, Federal University of Rio Grande - FURG, 96203-900 Rio Grande, Rio Grande do Sul, Brazil
| | - Luisa Freire
- Pharmaceutical Sciences, Federal University of Mato Grosso do Sul (UFMS), 79070900 Campo Grande, Mato Grosso, Brazil
| | - Marciane Magnani
- Laboratory of Microbial Processes in Foods, Department of Food Engineering, Center of Technology, Federal University of Paraíba, Campus I, João Pessoa, PB 58051-900, Brazil.
| |
Collapse
|
8
|
Chen Y, Chen Y, Fang Y, Pei Z, Zhang W. Coconut milk treated by atmospheric cold plasma: Effect on quality and stability. Food Chem 2024; 430:137045. [PMID: 37541035 DOI: 10.1016/j.foodchem.2023.137045] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Commercial sterilization plays an important role in extending the shelf-life of coconut milk. However, thermal sterilization affects the quality of coconut milk. This study was initiated to evaluate the effects of atmospheric cold plasma (ACP) treatment on some important quality parameters of coconut milk. ACP treatment had a slight effect on physicochemical characteristics and nutritional ingredients while it obviously reduced the colony count. Furthermore, ACP treatment obviously promoted the formation of lactone, an indispensable volatile substance in coconut milk. Insufficient or moderate ACP treatment had subtle effect on the sensory quality. Notably, moderate ACP treatment reduced the droplet size from 28.0 μm to 18.6 μm, and improved the stability during storage and centrifugation, especially at 60 kV 60 s. Overall, sterilization of coconut milk by ACP at 60 kV 60 s was the most ideal. This study can provide theoretical guidance for the application of ACP in liquid food.
Collapse
Affiliation(s)
- Yang Chen
- School of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Yile Chen
- School of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Yajing Fang
- School of Food Science and Engineering, Hainan University, Hainan 570228, China
| | - Zhisheng Pei
- School of Food Science and Engineering, Hainan University, Hainan 570228, China; School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya 572022, China
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Hainan 570228, China.
| |
Collapse
|
9
|
Sersa G, Cemazar M. Multiple applications of pulsed electric fields are game changer in food industry and biomedicine: Comment on: "Advances in Pulsed Electric Stimuli as a Physical Method for Treating Liquid Foods" by Farzan Zare, Negareh Ghasemi, Nidhi Bansal, Hamid Hosano. Phys Life Rev 2023; 47:189-190. [PMID: 37926020 DOI: 10.1016/j.plrev.2023.10.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Affiliation(s)
- Gregor Sersa
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, Ljubljana, SI 1000, Slovenia.
| | - Maja Cemazar
- Institute of Oncology Ljubljana, Department of Experimental Oncology, Zaloska 2, Ljubljana, SI 1000, Slovenia
| |
Collapse
|
10
|
Li P, Mei J, Xie J. The regulation of carbon dioxide on food microorganisms: A review. Food Res Int 2023; 172:113170. [PMID: 37689923 DOI: 10.1016/j.foodres.2023.113170] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 09/11/2023]
Abstract
This review presents a survey of two extremely important technologies about CO2 with the effectiveness of controlling microorganisms - atmospheric pressure CO2-based modified atmosphere packaging (MAP) and high pressure CO2 non-thermal pasteurization (HPCD). CO2-based MAP is effectively in delaying the lag and logarithmic phases of microorganisms by replacing the surrounding air, while HPCD achieved sterilization by subjecting food to either subcritical or supercritical CO2 for some time in a continuous, batch or semi-batch way. In addition to the advantages of healthy, eco-friendly, quality-preserving, effective characteristic, some challenges such as the high drip loss and packaging collapse associated with higher concentration of CO2, the fuzzy mechanisms of oxidative stress, the unproven specific metabolic pathways and biomarkers, etc., in CO2-based MAP, and the unavoidable extraction of bioactive compounds, the challenging application in solid foods with higher efficiency, the difficult balance between optimal sterilization and optimal food quality, etc., in HPCD still need more efforts to overcome. The action mechanism of CO2 on microorganisms, researches in recent years, problems and future perspectives are summarized. When dissolved in solution medium or cellular fluids, CO2 can form carbonic acid (H2CO3), and H2CO3 can further dissociate into bicarbonate ions (HCO3-), carbonate (CO32-) and hydrogen cations (H+) ionic species following series equilibria. The action mode of CO2 on microorganisms may be relevant to changes in intracellular pH, alteration of proteins, enzyme structure and function, alteration of cell membrane function and fluidity, and so on. Nevertheless, the effects of CO2 on microbial biofilms, energy metabolism, protein and gene expression also need to be explored more extensively and deeply to further understand the action mechanism of CO2 on microorganisms.
Collapse
Affiliation(s)
- Peiyun Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing and Preservation, Shanghai 201306, China; Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China; Collaborative Innovation Center of Seafood Deep Processing, Ministry of Education, Dalian 116034, China.
| |
Collapse
|