1
|
Chen Y, Lei X, Sun L, Gao B, An P, Ye D, Mu H, Qin Y, Song Y, Liu Y. Exploring the potentials of indigenous Saccharomyces cerevisiae and Pichia kudriavzevii for enhancing flavour and aromatic characteristics in apricot wines. Food Chem X 2025; 25:102178. [PMID: 39897966 PMCID: PMC11783380 DOI: 10.1016/j.fochx.2025.102178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/22/2024] [Accepted: 01/11/2025] [Indexed: 02/04/2025] Open
Abstract
In this study, we investigated the oenological performance of key yeast populations previously identified from apricot wine fermentation, aiming to obtain indigenous starters suitable for apricot wine production. Twenty-one isolates were characterized physiologically, and two isolates each of Saccharomyces cerevisiae and Pichia kudriavzevii were selected for laboratory-scale fermentations. Results showed that S. cerevisiae S9 exhibited significantly higher sugar consumption than S2 and CECA strains, with the former demonstrating a fructophilic character. Mixed fermentations of P. kudriavzevii N11 and N12 resulted in lower citric acid content (decreasing by 12-25 %) and higher glycerol levels (increasing by 12-47 %) compared to pure fermentation. In the mixed fermentation, indigenous S. cerevisiae species supported the survival of P. kudriavzevii, effectively enhancing the fruity esters and terpenes content of apricot wine. This study provides technical support for screening specialized starters for apricot wine production.
Collapse
Affiliation(s)
- Yu Chen
- College of Enology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xingmeng Lei
- College of Enology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Luxing Sun
- College of Enology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Binghong Gao
- College of Enology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Peng An
- College of Enology, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Dongqing Ye
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Haibin Mu
- Administrative Committee of Wine Industry Zone of Ningxia Helan Mountains' East Foothill, Yingchuan, Ningxia 750002, China
| | - Yi Qin
- College of Enology, Northwest A & F University, Yangling, Shaanxi 712100, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi, 712100, China
| | - Yuyang Song
- College of Enology, Northwest A & F University, Yangling, Shaanxi 712100, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi, 712100, China
| | - Yanlin Liu
- College of Enology, Northwest A & F University, Yangling, Shaanxi 712100, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Yangling, Shaanxi, 712100, China
| |
Collapse
|
2
|
Zang X, Du Q, Jiang J, Liang YY, Ye D, Liu Y. Impact of combined grape maturity and selected Saccharomyces cerevisiae on flavor profiles of young 'cabernet sauvignon' wines. Food Chem X 2025; 25:102066. [PMID: 39758064 PMCID: PMC11698972 DOI: 10.1016/j.fochx.2024.102066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 11/17/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Grape maturity and yeast strains are crucial to determining young wine quality. This study evaluates the impact of three grape maturity levels with sugar contents of 22, 25, and 28°Brix combined with two S. cerevisiae strains selected from distinct terroirs on the Cabernet Sauvignon wine profile in the Ningxia Qingtongxia region in China. Physicochemical parameters and volatile aroma compounds were analyzed and quantitative descriptive analysis was performed on wine samples. The results indicated that berry ripeness primarily influenced physicochemical profiles, while aroma characteristics were affected by both grape maturity and yeast strain. Some esters and higher alcohols increased with grape maturity. Late-harvest wines scored significantly higher in aroma and taste quality than early-harvest wines. The CECA strain yielded wines with elevated medium-chain ester levels, reduced higher alcohols, improved balance and purity, and enhanced the typical aroma of blackberry, spice, and dark chocolate.
Collapse
Affiliation(s)
- Xiaomin Zang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qing Du
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiao Jiang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yan-ying Liang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dongqing Ye
- Guangxi Key Laboratory of Fruits and Vegetables Storage-processing Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yanlin Liu
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia 750104, China
| |
Collapse
|
3
|
Jiang X, Peng Z, Zhang J. Starting with screening strains to construct synthetic microbial communities (SynComs) for traditional food fermentation. Food Res Int 2024; 190:114557. [PMID: 38945561 DOI: 10.1016/j.foodres.2024.114557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 07/02/2024]
Abstract
With the elucidation of community structures and assembly mechanisms in various fermented foods, core communities that significantly influence or guide fermentation have been pinpointed and used for exogenous restructuring into synthetic microbial communities (SynComs). These SynComs simulate ecological systems or function as adjuncts or substitutes in starters, and their efficacy has been widely verified. However, screening and assembly are still the main limiting factors for implementing theoretic SynComs, as desired strains cannot be effectively obtained and integrated. To expand strain screening methods suitable for SynComs in food fermentation, this review summarizes the recent research trends in using SynComs to study community evolution or interaction and improve the quality of food fermentation, as well as the specific process of constructing synthetic communities. The potential for novel screening modalities based on genes, enzymes and metabolites in food microbial screening is discussed, along with the emphasis on strategies to optimize assembly for facilitating the development of synthetic communities.
Collapse
Affiliation(s)
- Xinyi Jiang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zheng Peng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Sizzano F, Blackford M, Berthoud H, Amiet L, Bailly S, Vuichard F, Monnard C, Bieri S, Spring JL, Barth Y, Descombes C, Lefort F, Cléroux M, Simonin S, Chappuis C, Bourdin G, Bach B. Bioprospecting of a Metschnikowia pulcherrima Indigenous Strain for Chasselas Winemaking in 2022 Vintage. Foods 2023; 12:4485. [PMID: 38137289 PMCID: PMC10742927 DOI: 10.3390/foods12244485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Interest in Metschnikowia (M.) pulcherrima is growing in the world of winemaking. M. pulcherrima is used both to protect musts from microbial spoilage and to modulate the aromatic profile of wines. Here, we describe the isolation, characterization, and use of an autochthonous strain of M. pulcherrima in the vinification of Chasselas musts from the 2022 vintage. M. pulcherrima was used in co-fermentation with Saccharomyces cerevisiae at both laboratory and experimental cellar scales. Our results showed that M. pulcherrima does not ferment sugars but has high metabolic activity, as detected by flow cytometry. Furthermore, sensory analysis showed that M. pulcherrima contributed slightly to the aromatic profile when compared to the control vinifications. The overall results suggest that our bioprospecting strategy can guide the selection of microorganisms that can be effectively used in the winemaking process.
Collapse
Affiliation(s)
- Federico Sizzano
- Oenology Research Group, Department of Plant Production Systems, Agroscope, 1260 Nyon, Switzerland; (M.B.); (L.A.); (S.B.); (G.B.)
| | - Marie Blackford
- Oenology Research Group, Department of Plant Production Systems, Agroscope, 1260 Nyon, Switzerland; (M.B.); (L.A.); (S.B.); (G.B.)
- Viticulture and Oenology, HES-SO University of Applied Sciences and Arts Western Switzerland, 1260 Nyon, Switzerland; (M.C.); (S.S.); (C.C.); (B.B.)
| | - Hélène Berthoud
- Ferments Research Group, Department of Development of Analytical Methods, Agroscope, 3003 Liebefeld, Switzerland;
| | - Laurent Amiet
- Oenology Research Group, Department of Plant Production Systems, Agroscope, 1260 Nyon, Switzerland; (M.B.); (L.A.); (S.B.); (G.B.)
| | - Sébastien Bailly
- Oenology Research Group, Department of Plant Production Systems, Agroscope, 1260 Nyon, Switzerland; (M.B.); (L.A.); (S.B.); (G.B.)
| | - Frédéric Vuichard
- Wine Quality Group, Department of Development of Analytical Methods, Agroscope, 1260 Nyon, Switzerland; (F.V.); (C.M.); (S.B.)
| | - Christine Monnard
- Wine Quality Group, Department of Development of Analytical Methods, Agroscope, 1260 Nyon, Switzerland; (F.V.); (C.M.); (S.B.)
| | - Stefan Bieri
- Wine Quality Group, Department of Development of Analytical Methods, Agroscope, 1260 Nyon, Switzerland; (F.V.); (C.M.); (S.B.)
| | - Jean-Laurent Spring
- Viticulture Research Group, Department of Plant Production Systems, Agroscope, 1009 Pully, Switzerland;
| | - Yannick Barth
- Plants and Pathogens Research Group, Geneva School of Engineering, Architecture, and Landscape (HEPIA), HES-SO University of Applied Sciences and Arts Western Switzerland, 1202 Geneva, Switzerland; (Y.B.); (C.D.); (F.L.)
| | - Corentin Descombes
- Plants and Pathogens Research Group, Geneva School of Engineering, Architecture, and Landscape (HEPIA), HES-SO University of Applied Sciences and Arts Western Switzerland, 1202 Geneva, Switzerland; (Y.B.); (C.D.); (F.L.)
| | - François Lefort
- Plants and Pathogens Research Group, Geneva School of Engineering, Architecture, and Landscape (HEPIA), HES-SO University of Applied Sciences and Arts Western Switzerland, 1202 Geneva, Switzerland; (Y.B.); (C.D.); (F.L.)
| | - Marilyn Cléroux
- Viticulture and Oenology, HES-SO University of Applied Sciences and Arts Western Switzerland, 1260 Nyon, Switzerland; (M.C.); (S.S.); (C.C.); (B.B.)
| | - Scott Simonin
- Viticulture and Oenology, HES-SO University of Applied Sciences and Arts Western Switzerland, 1260 Nyon, Switzerland; (M.C.); (S.S.); (C.C.); (B.B.)
| | - Charles Chappuis
- Viticulture and Oenology, HES-SO University of Applied Sciences and Arts Western Switzerland, 1260 Nyon, Switzerland; (M.C.); (S.S.); (C.C.); (B.B.)
| | - Gilles Bourdin
- Oenology Research Group, Department of Plant Production Systems, Agroscope, 1260 Nyon, Switzerland; (M.B.); (L.A.); (S.B.); (G.B.)
| | - Benoît Bach
- Viticulture and Oenology, HES-SO University of Applied Sciences and Arts Western Switzerland, 1260 Nyon, Switzerland; (M.C.); (S.S.); (C.C.); (B.B.)
| |
Collapse
|