1
|
Yang W, Zheng Z, Shi Y, Reynolds AG, Duan C, Lan Y. Volatile phenols in wine: overview of origin, formation, analysis, and sensory expression. Crit Rev Food Sci Nutr 2024:1-26. [PMID: 38766770 DOI: 10.1080/10408398.2024.2354526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Volatile phenols impart particular aromas to wine. Due to their distinctive aroma characteristics and low sensory thresholds, volatile phenols can easily influence and modify the aroma of wine. Since these compounds can be formed in wines in various ways, it is necessary to clarify the possible sources of each volatile phenol to achieve management during the winemaking process. The sources of volatile phenols in wine are divided into berry-derived, fermentation-derived, and oak-derived. The pathways and factors influencing the formation of volatile phenols from each source are then reviewed respectively. In addition, an overview of the sensory impact of volatile phenols is given, both in terms of the aroma these volatile phenols directly bring to the wine and their contribution through aroma interactions. Finally, as an essential basis for exploring the scientific problems of volatile phenols in wine, approaches to quantitation of volatile phenols and their precursors are discussed in detail. With the advancement of analytical techniques, more details on volatile phenols have been discovered. Further exploration is worthwhile to achieve more detailed monitoring and targeted management of volatile phenols in wine.
Collapse
Affiliation(s)
- Weixi Yang
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | - Ziang Zheng
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | - Ying Shi
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | | | - Changqing Duan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| | - Yibin Lan
- Center for Viticulture and Enology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Viticulture and Enology, Beijing, China
| |
Collapse
|
2
|
Qian X, Ling M, Sun Y, Han F, Shi Y, Duan C, Lan Y. Decoding the aroma characteristics of icewine by partial least-squares regression, aroma reconstitution, and omission studies. Food Chem 2024; 440:138226. [PMID: 38141438 DOI: 10.1016/j.foodchem.2023.138226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
The appeal of icewine is attributable to its distinct aroma characteristics, such as 'honey', 'caramel', and 'dried fruit', but little is known about the chemical basis of these aroma attributes. A set of icewines with different aroma intensities were selected by a panel of wine experts. Detailed volatile compound analyses and sensory descriptive analyses were performed on the selected icewines. Using partial least-squares regression, several lactones, esters, terpenes, furanones, and β-damascenone were positively correlated with 'honey', 'caramel', and 'dried fruit' aromas. Aroma reconstitution studies confirmed that terpenes could significantly enhance the 'honey' aroma, but weaken the 'caramel' aroma, while lactones and furanones could significantly enhance the 'caramel' and 'dried fruit' aromas. In addition, this study demonstrated that terpenes, lactones, and furanones interacted synergistically with each other to cause the sensory perception of the characteristic aromas of icewine.
Collapse
Affiliation(s)
- Xu Qian
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing100083, China
| | - Mengqi Ling
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing100083, China
| | - Yanfeng Sun
- Ji'an Ginseng Industry Development Center, Tonghua 134000, China
| | - Fuliang Han
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ying Shi
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing100083, China
| | - Changqing Duan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing100083, China
| | - Yibin Lan
- Center for Viticulture & Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing100083, China.
| |
Collapse
|
3
|
Gong J, Ma Y, Li L, Cheng Y, Huang Y. Comparative characterization and contribution of key aroma compounds in the typical base liquor of Jiang-flavor Baijiu from different distributions in the Chinese Chishui River basin. Food Chem X 2023; 20:100932. [PMID: 37868367 PMCID: PMC10589752 DOI: 10.1016/j.fochx.2023.100932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/18/2023] [Accepted: 10/06/2023] [Indexed: 10/24/2023] Open
Abstract
The characteristic of typical base liquor is crucial in controlling ultimate quality of Jiang-flavor Baijiu. This study investigates the flavor compounds of three typical base liquors (Jiangxiang, Chuntian, and Jiaodixiang) by LLE/LLME/HS-SPME, gas chromatography-mass spectrometry (GC-MS), gas chromatography-flame ionization detection (GC-FID), sensory analysis, and odor activity value (OAV). Of the 201 main volatile compounds identified, 37 significant compounds distinguished the three typical base liquors. Acid (441.72 ± 0.17 mg/L), alcohol (5388.88 ± 0.55 mg/L), and ester compounds (8181.64 ± 0.15 mg/L) were respectively marked in Jiangxiang, Chuntian, and Jiaodixiang typical base liquors. Orthogonal partial least squares discriminant analysis (OPLS-DA), correlation analysis, and aroma recombination showed that butyric acid (OAV: 102.23), butyl 2-methylbutyrate (OAV: 6045.59), and ethyl caproate (OAV: 418.37) were significantly correlated with sweet, fruity, pit mud, jiang, and ethanol aromas. It identifies the primary constituents that affect flavor variations in the three typical base liquors and provides guidance for investigations on the flavor formation of Jiang-flavor Baijiu.
Collapse
Affiliation(s)
- Jiaxin Gong
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, Guizhou 550025, China
| | - Yu Ma
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
| | - Lili Li
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
| | - Yuxin Cheng
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, Guizhou 550025, China
| | - Yongguang Huang
- College of Liquor and Food Engineering, Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guizhou University, Guiyang, Guizhou 550025, China
- Key Laboratory of Fermentation Engineering and Biological Pharmacy of Guizhou Province, Guiyang, Guizhou 550025, China
| |
Collapse
|