1
|
Wang H, Shao L, Sun Y, Liu Y, Zou B, Zhao Y, Wang Y, Li X, Dai R. Recovery mechanisms of ohmic heating-induced sublethally injured Staphylococcus aureus: Changes in cellular structure and applications in pasteurized milk. Food Control 2025; 171:111086. [DOI: 10.1016/j.foodcont.2024.111086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
2
|
Teresa Fernández-Felipe M, Inés Valdez-Narváez M, Martinez A, Rodrigo D. Oxygen and air cold plasma for the inactivation of Bacillus cereus in low-water activity soy powder. Food Res Int 2024; 193:114861. [PMID: 39160048 DOI: 10.1016/j.foodres.2024.114861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024]
Abstract
Cold plasma (CP) technology is a promising alternative to thermal treatments for the microbial decontamination of foods with low-water activity. The aim of this work is study the application of low-pressure CP (0.35 mbar) for the inactivation of Bacillus cereus in a soybean powder matrix using O₂ and synthetic air as ionizing gases. The parameters tested were an input power of 100, 200 and 300 W and an exposure time of 10 to 30 min. The excited reactive species formed were monitored by optical emission spectroscopy, and survival data were analyzed using the Weibull mathematical model. Treatments with both gases were effective in inactivating B. cereus. Air plasma resulted in a maximum 3.71-log reduction in bacterial counts at 300 W and 30 min, while O2 plasma showed the strongest inactivation ability, achieving levels higher than 5 log cycles at 300 W and > 25 min. This is likely due to the strong antimicrobial activity of oxygen-derived radicals together with carbon monoxide as an oxidation by-product. In addition, the Weibull distribution function accurately modeled the inactivation of B. cereus. Cold plasma technology is a promising approach for the decontamination of bacteria in low-water activity foods.
Collapse
Affiliation(s)
- M Teresa Fernández-Felipe
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - María Inés Valdez-Narváez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Antonio Martinez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - Dolores Rodrigo
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC), Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
3
|
Zhai Y, Luan A, Yang Z, Rong Z, Liu Y, Wang F, Li X. The impacts of cold plasma on the taste and odor formation of dried silver carp products. Food Chem 2024; 454:139775. [PMID: 38820628 DOI: 10.1016/j.foodchem.2024.139775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 06/02/2024]
Abstract
This study investigated non-thermal pretreatment (cold plasma, CP) on the flavor (taste and odor) profiles of dried fish products. CP treatment of 5 min contributed to accumulation of umami nucleotides adenosine 5'-monophosphate (AMP) from 30.96 to 40.82 μg/g and inosine 5'-monophosphate (IMP) from 2009.29 to 2132.23 μg/g, and significant reduction of bitter hypoxanthine ribonucleoside (HxR) and hypoxanthine (Hx), respectively (P < 0.05) in the dried fish products. A noticeable enhancement in sweet glycine (from 429.41 to 490.03 mg/100 g) and umami glutamic acid (from 55.68 to 67.76 mg/100 g) accompanied with the CP treatment (P < 0.05) based on taste activity value (TAV > 1). And the characteristic odor volatiles (nonanal, hexanal and 1-octen-3-ol) were strengthened 2.13-, 2.16- and 2.17- folds, respectively (P < 0.05). The results of equivalent umami concentration and Gibbs free energy calculation, combining with the correlation analysis, indicate that nucleotides and free amino acids synergically enhanced the taste improvement of dried fish products. Moderate lipids oxidation favored the formation of characteristic volatiles. The CP pretreatment offered new strategies for enhancing flavor of dried fish products.
Collapse
Affiliation(s)
- Yueying Zhai
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Aonan Luan
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Zhimeng Yang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China
| | - Zhixing Rong
- Jinzai Food Group Co., Ltd, Pingjiang High-Tech Industrial Park, Yueyang 410400, Hunan Province, China
| | - Yongle Liu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Faxiang Wang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China
| | - Xianghong Li
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, Hunan Province, China; Hunan Provincial Engineering Technology Research Center of Aquatic Food Resources Processing, Changsha 410114, Hunan Province, China.
| |
Collapse
|
4
|
Wei Q, Yuan Y, Zhang J, Wang J. Fungicidal efficiency of DBD cold plasma against Aspergillus niger on dried jujube. Food Microbiol 2024; 121:104523. [PMID: 38637085 DOI: 10.1016/j.fm.2024.104523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/20/2024]
Abstract
This study investigated the fungicidal efficiency and mechanism of action of dielectric barrier discharge cold atmosphere plasma (DBD-CAP) in inactivating Aspergillus niger (A. niger) spores. The disinfection efficacy and quality of dried jujube used as the processing application object were also studied. The results indicated that the Weibull + Tail model performed better for spore inactivation curves at different voltages among various treatment times, and the spore cells were reduced by 4.05 log (cfu/mL) in spores suspension at 70 kV after 15 min of treatment. This disinfection impact was further supported by scanning electron microscope (SEM) and transmission electron microscopy (TEM) images, which showed that the integrity of the cell membrane was damaged, and the intracellular content leaked out after DBD-CAP treatment. Elevated levels of reactive oxygen species (ROS) during the treatment increased the relative conductivity of cells, and leakage of nucleic acids and proteins further supported the disinfection impact. Additionally, the growth and toxicity of surviving A. niger spores after treatment were also greatly reduced. When DBD-CAP was applied to disinfecting dried jujube, the spore number exhibited a 2.67 log cfu/g reduction after treatment without significant damage observed onto the quality (P > 0.05).
Collapse
Affiliation(s)
- Qiaoyun Wei
- National Center Meat Quality & Safety and Control, College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China; Nanjing Suman Plasma Engineering Institute Co. LTD, Nanjing 210095, China.
| | - Yuan Yuan
- National Center Meat Quality & Safety and Control, College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China; Department of Food Science, University of Tennessee Institute of Agriculture, 2510 River Dr., Knoxville, TN, 37996, USA
| | - Jianhao Zhang
- National Center Meat Quality & Safety and Control, College of Food Science & Technology, Nanjing Agricultural University, Nanjing 210095, China; Nanjing Suman Plasma Engineering Institute Co. LTD, Nanjing 210095, China.
| | - Jin Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
5
|
Wang Y, Yu M, Xie Y, Ma W, Sun S, Li Q, Yang Y, Li X, Jia H, Zhao R. Mechanism of inactivation of Aspergillus flavus spores by dielectric barrier discharge plasma. Toxicon 2024; 239:107615. [PMID: 38219915 DOI: 10.1016/j.toxicon.2024.107615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/02/2024] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Dielectric barrier discharge plasma (DBDP) displays strong against fungal spores, while its precise mechanism of spore inactivation remains inadequately understood. In this study, we applied morphological, in vivo and in vitro experiments, transcriptomics, and physicochemical detection to unveil the potential molecular pathways underlying the inactivation of Aspergillus flavus spores by DBDP. Our findings suggested that mycelium growth was inhibited as observed by SEM after 30 s treatment at 70 kV, meanwhile spore germination ceased and clustering occurred. It led to the release of cellular contents and subsequent spore demise by disrupting the integrity of spore membrane. Additionally, based on the transcriptomic data, we hypothesized that the induction of spore inactivation by DBDP might be associated with downregulation of genes related to cell membranes, organelles (mitochondria), oxidative phosphorylation, and the tricarboxylic acid cycle. Subsequently, we validated our transcriptomic findings by measuring the levels of relevant enzymes in metabolic pathways, such as superoxide dismutase, acetyl-CoA, total dehydrogenase, and ATP. These physicochemical indicators revealed that DBDP treatment resulted in mitochondrial dysfunction, redox imbalance, and inhibited energy metabolism pathways. These findings were consistent with the transcriptomic results. Hence, we concluded that DBDP accelerated spore rupture and death via ROS-mediated mitochondrial dysfunction, which does not depend on cell membranes.
Collapse
Affiliation(s)
- Yaxin Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China.
| | - Mingming Yu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China
| | - Yanli Xie
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China.
| | - Weibin Ma
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China
| | - Shumin Sun
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China
| | - Qian Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China
| | - Yuhui Yang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China
| | - Xiao Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China
| | - Hang Jia
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China
| | - Renyong Zhao
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, PR China; Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|